TIAN Fuqiang, HU Hongchang, SUN Yu, LI Hongyi, LU Hui. Searching for an Optimized Single-objective Function Matching Multiple Objectives with Automatic Calibration of Hydrological Models[J]. Chinese Geographical Science, 2019, 29(6): 934-948. doi: 10.1007/s11769-019-1068-5
Citation: TIAN Fuqiang, HU Hongchang, SUN Yu, LI Hongyi, LU Hui. Searching for an Optimized Single-objective Function Matching Multiple Objectives with Automatic Calibration of Hydrological Models[J]. Chinese Geographical Science, 2019, 29(6): 934-948. doi: 10.1007/s11769-019-1068-5

Searching for an Optimized Single-objective Function Matching Multiple Objectives with Automatic Calibration of Hydrological Models

doi: 10.1007/s11769-019-1068-5
Funds:

Under the auspices of National Key Research and Development Program of China (No. 2016YFC0402701), National Natural Science Foundation of China (No. 51825902)

  • Received Date: 2018-09-14
  • In the calibration of hydrological models, evaluation criteria are explicitly and quantitatively defined as single-or multi-objective functions when utilizing automatic calibration approaches. In most previous studies, there is a general opinion that no single-objective function can represent all important characteristics of even one specific hydrological variable (e.g., streamflow). Thus hydrologists must turn to multi-objective calibration. In this study, we demonstrated that an optimized single-objective function can compromise multi-response modes (i.e., multi-objective functions) of the hydrograph, which is defined as summation of a power function of the absolute error between observed and simulated streamflow with the exponent of power function optimized for specific watersheds. The new objective function was applied to 196 model parameter estimation experiment (MOPEX) watersheds across the eastern United States using the semi-distributed Xinanjiang hydrological model. The optimized exponent value for each watershed was obtained by targeting four popular objective functions focusing on peak flows, low flows, water balance, and flashiness, respectively. Results showed that the optimized single-objective function can achieve a better hydrograph simulation compared to the traditional single-objective function Nash-Sutcliffe efficiency coefficient for most watersheds, and balance high flow part and low flow part of the hydrograph without substantial differences compared to multi-objective calibration. The proposed optimal single-objective function can be practically adopted in the hydrological modeling if the optimal exponent value could be determined a priori according to hydrological/climatic/landscape characteristics in a specific watershed.
  • [1] Bao H J, Zhao L N, He Y et al., 2011. Coupling ensemble weather predictions based on TIGGE database with Grid-Xinanjiang model for flood forecast. Advances in Geosciences, 29:61-67. doi: 10.5194/adgeo-29-61-2011
    [2] Bekele E G, Nicklow J W, 2007. Multi-objective automatic cali-bration of SWAT using NSGA-II. Journal of Hydrology, 341(3-4):165-176. doi: 10.1016/j.jhydrol.2007.05.014
    [3] Booij M J, Krol M S, 2010. Balance between calibration objectives in a conceptual hydrological model. Hydrological Sciences Journal, 55(6):1017-1032. doi: 10.1080/02626667.2010.505892
    [4] Box G E P, Cox D R, 1964. An analysis of transformations. Journal of the Royal Statistical Society. Series B (Methodo-logical), 26(2):211-252.
    [5] Boyle D P, Gupta H V, Sorooshian S, 2000. Toward improved calibration of hydrologic models:combining the strengths of manual and automatic methods. Water Resources Research, 36(12):3663-3674. doi: 10.1029/2000WR900207
    [6] Cheng C T, Zhao M Y, Chau K W et al., 2006. Using genetic al-gorithm and TOPSIS for Xinanjiang model calibration with a single procedure. Journal of Hydrology, 316(1-4):129-140. doi: 10.1016/j.jhydrol.2005.04.022
    [7] Deb K, Pratap A, Agarwal S et al., 2002. A fast and elitist multi-objective genetic algorithm:NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182-197. doi: 10.1109/4235.996017
    [8] Duan Q, Schaake J, Andréassian V et al., 2006. Model parameter estimation experiment (MOPEX):an overview of science strategy and major results from the second and third work-shops. Journal of Hydrology, 320(1-2):3-17. doi:10.1016/j. jhydrol.2005.07.031
