Volume 30 Issue 4
Jul.  2020
Turn off MathJax
Article Contents

ZHANG Shanqi, YANG Yu, ZHEN Feng, LOBSANG Tashi. Exploring Temporal Activity Patterns of Urban Areas Using Aggregated Network-driven Mobile Phone Data: A Case Study of Wuhu, China[J]. Chinese Geographical Science, 2020, 30(4): 695-709. doi: 10.1007/s11769-020-1130-3
Citation: ZHANG Shanqi, YANG Yu, ZHEN Feng, LOBSANG Tashi. Exploring Temporal Activity Patterns of Urban Areas Using Aggregated Network-driven Mobile Phone Data: A Case Study of Wuhu, China[J]. Chinese Geographical Science, 2020, 30(4): 695-709. doi: 10.1007/s11769-020-1130-3

Exploring Temporal Activity Patterns of Urban Areas Using Aggregated Network-driven Mobile Phone Data: A Case Study of Wuhu, China

doi: 10.1007/s11769-020-1130-3
Funds:

Under the auspices of the National Natural Science Foundation of China (No. 41571146), China Postdoctoral Science Foundation (No. 2019M651784)

  • Received Date: 2019-04-02
  • The increasing availability of data in the urban context (e.g., mobile phone, smart card and social media data) allows us to study urban dynamics at much finer temporal resolutions (e.g., diurnal urban dynamics). Mobile phone data, for instance, are found to be a useful data source for extracting diurnal human mobility patterns and for understanding urban dynamics. While previous studies often use call detail record (CDR) data, this study deploys aggregated network-driven mobile phone data that may reveal human mobility patterns more comprehensively and can mitigate some of the privacy concerns raised by mobile phone data usage. We first propose an analytical framework for characterizing and classifying urban areas based on their temporal activity patterns extracted from mobile phone data. Specifically, urban areas’ diurnal spatiotemporal signatures of human mobility patterns are obtained through longitudinal mobile phone data. Urban areas are then classified based on the obtained signatures. The classification provides insights into city planning and development. Using the proposed framework, a case study was implemented in the city of Wuhu, China to understand its urban dynamics. The empirical study suggests that human activities in the city of Wuhu are highly concentrated at the Traffic Analysis Zone (TAZ) level. This large portion of local activities suggests that development and planning strategies that are different from those used by metropolitan Chinese cities should be applied in the city of Wuhu. This article concludes with discussions on several common challenges associated with using network-driven mobile phone data, which should be addressed in future studies.
  • [1] Ahas R, Aasa A, Yuan Y et al., 2015. Everyday space-time geog-raphies:using mobile phone-based sensor data to monitor urban activity in Harbin, Paris, and Tallinn. International Journal of Geographical Information Science, 29(11):2017-2039. doi: 10.1080/13658816.2015.1063151
    [2] Alexander L, Jiang S, Murga M et al., 2015. Origin-destination trips by purpose and time of day inferred from mobile phone data. Transportation Research Part C:Emerging Technologies, 58:240-250. doi: 10.1016/j.trc.2015.02.018
    [3] Breaban M, Luchian H, 2011. A unifying criterion for unsuper-vised clustering and feature selection. Pattern Recognition, 44(4):854-865. doi: 10.1016/j.patcog.2010.10.006
    [4] Calabrese F, Colonna M, Lovisolo P et al., 2011. Real-time urban monitoring using cell phones:a case study in Rome. IEEE Transactions on Intelligent Transportation Systems, 12(1):141-151. doi: 10.1109/tits.2010.2074196
    [5] Calabrese F, Diao M, Di Lorenzo G et al., 2013. Understanding individual mobility patterns from urban sensing data:a mobile phone trace example. Transportation Research Part C:Emerging Technologies, 26:301-313. doi:10.1016/j.trc.2012. 09.009
    [6] Calabrese F, Ferrari L, Blondel V D, 2015. Urban sensing using mobile phone network data:a survey of research. ACM Com-puting Surveys, 47(2):Article No. 25. doi: 10.1145/2655691
    [7] Chen C, Ma J T, Susilo Y et al., 2016. The promises of big data and small data for travel behavior (aka human mobility) anal-ysis. Transportation Research Part C:Emerging Technologies, 68:285-299. doi: 10.1016/j.trc.2016.04.005
    [8] Deville P, Linard C, Martin S et al., 2014. Dynamic population mapping using mobile phone data. Proceedings of the National Academy of Sciences of the United States of America, 111(45):15888-15893. doi: 10.1073/pnas.1408439111
    [9] Diao M, Zhu Y, Ferreira J et al., 2016. Inferring individual daily activities from mobile phone traces:a Boston example. Envi-ronment and Planning B:Planning and Design, 43(5):920-940. doi: 10.1177/0265813515600896
