Volume 31 Issue 1
Jan.  2021
Turn off MathJax
Article Contents

YE Xinyue, GONG Junfang, LI Shengwen. Analyzing Asymmetric City Connectivity by Toponym on Social Media in China[J]. Chinese Geographical Science, 2021, 31(1): 14-26. doi: 10.1007/s11769-020-1172-6
Citation: YE Xinyue, GONG Junfang, LI Shengwen. Analyzing Asymmetric City Connectivity by Toponym on Social Media in China[J]. Chinese Geographical Science, 2021, 31(1): 14-26. doi: 10.1007/s11769-020-1172-6

Analyzing Asymmetric City Connectivity by Toponym on Social Media in China

doi: 10.1007/s11769-020-1172-6
Funds:

Under the auspices of National Natural Science Foundation of China (No. 41801378, 42071382), the Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources (No. KF-2019-04-033)

  • Received Date: 2019-12-25
  • The connectedness between cities has become one of the most widely discussed topics in urban and regional research in the mobile and big data era. One problem identified is the asymmetric city connectivity, partially due to data availability. We present a data-driven approach based on location and toponym (place name) extracted from social media data, to assess the asymmetric connectivity between cities. The assumption is that a higher frequency of occurrences of the name of city i in posts located in city j would imply that the city i is more influential than other cities upon city j. In addition, we’ve developed a group of measurements such as the relatedness index, impact index, link strength index, dependence index, and structure similar index to characterize such interactions. This framework of connectivity measurements can also be used to support smart planning taking into account the evolving interplay among cities. The space-time structure of urban systems in China is examined as the case study.
  • [1] Beaverstock J V, Smith R G, Taylor P J, 2000. World-city network: a new metageography? Annals of the Association of American Geographers, 90(1): 123–134. doi:  10.1111/0004-5608.00188
    [2] Borges K A V, Davis Jr C A, Laender A H F et al., 2011. Ontology-driven discovery of geospatial evidence in web pages.Geoinformatica, 15(4): 609–631. doi:  10.1007/s10707-010-0118-z
    [3] Buyukkokten O, Cho J, Garcia-Molina H et al., 1999. Exploiting geographical location information of web pages. In ACM SIGMOD Workshop on the Web and Databases. Philadelphia, Pennsylvania, ACM Chen X, Yang X N, 2014. Does food environment influence food choices? A geographical analysis through ‘tweets’. Applied Geography, 51: 82–89. doi:  10.1016/j.apgeog.2014.04.003
    [4] Erlander S, 1980. Optimal Spatial Interaction and the Gravity Model. Berlin: Springer. doi:  10.1007/978-3-642-45515-5
    [5] Gao S, Liu Y, Wang Y L et al., 2013. Discovering spatial interaction communities from mobile phone data. Transactions in GIS, 17(3): 463–481. doi:  10.1111/tgis.12042
    [6] Ghosh D D, Guha R, 2013. What are we ‘tweeting’ about obesity? Mapping tweets with topic modeling and Geographic Information System. Cartography and Geographic Information Science, 40(2): 90–102. doi:  10.1080/15230406.2013.776210
    [7] Ghufran M, Quercini G, Bennacer N, 2015. Toponym disambiguation in online social network profiles. Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems. Bellevue: ACM. doi: 10.1145/2820783.2820812
    [8] Grajales III F J, Sheps S, Ho K et al., 2014. Social media: a review and tutorial of applications in medicine and health care.Journal of Medical Internet Research, 16(2): e13. doi: 10.2196/jmir.2912
    [9] Han S Y, Tsou M H, Clarke K C, 2015. Do global cities enable global views? Using twitter to quantify the level of geographical awareness of U.S. cities. PLoS One, 10(7):e0132464. doi:  10.1371/journal.pone.0132464
    [10] Hay S I, George D B, Moyes C L et al., 2013. Big data opportunities for global infectious disease surveillance. PLoS Medicine, 10(4): e1001413. doi:  10.1371/journal.pmed.1001413
    [11] Haynes K E, Fotheringham A S, 1984. Gravity and Spatial Interaction Models. Beverly Hills: SAGE Publication.
    [12] Hecht B, Moxley E, 2009. Terabytes of tobler: evaluating the first law in a massive, domain-neutral representation of world knowledge. Proceedings of the 9th International Conference on Spatial Information Theory. Berlin: Springer. doi: 10.1007/978-3-642-03832-7_6
    [13] Hu Y J, Ye X Y, Shaw S L, 2017. Extracting and analyzing semantic relatedness between cities using news articles. International Journal of Geographical Information Science, 31(12):2427–2451. doi:  10.1080/13658816.2017.1367797
    [14] Jiang B, Jia T, 2011. Exploring human mobility patterns based on location information of US flights. arXiv preprint, arXiv:1104.4578. https://arxiv.org/abs/1104.4578
    [15] Jiang Y Q, Li Z L, Ye X Y, 2018. Measuring inter-city network using digital footprints from twitter users. Proceedings of the 2nd ACM SIGSPATIAL Workshop on Prediction of Human Mobility. Seattle: ACM. doi:  10.1145/3283590.3283594
    [16] Jones C B, Purves R S, 2008. Geographical information retrieval.International Journal of Geographical Information Science, 22(3): 219–228. doi:  10.1080/13658810701626343
    [17] Jones C B, Purves R S, Clough P D et al., 2008. Modelling vague places with knowledge from the Web. International Journal of Geographical Information Science, 22(10): 1045–1065. doi: 10.1080/13658810701850547
    [18] King D, Ramirez-Cano D, Greaves F et al., 2013. Twitter and the health reforms in the English National Health Service. Health Policy, 110(2–3): 291–297. doi: 10.1016/j.healthpol.2013. 02.005
    [19] Kitamoto A, Sagara T, 2012. Toponym-based geotagging for observing precipitation from social and scientific data streams.