    [9] Efstratiadis A, Koutsoyiannis D, 2010. One decade of multi-ob-jective calibration approaches in hydrological modelling:a re-view. Hydrological Sciences Journal, 55(1):58-78. doi: 10.1080/02626660903526292
    [10] Faustini J M, Kaufmann P R, Herlihy A T, 2009. Downstream variation in bankfull width of wadeable streams across the conterminous United States. Geomorphology, 108(3-4):292-311. doi: 10.1016/j.geomorph.2009.02.005
    [11] Fenicia F, Savenije H H G, Matgen P et al., 2007. A comparison of alternative multiobjective calibration strategies for hydrological modeling. Water Resources Research, 43(3):W03434. doi: 10.1029/2006WR005098
    [12] Gan T Y, Dlamini E M, Biftu G F, 1997. Effects of model com-plexity and structure, data quality, and objective functions on hydrologic modeling. Journal of Hydrology, 192(1-4):81-103. doi: 10.1016/S0022-1694(96)03114-9
    [13] Gill M K, Kaheil Y H, Khalil A et al., 2006. Multiobjective particle swarm optimization for parameter estimation in hydrology. Water Resources Research, 42(7):W07417. doi:10.1029/2005 WR004528
    [14] Guinot V, Cappelaere B, Delenne C et al., 2011. Towards improved criteria for hydrological model calibration:theoretical analysis of distance-and weak form-based functions. Journal of Hydrology, 401(1-2):1-13. doi: 10.1016/j.jhydrol.2011.02.004
    [15] Gupta H V, Sorooshian S, Yapo P O, 1998. Toward improved calibration of hydrologic models:multiple and noncommen-surable measures of information. Water Resources Research, 34(4):751-763. doi: 10.1029/97WR03495
    [16] Gupta H V, Kling H, Yilmaz K K et al., 2009. Decomposition of the mean squared error and NSE performance criteria:impli-cations for improving hydrological modelling. Journal of Hy-drology, 377(1-2):80-91. doi: 10.1016/j.jhydrol.2009.08.003
    [17] Hall J W, Tarantola S, Bates P D et al., 2005. Distributed sensitiv-ity analysis of flood inundation model calibration. Journal of Hydraulic Engineering, 131(2):117-126. doi: 10.1061/(ASCE)0733-9429(2005)131:2(117)
    [18] Jain S K, Sudheer K P, 2008. Fitting of hydrologic models:a close look at the Nash-Sutcliffe index. Journal of Hydrologic Engineering, 13(10):981-986. doi: 10.1061/(ASCE)1084-0699(2008)13:10(981)
    [19] Ju Q, Yu Z B, Hao Z C et al., 2009. Division-based rainfall-runoff simulations with BP neural networks and Xinanjiang model. Neurocomputing, 72(13-15):2873-2883. doi:10.1016/j. neu-com.2008.12.032
    [20] Khu S T, Madsen H, di Pierro F, 2008. Incorporating multiple observations for distributed hydrologic model calibration:an approach using a multi-objective evolutionary algorithm and clustering. Advances in Water Resources, 31(10):1387-1398. doi: 10.1016/j.advwatres.2008.07.011
    [21] Kollat J B, Reed P M, 2006. Comparing state-of-the-art evolu-tionary multi-objective algorithms for long-term groundwater monitoring design. Advances in Water Resources, 29(6):792-807. doi: 10.1016/j.advwatres.2005.07.010
    [22] Kollat J B, Reed P M, Wagener T, 2012. When are multiobjective calibration trade-offs in hydrologic models meaningful? Water Resources Research, 48(3):03520. doi:10.1029/2011WR 011534
    [23] Krause P, Boyle D P, Bäse F, 2005. Comparison of different effi-ciency criteria for hydrological model assessment. Advances in Geosciences, 5:89-97. doi: 10.5194/adgeo-5-89-2005
    [24] Laumanns M, Thiele L, Deb K et al., 2002. Combining conver-gence and diversity in evolutionary multiobjective optimization. Evolutionary Computation, 10(3):263-282. doi: 10.1162/106365602760234108
    [25] Li H X, Zhang Y Q, Chiew F H S et al., 2009. Predicting runoff in ungauged catchments by using Xinanjiang model with MODIS leaf area index. Journal of Hydrology, 370(1-4):155-162. doi: 10.1016/j.jhydrol.2009.03.003
    [26] Li H Y, Wigmosta M S, Wu H et al., 2013. A physically based runoff routing model for land surface and earth system models. Journal of Hydrometeorology, 14(3):808-828. doi: 10.1175/JHM-D-12-015.1
    [27] Madsen H, 2000. Automatic calibration of a conceptual rain-fall-runoff model using multiple objectives. Journal of Hy-drology, 235(3-4):276-288. doi:10.1016/S0022-1694(00) 00279-1