    [10] Dong H H, Wu M C, Ding X Q et al., 2015. Traffic zone division based on big data from mobile phone base stations. Transpor-tation Research Part C:Emerging Technologies, 58:278-291. doi: 10.1016/j.trc.2015.06.007
    [11] Doyle J, Hung P, Farrell R et al., 2014. Population mobility dy-namics estimated from mobile telephony data. Journal of Urban Technology, 21(2):109-132. doi:10.1080/10630732. 2014.888904
    [12] Epperlein J, Legierski J, Luckner M et al., 2018. The use of pres-ence data in modelling demand for transportation. arXiv:1802.03734. Available at:http://arxiv.org/abs/1802.03734.
    [13] Ewing R, Hamidi S, 2015. Compactness versus sprawl:a review of recent evidence from the United States. Journal of Planning Literature, 30(4):413-432. doi: 10.1177/0885412215595439
    [14] Gao S, 2015. Spatio-temporal analytics for exploring human mo-bility patterns and urban dynamics in the mobile age. Spatial Cognition and Computation, 15(2):86-114. doi:10.1080/1387 5868.2014.984300
    [15] González M C, Hidalgo C A, Barabási A L, 2008. Understanding individual human mobility patterns. Nature, 453(7196):779-782. doi: 10.1038/nature06958
    [16] Gordon P, Richardson H W, 1997. Are compact cities a desirable planning goal? Journal of the American Planning Association, 63(1):95-106. doi: 10.1080/01944369708975727
    [17] Iqbal M S, Choudhury C F, Wang P et al., 2014. Development of origin-destination matrices using mobile phone call data. Transportation Research Part C:Emerging Technologies, 40:63-74. doi: 10.1016/j.trc.2014.01.002
    [18] Järv O, Ahas R, Saluveer E et al., 2012. Mobile phones in a traffic flow:a geographical perspective to evening rush hour traffic analysis using call detail records. PLoS ONE, 7(11):e49171. doi: 10.1371/journal.pone.0049171
    [19] Järv O, Ahas R, Witlox F, 2014. Understanding monthly variabil-ity in human activity spaces:a twelve-month study using mobile phone call detail records. Transportation Research Part C:Emerging Technologies, 38:122-135. doi:10.1016/j.trc. 2013.11.003
    [20] Järv O, Tenkanen H, Toivonen T, 2017. Enhancing spatial accu-racy of mobile phone data using multi-temporal dasymetric interpolation. International Journal of Geographical Infor-mation Science, 31(8):1630-1651. doi:10.1080/13658816. 2017.1287369
    [21] Jiang H, Li Q, Zhou X et al., 2017. A collective human mobility analysis method based on data usage detail records. Interna-tional Journal of Geographical Information Science, 31(12):2359-2381. doi: 10.1080/13658816.2017.1370715
    [22] Kang C G, Ma X J, Tong D Q et al., 2012. Intra-urban human mobility patterns:an urban morphology perspective. Physica A:Statistical Mechanics and its Applications, 391(4):1702-1717. doi: 10.1016/j.physa.2011.11.005
    [23] Kodinariya T M, Makwana P R, 2013. Review on determining number of Cluster in K-Means Clustering. International Journal of Advance Research in Computer Science and Man-agement Studies, 1(6):90-95.
    [24] Langford M, 2006. Obtaining population estimates in non-census reporting zones:an evaluation of the 3-class dasymetric method. Computers, Environment and Urban Systems, 30(2):161-180. doi: 10.1016/j.compenvurbsys.2004.07.001
    [25] Liu X, Gong L, Gong Y X et al., 2015. Revealing travel patterns and city structure with taxi trip data. Journal of Transport Geography, 43:78-90. doi: 10.1016/j.jtrangeo.2015.01.016
    [26] Liu X, Kang C G, Gong L et al., 2016. Incorporating spatial in-teraction patterns in classifying and understanding urban land use. International Journal of Geographical Information Sci-ence, 30(2):334-350. doi: 10.1080/13658816.2015.1086923
    [27] Liu Y, Wang F H, Xiao Y et al., 2012. Urban land uses and traffic ‘source-sink areas’:evidence from GPS-enabled taxi data in Shanghai. Landscape and Urban Planning, 106(1):73-87. doi: 10.1016/j.landurbplan.2012.02.012
    [28] Long Y, 2016. Redefining Chinese city system with emerging new data. Applied Geography, 75:36-48. doi:10.1016/j. apgeog.2016.08.002
    [29] Long Y, Liu L, 2016. Transformations of urban studies and plan-ning in the big/open data era:a review. International Journal of Image and Data Fusion, 7(4):295-308. doi: 10.1080/19479832.2016.1215355
    [30] Louail T, Lenormand M, Cantu Ros O G et al., 2014. From mobile phone data to the spatial structure of cities. Scientific Reports, 4:5276. doi: 10.1038/srep05276
    [31] Ma J T, Li H, Yuan F et al., 2013. Deriving operational origin-destination matrices from large scale mobile phone data. International Journal of Transportation Science and Technology, 2(3):183-204. doi:10.1260/2046-0430.2.3. 183
