[1] |
Aerts R, Chapin Ⅲ F S, 1999. The mineral nutrition of wild plants revisited:a re-evaluation of processes and patterns. Advances in Ecological Research, 30:1-67. doi:10.1016/S0065-2504(08)60016-1 |
[2] |
Amador J A, Görres J H, Savin M C, 2005. Role of soil water content in the carbon and nitrogen dynamics of Lumbricus terrestris L. burrow soil. Applied Soil Ecology, 28(1):15-22.doi:10.1016/j.apsoil.2004.06.009 |
[3] |
An Y, Gao Y, Tong S Z et al., 2018. Variations in vegetative char-acteristics of Deyeuxia angustifolia wetlands following natural restoration in the Sanjiang Plain, China. Ecological Engineer-ing, 112:34-40. doi:10.1016/j.ecoleng.2017.12.022 |
[4] |
Bai J H, Zhang G L, Zhao Q Q et al., 2016. Depth-distribution patterns and control of soil organic carbon in coastal salt marshes with different plant covers. Scientific Reports, 6:34835. doi:10.1038/srep34835 |
[5] |
Bai Junhong, Cui Baoshan, Deng Wei et al., 2007. Soil organic carbon contents of two natural inland saline-alkalined wetlands in northeastern China. Journal of Soil and Water Conservation, 62(6):447-452. (in Chinese) |
[6] |
Barbhuiya A R, Arunachalam A, Pandey H N et al., 2004. Dy-namics of soil microbial biomass C, N and P in disturbed and undisturbed stands of a tropical wet-evergreen forest. European Journal of Soil Biology, 40(3-4):113-121. doi:10.1016/j.ejsobi.2005.02.003 |
[7] |
Belleveau L J, Takekawa J Y, Woo I et al., 2015. Vegetation community response to tidal marsh restoration of a large river estuary. Northwest Science, 89(2):136-147. doi:10.3955/046.089.0205 |
[8] |
Black C A, Goring CA I, 1953. Organic phosphorus in Soils. In:Agronomy Monograph. New York:Academic Press, 123-153. |
[9] |
Borken W, Matzner E, 2009. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Global Change Biology, 15(4):808-824. doi:10.1111/j.1365-2486.2008.01681.x |
[10] |
Bui E N, Henderson B L, 2013. C:N:P stoichiometry in Aus-tralian soils with respect to vegetation and environmental fac-tors. Plant and Soil, 373(1-2):553-568. doi:10.1007/s11104-013-1823-9 |
[11] |
Cleveland C C, Liptzin D, 2007. C:N:P stoichiometry in soil:is there a "Redfield ratio" for the microbial biomass? Biogeo-chemistry, 85(3):235-252. doi:10.1007/s10533-007-9132-0 |
[12] |
Confer S R, Niering W A, 1992. Comparison of created and natu-ral freshwater emergent wetlands in Connecticut (USA). Wet-lands Ecology and Management, 2(3):143-156. doi:10.1007/BF00215321 |
[13] |
Craft C, Reader J, Sacco J N et al., 1999. Twenty-five years of ecosystem development of constructed Spartina alterniflora (Loisel) marshes. Ecological Applications, 9(4):1405-1419. doi:10.1890/1051-0761(1999)009[1405:TFYOED]2.0.CO;2 |
[14] |
Craft C, 2007. Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and U.S tidal marshes. Limnology and Oceanography, 52(3):1220-1230. doi:10.4319/lo.2007.52.3.1220 |
[15] |
Cross W F, Benstead J P, Frost P C et al., 2005. Ecological stoi-chiometry in freshwater benthic systems:recent progress and perspectives. Freshwater Biology, 50(11):1895-1912. doi:10.1111/j.1365-2427.2005.01458.x |
[16] |
Delgado-Baquerizo M, Maestre F T, Gallardo A et al., 2013. De-coupling of soil nutrient cycles as a function of aridity in global drylands. Nature, 502(7473):672-676. doi:10.1038/na-ture12670 |
[17] |
Elser J J, Fagan W F, Denno R F et al., 2000. Nutritional con-straints in terrestrial and freshwater food webs. Nature, 408(6812):578-580. doi:10.1038/35046058 |
[18] |
Elser J J, Bracken M E S, Cleland E E et al., 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10(12):1135-1142. doi:10.1111/j.1461-0248.2007.01113.x |
[19] |
Estrelles E, Biondi E, Galiè M et al., 2015. Aridity level, rainfall pattern and soil features as key factors in germination strategies in salt-affected plant communities. Journal of Arid Envi-ronments, 117:1-9. doi:10.1016/j.jaridenv.2015.02.005 |
[20] |