    [28] Madsen H, Wilson G, Ammentorp H C 2002. Comparison of dif-ferent automated strategies for calibration of rainfall-runoff models. Journal of Hydrology, 261(1-4):48-59. doi: 10.1016/S0022-1694(01)00619-9
    [29] Madsen H, 2003. Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives. Advances in Water Resources, 26(2):205-216. doi: 10.1016/S0309-1708(02)00092-1
    [30] Matott L S, Babendreier J E, Purucker S T, 2009. Evaluating un-certainty in integrated environmental models:a review of concepts and tools. Water Resources Research, 45(6):W06421. doi: 10.1029/2008WR007301
    [31] McCuen R H, Knight Z, Cutter A G, 2006. Evaluation of the Nash-Sutcliffe efficiency index. Journal of Hydrologic Engi-neering, 11(6):597-602. doi:10.1061/(ASCE)1084-0699 (2006)11:6(597)
    [32] Muleta M K, 2012. Model performance sensitivity to objective function during automated calibrations. Journal of Hydrologic Engineering, 17(6):756-767. doi: 10.1061/(ASCE)HE.1943-5584.0000497
    [33] Nash J E, Sutcliffe J V, 1970. River flow forecasting through conceptual models part I-A discussion of principles. Journal of Hydrology, 10(3):282-290. doi:10.1016/0022-1694(70) 90255-6
    [34] Pokhrel P, Gupta H V, 2010. On the use of spatial regularization strategies to improve calibration of distributed watershed models. Water Resources Research, 46(1):W01505. doi: 10.1029/2009WR008066
    [35] Price K, Purucker S T, Kraemer S R et al., 2012. Tradeoffs among watershed model calibration targets for parameter estimation. Water Resources Research, 48(10):W10542. doi: 10.1029/2012WR012005
    [36] Reed P, Minsker B S, Goldberg D E, 2003. Simplifying multi-objective optimization:an automated design methodology for the nondominated sorted genetic algorithm-II. Water Resources Research, 39(7):1196. doi: 10.1029/2002WR001483
    [37] Schaefli B, Gupta H V, 2007. Do Nash values have value? Hy-drological Processes, 21(15):2075-2080. doi:10.1002/hyp. 6825
    [38] Sun Y, Tian F Q, Yang L et al., 2014. Exploring the spatial varia-bility of contributions from climate variation and change in catchment properties to streamflow decrease in a mesoscale basin by three different methods. Journal of Hydrology, 508:170-180. doi: 10.1016/j.jhydrol.2013.11.004
    [39] Tang Y, Reed P, Wagener T, 2006. How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration? Hydrology and Earth System Sciences, 10(2):289-307. doi: 10.5194/hess-10-289-2006
    [40] Tang Y, Reed P M, Kollat J B, 2007. Parallelization strategies for rapid and robust evolutionary multiobjective optimization in water resources applications. Advances in Water Resources, 30(3):335-353. doi: 10.1016/j.advwatres.2006.06.006
    [41] Tekleab S, Uhlenbrook S, Mohamed Y et al., 2011. Water balance modeling of Upper Blue Nile catchments using a top-down approach. Hydrology and Earth System Sciences, 15(7):2179-2193. doi: 10.5194/hess-15-2179-2011
    [42] van Griensven A, Bauwens W, 2003. Multiobjective autocalibra-tion for semidistributed water quality models. Water Resources Research, 39(12):1348. doi: 10.1029/2003WR002284
    [43] van Werkhoven K, Wagener T, Reed P et al., 2009. Sensitivi-ty-guided reduction of parametric dimensionality for mul-ti-objective calibration of watershed models. Advances in Water Resources, 32(8):1154-1169. doi:10.1016/j.advwatres. 2009.03.002
    [44] Vrugt J A, Bouten W, Gupta H V et al., 2002. Toward improved identifiability of hydrologic model parameters:the information content of experimental data. Water Resources Research, 38(12):1312. doi: 10.1029/2001WR001118
    [45] Vrugt J A, Gupta H V, Bastidas L A et al., 2003. Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resources Research, 39(8):1214-1232. doi: 10.1029/2002WR001746
    [46] Wagener T, 2003. Evaluation of catchment models. Hydrological Processes, 17(16):3375-3378. doi: 10.1002/hyp.5158
    [47] Yapo P O, Gupta H V, Sorooshian S, 1998. Multi-objective global optimization for hydrologic models. Journal of Hydrology, 204(1-4):83-97. doi: 10.1016/S0022-1694(97)00107-8
    [48] Zhao R J, 1992. The Xinanjiang model applied in China. Journal of Hydrology, 135(1-4):371-381. doi:10.1016/0022-1694 (92)90096-E
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(70) PDF downloads(122) Cited by()