    [20] Proceedings of ACM Multimedia 2012 Workshop on Geotagging and its Applications in Multimedia. Nara, Japan: ACM.doi:  10.1145/2390790.2390799
    [21] Li S W, Ye X Y, Lee J et al., 2017. Spatiotemporal analysis of housing prices in China: a big data perspective. Applied Spatial Analysis and Policy, 10(3): 421–433. doi:  10.1007/s12061-016-9185-3
    [22] Lieberman M D, Samet H, 2012. Adaptive context features for toponym resolution in streaming news. Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval. Portland: ACM. doi: 10.1145/2348283.2348381
    [23] Lin J Y, Li X, 2015. Simulating urban growth in a metropolitan area based on weighted urban flows by using web search engine. International Journal of Geographical Information Science, 29(10): 1721–1736. doi: 10.1080/13658816.2015. 1034721
    [24] Liu Y, Sui Z W, Kang C G et al., 2014b. Uncovering patterns of inter-urban trip and spatial interaction from social media check-in data. PLoS One, 9(1): e86026. doi: 10.1371/ journal.pone.0086026
    [25] Liu Y, Wang F H, Kang C G et al., 2014a. Analyzing relatedness by toponym co-occurrences on web pages. Transactions in GIS, 18(1): 89–107. doi:  10.1111/tgis.12023
    [26] Luo W, Hartmann J F, Wang F H, 2010. Terrain characteristics and Tai toponyms: a GIS analysis of Muang, Chiang and Viang. GeoJournal, 75(1): 93–104. doi:  10.1007/s10708-009-9291-8
    [27] Massa P, Campagna M, 2014. Social media geographic information: recent findings and opportunities for smart spatial planning. TeMA-Journal of Land Use, Mobility and Environment.doi:  10.6092/1970-9870/2500
    [28] Miller H J, 2004. Tobler’s first law and spatial analysis. Annals of the Association of American Geographers, 94(2): 284–289.doi:  10.1111/j.1467-8306.2004.09402005.x
    [29] Overell S, Rüger S, 2008. Using co-occurrence models for placename disambiguation. International Journal of Geographical Information Science, 22(3): 265–287. doi: 10.1080/1365 8810701626236
    [30] Padmanabhan A, Wang S W, Cao G F et al., 2014. FluMapper: a cyberGIS application for interactive analysis of massive location bas ‐ ed social media. Concurrency and Computation:Practice and Experience, 26(13): 2253–2265. doi:  10.1002/cpe.3287
    [31] Porojan A, 2001. Trade flows and spatial effects: the gravity model revisited. Open Economies Review, 12(3): 265–280.doi:  10.1023/A:1011129422190
    [32] Sakaki T, Okazaki M, Matsuo Y, 2013. Tweet analysis for real-time event detection and earthquake reporting system development. IEEE Transactions on Knowledge and Data Engineering, 25(4): 919–931. doi:  10.1109/TKDE.2012.29
    [33] Samet H, Sankaranarayanan J, Lieberman M D et al., 2014.Reading news with maps by exploiting spatial synonyms.Communications of the ACM, 57(10): 64–77. doi: 10.1145/ 2629572
    [34] Sanderson M, Kohler J, 2004. Analyzing geographic queries.Proceedings of the 27th Annual International ACM SIGIR Conference. Sheffield, UK : ACM Scellato S, Noulas A, Mascolo C, 2011. Exploiting place features in link prediction on location-based social networks. Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Diego, USA:ACM. doi:  10.1145/2020408.2020575
    [35] Tobler W R, 1970. A computer movie simulating urban growth in the Detroit region. Economic Geography, 46(S1): 234–240.doi:  10.2307/143141
    [36] Tsou M H, Yang J A, Lusher D et al., 2013. Mapping social activities and concepts with social media (Twitter) and web search engines (Yahoo and Bing): a case study in 2012 US Presidential Election. Cartography and Geographic Information Science, 40(4): 337–348. doi: 10.1080/15230406.2013. 799738
    [37] Velardi P, Stilo G, Tozzi A E et al., 2014. Twitter mining for fine-grained syndromic surveillance. Artificial Intelligence in Medicine, 61(3): 153–163. doi:  10.1016/j.artmed.2014.01.002
    [38] Wang F H, Wang G X, Hartmann J et al., 2012. Sinification of Zhuang place names in Guangxi, China: a GIS-based spatial analysis approach. Transactions of the Institute of British Geographers, 37(2): 317–333. doi: 10.1111/j.1475-5661.2011. 00471.x Wang F H, Zhang L, Zhang G P et al., 2014. Mapping and spatial analysis of multiethnic toponyms in Yunnan, China. Cartography and Geographic Information Science, 41(1): 86–99. doi:10.1080/15230406.2013.831529
    [39] Wang X G, Zhang Y, Chen M et al., 2010. An evidence-based approach for toponym disambiguation. Proceedings of the 2010 18th International Conference on Geoinformatics. Beijing: IEEE. doi:  10.1109/GEOINFORMATICS.2010.5567805
    [40] Wasserman S, Faust K, 1994. Social Network Analysis: Methods and Applications. Cambridge: Cambridge University Press.
    [41] Widener M J, Li W W, 2014. Using geolocated Twitter data to monitor the prevalence of healthy and unhealthy food references across the US. Applied Geography, 54: 189–197. doi: 10.1016/j.apgeog.2014.07.017
    [42] Wu J S, Feng Z, Zhang X W et al., 2020. Delineating urban hinterland boundaries in the Pearl River Delta: an approach integrating toponym co-occurrence with field strength model. Cities, 96: 102457. doi:  10.1016/j.cities.2019.102457
    [43] Ye X Y, Li S W, Yang X N et al., 2018. The fear of Ebola: a tale of two cities in China. In: Shen Z J, Li M Y (eds). Big Data Support of Urban Planning and Management. Cham:Springer, 113–132. doi:  10.1007/978-3-319-51929-6_7
    [44] Zhang W, Gelernter J, 2014. Geocoding location expressions in Twitter messages: a preference learning method. Journal of Spatial Information Science, 9(9): 37–70. doi: 10.5311/JOSIS. 2014.9.170
    [45] Zhen F, Qin X, Ye X Y et al., 2019. Analyzing urban development patterns based on the flow analysis method. Cities, 86:178–197. doi:  10.1016/j.cities.2018.09.015
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(189) PDF downloads(18) Cited by()