Freitas R F, Costa C S B, 2014. Germination responses to salt stress of two intertidal populations of the perennial glasswort Sarcocornia ambigua. Aquatic Botany, 117:12-17. doi:10.1016/j.aquabot.2014.04.002 |
[21] |
Fröberg M, Jardine P M, Hanson P J et al., 2007. Low dissolved organic carbon input from fresh litter to deep mineral soils. Soil Science Society of America Journal, 71(2):347-354. doi:10.2136/sssaj2006.0188 |
[22] |
Gao H F, Bai J H, He X H et al., 2014. High temperature and salinity enhance soil nitrogen mineralization in a tidal freshwater marsh. PLoSOne, 9(4):e95011.doi:10.1371/journal. pone.0095011 |
[23] |
Guan Yuanxiu, Liu Gaohuan, Liu Qingsheng et al., 2001. The study of salt-affected soils in the Yellow River delta based on remote sensing. Journal of Remote Sensing, 5(1):46-52. (in Chinese) |
[24] |
Güsewell S, Koerselman W, Verhoeven J T A, 2003. Biomass N:P ratios as indicators of nutrient limitation for plant populations in wetlands. Ecological Applications, 13(2):372-384. doi:10.1890/1051-0761(2003)013[0372:BNRAIO]2.0.CO;2 |
[25] |
Haywood B J, Hayes M P, White J R et al., 2020. Potential fate of wetland soil carbon in a deltaic coastal wetland subjected to high relative sea level rise. Science of the Total Environment, 711:135185. doi:10.1016/j.scitotenv.2019.135185 |
[26] |
Hu C, Li F, Xie Y H et al., 2018a. Soil carbon, nitrogen, and phosphorus stoichiometry of three dominant plant communities distributed along a small-scale elevation gradient in the East Dongting Lake. Physics and Chemistry of the Earth, Parts A/B/C, 103:28-34. doi:10.1016/j.pce.2017.04.001 |
[27] |
Hu M J, Peñuelas J, Sardans J et al., 2018b. Stoichiometry patterns of plant organ N and P in coastal herbaceous wetlands along the East China Sea:implications for biogeochemical niche. Plant and Soil, 431(1-2):273-288. doi:10.1007/s11104-018-3759-6 |
[28] |
Jiang Y F, Guo X, 2019. Stoichiometric patterns of soil carbon, nitrogen, and phosphorus in farmland of the Poyang Lake re-gion in Southern China. Journal of Soils and Sediments, 19(10):3476-3488. doi:10.1007/s11368-019-02317-3 |
[29] |
Jobbágy E G, Jackson R B, 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Eco-logical Applications, 10(2):423-436. doi:10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 |
[30] |
Koerselman W, Meuleman A F M, 1996. The vegetation N:P ratio:a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33(6):1441-1450. doi:10.2307/2404783 |
[31] |
Lajtha K, Schlesinger W H, 1988. The biogeochemistry of phos-phorus cycling and phosphorus availability along a desert soil chronosequence. Ecology, 69(1):24-39. doi:10.2307/1943157 |
[32] |
Lawrence B A, Zedler J B, 2013. Carbon storage by Carex stricta tussocks:a restorable ecosystem service? Wetlands, 33(3):483-493. doi:10.1007/s13157-013-0405-1 |
[33] |
Li W, Li D J, Yang L Q, et al., 2016. Rapid recuperation of soil nitrogen following agricultural abandonment in a karst area, southwest China. Biogeochemistry, 129(3):341-354. doi:10.1007/s10533-016-0235-3 |
[34] |
Li X Y, Wen B L, Yang F, et al., 2017. Effects of alternate flood-ing-drought conditions on degenerated Phragmites australis salt marsh in Northeast China. Restoration Ecology, 25(5):810-819. doi:10.1111/rec.12500 |
[35] |
Li Y Y, Zhao K, Ding Y L et al., 2013. An empirical method for soil salinity and moisture inversion in west of Jilin. In:Pro-ceedings of the 2013 the International Conferenceon Remote Sensing, Environment and Transportation Engineering (RSETE). Paris:Atlantis Press, 19-21. doi:10.2991/rsete. 2013.5 |
[36] |
Liu X, Ma J, Ma Z W et al., 2017. Soil nutrient contents and stoichiometry as affected by land-use in an agro-pastoral region of northwest China. Catena, 150:146-153. doi:10.1016/j.catena.2016.11.020 |
[37] |
Liu Xingtu, 2001. Management on Degraded Land and Agricul-tural Development in the Songnen Plain. Beijing:Science Press. (in Chinese) |