Proportional views
Related

Searching for an Optimized Single-objective Function Matching Multiple Objectives with Automatic Calibration of Hydrological Models

doi: 10.1007/s11769-019-1068-5
Funds:

Under the auspices of National Key Research and Development Program of China (No. 2016YFC0402701), National Natural Science Foundation of China (No. 51825902)

Abstract: In the calibration of hydrological models, evaluation criteria are explicitly and quantitatively defined as single-or multi-objective functions when utilizing automatic calibration approaches. In most previous studies, there is a general opinion that no single-objective function can represent all important characteristics of even one specific hydrological variable (e.g., streamflow). Thus hydrologists must turn to multi-objective calibration. In this study, we demonstrated that an optimized single-objective function can compromise multi-response modes (i.e., multi-objective functions) of the hydrograph, which is defined as summation of a power function of the absolute error between observed and simulated streamflow with the exponent of power function optimized for specific watersheds. The new objective function was applied to 196 model parameter estimation experiment (MOPEX) watersheds across the eastern United States using the semi-distributed Xinanjiang hydrological model. The optimized exponent value for each watershed was obtained by targeting four popular objective functions focusing on peak flows, low flows, water balance, and flashiness, respectively. Results showed that the optimized single-objective function can achieve a better hydrograph simulation compared to the traditional single-objective function Nash-Sutcliffe efficiency coefficient for most watersheds, and balance high flow part and low flow part of the hydrograph without substantial differences compared to multi-objective calibration. The proposed optimal single-objective function can be practically adopted in the hydrological modeling if the optimal exponent value could be determined a priori according to hydrological/climatic/landscape characteristics in a specific watershed.

TIAN Fuqiang, HU Hongchang, SUN Yu, LI Hongyi, LU Hui. Searching for an Optimized Single-objective Function Matching Multiple Objectives with Automatic Calibration of Hydrological Models[J]. Chinese Geographical Science, 2019, 29(6): 934-948. doi: 10.1007/s11769-019-1068-5
Citation: TIAN Fuqiang, HU Hongchang, SUN Yu, LI Hongyi, LU Hui. Searching for an Optimized Single-objective Function Matching Multiple Objectives with Automatic Calibration of Hydrological Models[J]. Chinese Geographical Science, 2019, 29(6): 934-948. doi: 10.1007/s11769-019-1068-5
Reference (48)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return