Proportional views
Related

Analyzing Asymmetric City Connectivity by Toponym on Social Media in China

doi: 10.1007/s11769-020-1172-6
Funds:

Under the auspices of National Natural Science Foundation of China (No. 41801378, 42071382), the Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources (No. KF-2019-04-033)

Abstract: The connectedness between cities has become one of the most widely discussed topics in urban and regional research in the mobile and big data era. One problem identified is the asymmetric city connectivity, partially due to data availability. We present a data-driven approach based on location and toponym (place name) extracted from social media data, to assess the asymmetric connectivity between cities. The assumption is that a higher frequency of occurrences of the name of city i in posts located in city j would imply that the city i is more influential than other cities upon city j. In addition, we’ve developed a group of measurements such as the relatedness index, impact index, link strength index, dependence index, and structure similar index to characterize such interactions. This framework of connectivity measurements can also be used to support smart planning taking into account the evolving interplay among cities. The space-time structure of urban systems in China is examined as the case study.

YE Xinyue, GONG Junfang, LI Shengwen. Analyzing Asymmetric City Connectivity by Toponym on Social Media in China[J]. Chinese Geographical Science, 2021, 31(1): 14-26. doi: 10.1007/s11769-020-1172-6
Citation: YE Xinyue, GONG Junfang, LI Shengwen. Analyzing Asymmetric City Connectivity by Toponym on Social Media in China[J]. Chinese Geographical Science, 2021, 31(1): 14-26. doi: 10.1007/s11769-020-1172-6
Reference (45)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return