[38] |
Lu Rukun, 1999. Soil Agrochemistry Analysis Method. Beijing:China Agriculture Science Press, 106-150. (in Chinese) |
[39] |
Meyer C K, Baer S G, Whiles M R, 2008. Ecosystem recovery across a chronosequence of restored wetlands in the platte river valley. Ecosystems, 11(2):193-208. doi:10.1007/s10021-007-9115-y |
[40] |
Michaels A F, 2003. Biogeochemistry:the ratios of life. Science, 300(5621):906-907. doi:10.1126/science.1083140 |
[41] |
Mitsch W J, Bernal B, Nahlik A M et al., 2013. Wetlands, carbon, and climate change. Landscape Ecology, 28(4):583-597. doi:10.1007/s10980-012-9758-8 |
[42] |
Morse J L, Megonigal J P, Walbridge M R, 2004. Sediment nu-trient accumulation and nutrient availability in two tidal freshwater marshes along the Mattaponi River, Virginia, USA. Biogeochemistry, 69(2):175-206. doi:10.1023/B:BIOG. 0000031077.28527.a2 |
[43] |
Qadir M, Ghafoor A, Murtaza G, 2000. Amelioration strategies for saline soils:a review. Land Degradation & Development, 11(6):501-521. doi:10.1002/1099-145X(200011/12)11:6< 501::AID-LDR405>3.0.CO;2-S |
[44] |
Qin Y B, Xin Z B, Wang D M, 2016. Comparison of topsoil or-ganic carbon and total nitrogen in different flood-risk riparian zones in a Chinese Karst area. Environmental Earth Sciences, 75(12):1038. doi:10.1007/s12665-016-5846-4 |
[45] |
Rawls W J, Pachepsky Y A, Ritchie J C et al., 2003. Effect of soil organic carbon on soil water retention. Geoderma, 116(1-2):61-76. doi:10.1016/s0016-7061(03)00094-6 |
[46] |
Ren Qingshui, Ma Peng, Li Changxiao et al., 2016. Effects of Taxodium distichum and Salix matsudana on the contents of nutrient elements in the hydro-fluctuation belt of the Three Gorges Reservoir Area. Acta Ecologica Sinica, 36(20):6431-6444. (in Chinese) |
[47] |
Rousk J, Brookes P C, Bååth E, 2009. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbi-ology, 75(6):1589-1596. doi:10.1128/AEM.02775-08 |
[48] |
SalmoⅢ S G, Lovelock C, Duke N C, 2013. Vegetation and soil characteristics as indicators of restoration trajectories in restored mangroves. Hydrobiologia, 720(1):1-18. doi:10.1007/s10750-013-1617-3 |
[49] |
Schimel J P, Bennett J, 2004. Nitrogen mineralization:challenges of a changing paradigm. Ecology, 85(3):591-602. doi:10.1890/03-8002 |
[50] |
Setia R, Marschner P, Baldock J et al., 2011. Salinity effects on carbon mineralization in soils of varying texture. Soil Biology and Biochemistry, 43(9):1908-1916. doi:10.1016/j.soilbio. 2011.05.013 |
[51] |
Shen X J, Liu B H, Jiang M et al., 2020. Marshland loss warms local land surface temperature in China. Geophysical Research Letters, 47(6):e2020GL087648. doi:10.1029/2020GL087648 |
[52] |
Sterner R W, Elser J J, 2002. Ecological Stoichiometry:the Biology of Elements from Molecules to the Biosphere. Princeton:Princeton University Press. |
[53] |
Stockmann U, Adams M A, Crawford J W et al., 2013. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment, 164:80-99. doi:10.1016/j.agee.2012.10.001 |
[54] |
Sumner M E, Naidu R, 1998. SodicSoils:distribution, Properties, Managementand Environmental Consequences. New York:Oxford University Press. |
[55] |
Thormann M N, Bayley S E, 1997. Aboveground plant production and nutrient content of the vegetation in six peatlands in Alberta, Canada. Plant Ecology, 131(1):1-16. doi:10.1023/A:1009736005824 |
[56] |
Tian H Q, Chen G S, Zhang C et al., 2010. Pattern and variation of C:N:P ratios in China's soils:a synthesis of observational data. Biogeochemistry, 98(1-3):139-151. doi:10.1007/s10533-009-9382-0 |
[57] |
Tisdale S L, Nelson W L, Beaton J D, 1985. Soil Fertility and Fertilizers. 4th ed. New York:Macmillan Publishing. |
[58] |
Townsend A R, Cleveland C C, Asner G P et al., 2007. Controls over foliar N:P ratios in tropical rain forests. Ecology, 88(1):107-118. doi:10.1890/0012-9658(2007)88[107:COFNRI]2.0. CO;2 |
[59] |