    [32] MacQueen J, 1967. Some methods for classification and analysis of multivariate observations. In:Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probabil-ity. Berkeley, California:University of California Press, 281-297.
    [33] Madhulatha T S, 2012. An overview on clustering methods. IOSR Journal of Engineering, 2(4):719-725. doi: 10.9790/3021-0204719725
    [34] Ministry of Housing and Urban-Rural Development of the Peo-ple's Republic of China, 2015. City Developments Statistic Yearbook. Beijing:China Statistics Press. (In Chinese)
    [35] Monsivais D, Bhattacharya K, Ghosh A et al., 2017. Seasonal and geographical impact on human resting periods. Scientific Re-ports, 7(1):10717. doi: 10.1038/s41598-017-11125-z
    [36] Monsivais D, Ghosh A, Bhattacharya K et al., 2017. Tracking urban human activity from mobile phone calling patterns. PLoS Computational Biology, 13(11):e1005824. doi: 10.1371/journal.pcbi.1005824
    [37] Pei T, Sobolevsky S, Ratti C et al., 2014. A new insight into land use classification based on aggregated mobile phone data. In-ternational Journal of Geographical Information Science, 28(9):1988-2007. doi: 10.1080/13658816.2014.913794
    [38] Pinelli F, Di Lorenzo G, Calabrese F, 2015. Comparing urban sensing applications using event and network-driven mobile phone location data. In:Proceedings of the 16th IEEE Inter-national Conference on Mobile Data Management. Pittsburgh, PA, USA:IEEE, 219-226. doi:10.1109/MDM.2015. 33
    [39] Reades J, Calabrese F, Ratti C, 2009. Eigenplaces:analysing cities using the space-time structure of the mobile phone network. Environment and Planning B:Planning and Design, 36(5):824-836. doi: 10.1068/b34133t
    [40] Roth C, Kang S M, Batty M et al., 2011. Structure of urban movements:polycentric activity and entangled hierarchical flows. PLoS ONE, 6(1):e15923. doi:10.1371/journal.pone. 0015923
    [41] Silva T H, Vaz De Melo P O S, Almeida J M et al., 2013. Social media as a source of sensing to study city dynamics and urban social behavior:approaches, models, and opportunities. In:Lecture Notes in Computer Science. Berlin Heidelberg:Springer-Verlag, 63-87. doi: 10.1007/978-3-642-45392-2_4
    [42] Song C M, Qu Z H, Blumm N et al., 2010. Limits of predictability in human mobility. Science, 327(5968):1018-1021. doi: 10.1126/science.1177170
    [43] Soria-Lara J A, Aguilera-Benavente F, Arranz-López A, 2016. Integrating land use and transport practice through spatial metrics. Transportation Research Part A:Policy and Practice, 91:330-345. doi: 10.1016/j.tra.2016.06.023
    [44] Steenbruggen J, Tranos E, Nijkamp P, 2015. Data from mobile phone operators:a tool for smarter cities? Telecommunications Policy, 39(3-4):335-346. doi: 10.1016/j.telpol.2014.04.001
    [45] Tian Jinling, Wang De, Xie Dongcan et al., 2017. Identifying the commuting features and patterns of typical employment areas in Shanghai using cellphone signaling data:a case study in Zhangjiang, Jinqiao and Lujiazui. Geographical Research, 36(1):134-148. doi: 10.11821/dlyj201701011
    [46] Tu W, Cao J Z, Yue Y et al., 2017. Coupling mobile phone and social media data:a new approach to understanding urban functions and diurnal patterns. International Journal of Geo-graphical Information Science, 31(12):2331-2358. doi: 10.1080/13658816.2017.1356464
    [47] Wang Bo, Zhen Feng, Zhang Hao, 2015. The dynamic changes of urban space-time activity and activity zoning based on check-in data in Sina Web. Scientia Geographica Sinica, 35(2):151-160. (in Chinese)
    [48] Wang B, Zhen F, Qin X et al., 2018. GIS-based social spatial behavior studies:a case study in Nanjing University utilizing mobile data. In:Comprehensive Geographic Information Sys-tems. Oxford:Elsevier, 320-329. doi: 10.1016/B978-0-12-409548-9.09686-X
    [49] Wang M L, 2014. Understanding Activity Location Choice with Mobile Phone Data. Washington:University of Washington.
    [50] Wu C, Ye X Y, Ren F et al., 2018. Check-in behaviour and spatio-temporal vibrancy:an exploratory analysis in Shenzhen, China. Cities, 77:104-116. doi:10.1016/j.cities. 2018.01.017
    [51] Yue Y, Zhuang Y, Yeh A G O et al., 2017. Measurements of POI-based mixed use and their relationships with neighbour-hood vibrancy. International Journal of Geographical Infor-mation Science, 31(4):658-675. doi:10.1080/13658816.2016. 1220561
    [52] Zhai Y J, Wu H B, Fan H C et al., 2018. Using mobile signaling data to exam urban park service radius in Shanghai:methods and limitations. Computers, Environment and Urban Systems, 71:27-40. doi: 10.1016/j.compenvurbsys.2018.03.011
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(192) PDF downloads(75) Cited by()