Urbina I, Sardans J, Grau O et al., 2017. Plant community com-position affects the species biogeochemical niche. Ecosphere, 8(5):e01801.doi:10.1002/ecs2.1801 |
[60] |
Verhoeven A S, Adams W W, Demmig-Adams B, 1996. Close relationship between the state of the xanthophyll cycle pigments and photosystem Ⅱ efficiency during recovery from winter stress. Physiologia Plantarum, 96(4):567-576. doi:10.1111/j.1399-3054.1996.tb00228.x |
[61] |
Vinton M A, Burke I C, 1995. Interactions between individual plant species and soil nutrient status in short grass steppe. Ecology, 76(4):1116-1133. doi:10.2307/1940920 |
[62] |
Visser J M, Sasser C E, Chabreck R H et al., 1999. Long-term vegetation change in Louisiana tidal marshes, 1968-1992. Wetlands, 19(1):168-175. doi:10.1007/BF03161746 |
[63] |
Wan Siang, Liu Xingtu, Mou Xiaojie et al., 2020. Comparison of carbon, nitrogen, and sulfur in coastal wetlands dominated by native and invasive plants in the Yancheng National Nature Reserve, China. Chinese Geographical Science, 30(2):202-216. doi:10.1007/s11769-020-1108-1 |
[64] |
Wang G D, Otte M L, Jiang M et al., 2019a. Does the element composition of soils of restored wetlands resemble natural wetlands? Geoderma, 351:174-179. doi:10.1016/j.geoderma. 2019.05.032 |
[65] |
Wang Q K, Chen L C, Yang Q P et al., 2019b. Different effects of single versus repeated additions of glucose on the soil organic carbon turnover in a temperate forest receiving long-term N addition. Geoderma, 341:59-67. doi:10.1016/j.geoderma. 2019.01.032 |
[66] |
Wang Y Q, Zhang X C, Huang C Q, 2009. Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau, China. Geoderma, 150(1-2):141-149. doi:10.1016/j.geoderma.2009.01.021 |
[67] |
Wang Z M, Huang N, Luo L et al., 2011. Shrinkage and fragmen-tation of marshes in the West Songnen Plain, China, from 1954 to 2008 and its possible causes. International Journal of Ap-plied Earth Observation and Geoinformation, 13(3):477-486. doi:10.1016/j.jag.2010.10.003 |
[68] |
Wen Bolong, Liu Xingtu, Li Xiujun et al., 2012. Restoration and rational use of degraded saline reed wetlands:a case study in western Songnen Plain, China. Chinese Geographical Science, 22(2):167-177. doi:10.1007/s11769-012-0519-z |
[69] |
Wieski K, Guo H Y, Craft C B et al., 2010. Ecosystem functions of tidal fresh, brackish, and salt marshes on the Georgia coast. Estuaries and Coasts, 33(1):161-169. doi:10.1007/s12237-009-9230-4 |
[70] |
Wong V N L, Greene R S B, Dalal R C et al., 2010. Soil carbon dynamics in saline and sodic soils:a review. Soil Use and Management, 26(1):2-11. doi:10.1111/j.1475-2743.2009.00251.x |
[71] |
Xu S Q, Liu X, Li X J et al., 2019. Soil organic carbon changes following wetland cultivation:a global meta-analysis. Ge-oderma, 347:49-58. doi:10.1016/j.geoderma.2019.03.036 |
[72] |
Yang Rong, Sai Na, Su Liang et al., 2020. Ecological stoichiometry characteristics of soil carbon, nitrogen and phosphorus of the Yellow River wetland in Baotou, Inner Mongolia. Acta Ecologica Sinica, 40(7):2205-2214. (in Chinese) |
[73] |
Zedler J B, Kercher S, 2005. Wetland resources:status, trends, ecosystem services, and restorability. Annual Review of Envi-ronment and Resources, 30:39-74. doi:10.1146/annurev.energy.30.050504.144248 |
[74] |
Zeng W Z, Xu C, Wu J W et al., 2013. Effect of salinity on soil respiration and nitrogen dynamics. Ecological Chemistry and Engineering S, 20(3):519-530. doi:10.2478/eces-2013-0039 |
[75] |
Zhao Q Q, Bai J H, Zhang G L et al., 2018. Effects of water and salinity regulation measures on soil carbon sequestration in coastal wetlands of the Yellow River Delta. Geoderma, 319:219-229. doi:10.1016/j.geoderma.2017.10.058 |
[76] |
Zou Y A, Liu J, Yang X T et al., 2014. Impact of coastal wetland restoration strategies in the Chongming Dongtan wetlands, Chi-na:waterbird community composition as an indicator. Acta Zo-ologica Academiae Scientiarum Hungaricae, 60(2):185-198. |