Proportional views
Related

Exploring Temporal Activity Patterns of Urban Areas Using Aggregated Network-driven Mobile Phone Data: A Case Study of Wuhu, China

doi: 10.1007/s11769-020-1130-3
Funds:

Under the auspices of the National Natural Science Foundation of China (No. 41571146), China Postdoctoral Science Foundation (No. 2019M651784)

Abstract: The increasing availability of data in the urban context (e.g., mobile phone, smart card and social media data) allows us to study urban dynamics at much finer temporal resolutions (e.g., diurnal urban dynamics). Mobile phone data, for instance, are found to be a useful data source for extracting diurnal human mobility patterns and for understanding urban dynamics. While previous studies often use call detail record (CDR) data, this study deploys aggregated network-driven mobile phone data that may reveal human mobility patterns more comprehensively and can mitigate some of the privacy concerns raised by mobile phone data usage. We first propose an analytical framework for characterizing and classifying urban areas based on their temporal activity patterns extracted from mobile phone data. Specifically, urban areas’ diurnal spatiotemporal signatures of human mobility patterns are obtained through longitudinal mobile phone data. Urban areas are then classified based on the obtained signatures. The classification provides insights into city planning and development. Using the proposed framework, a case study was implemented in the city of Wuhu, China to understand its urban dynamics. The empirical study suggests that human activities in the city of Wuhu are highly concentrated at the Traffic Analysis Zone (TAZ) level. This large portion of local activities suggests that development and planning strategies that are different from those used by metropolitan Chinese cities should be applied in the city of Wuhu. This article concludes with discussions on several common challenges associated with using network-driven mobile phone data, which should be addressed in future studies.

ZHANG Shanqi, YANG Yu, ZHEN Feng, LOBSANG Tashi. Exploring Temporal Activity Patterns of Urban Areas Using Aggregated Network-driven Mobile Phone Data: A Case Study of Wuhu, China[J]. Chinese Geographical Science, 2020, 30(4): 695-709. doi: 10.1007/s11769-020-1130-3
Citation: ZHANG Shanqi, YANG Yu, ZHEN Feng, LOBSANG Tashi. Exploring Temporal Activity Patterns of Urban Areas Using Aggregated Network-driven Mobile Phone Data: A Case Study of Wuhu, China[J]. Chinese Geographical Science, 2020, 30(4): 695-709. doi: 10.1007/s11769-020-1130-3
Reference (52)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return