ZHAO Wei, QI Xiaojuan, LYU Jianwei, YU Zhengxiang, CHEN Xia. Characterization of Microbial Community Structure in Rhizosphere Soils of Cowskin Azalea (Rhododendron aureum Georgi) on Northern Slope of Changbai Mountains, China[J]. Chinese Geographical Science, 2016, 26(1): 78-89. doi: 10.1007/s11769-015-0787-5
Citation: ZHAO Wei, QI Xiaojuan, LYU Jianwei, YU Zhengxiang, CHEN Xia. Characterization of Microbial Community Structure in Rhizosphere Soils of Cowskin Azalea (Rhododendron aureum Georgi) on Northern Slope of Changbai Mountains, China[J]. Chinese Geographical Science, 2016, 26(1): 78-89. doi: 10.1007/s11769-015-0787-5

Characterization of Microbial Community Structure in Rhizosphere Soils of Cowskin Azalea (Rhododendron aureum Georgi) on Northern Slope of Changbai Mountains, China

doi: 10.1007/s11769-015-0787-5
Funds:  Under the auspices of Wildlife Conservation and Management of National Forestry Bureau of China
More Information
  • Corresponding author: CHEN Xia. E-mail:chenxiajlu@163.com
  • Received Date: 2014-07-14
  • Rev Recd Date: 2014-11-18
  • Publish Date: 2016-01-27
  • The vegetation and soil are mutual environmental factors, soil characteristics, such as chemical properties and microorganism that affect the vegetation occurrence, development and succession speed. In this study, we evaluated the structure of microbial communities of rhizosphere of Cowskin Azalea (Rhododendron aureum Georgi) populations and compared with non-rhizosphere soils at four sample sites of the Changbai Mountains, China, and analyzed the correlation between chemical properties of soil and microbial communities. The results showed that microbial structure and soil chemical properties are significant superior to non-rhizosphere at all four sample sites. The rhizosphere microorganisms are mainly composed of bacteria, actinomycetes, followed by fungi least. The principal component analysis (PCA) biplot displayed that there are differences between rhizosphere and non-rhizosphere soils for microflora; Through correlation analysis, we found that the bacteria is clearly influenced by pH on the Changbai Mountains, besides pH, other soil features such as NO3-—N. These data highlight that R. aureum as the dominant vegetation living in the alpine tundra is a key factor in the formation of soil microorganism and improving soil fertility, and is of great significance for the maintenance of alpine tundra ecosystem.
  • [1] Bai Xiaoming, 1988. The Exploitation of Natural Resources and Protection of Ecological Environment in Changbaishan Mountain Region. Changchun:Jilin Science and Technology Press, 219-223. (in Chinese)
    [2] Berg G, Opelt K, Zachow C et al., 2006. The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site. Fems Micro-biology Ecology, 56(2):250-261. doi:10.1111/j.1574-6941. 2005.00025.x
    [3] Chen W, Luo J K, Shen Q R, 2005. Effect of NH4+-N/NO3--N ratios on growth and some physiological parameters of Chinese cabbage caltivars. Pedosphere, 15(3):310-318.
    [4] Chu H, Fierer N, Lauber C L et al., 2010. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environmental Microbiology, 12(11):2998-3006. doi: 10.1111/j.1462-2920.2010.02277.x
    [5] Chu H, Neufeld J D, Walker V K et al., 2011. The influence of vegetation type on the dominant soil bacteria, archaea, and fungi in a low Arctic tundra landscape. Soil Science Society of America Journal, 75(5):1756-1765. doi:10.2136/sssaj2011. 0057
    [6] Djukic I, Zehetner F, Mentler A et al., 2010. Microbial commun-ity composition and activity in different alpine vegetation zones. Soil Biology and Biochemistry, 42(2):155-161. doi: 10.1016/j.soilbio.2009.10.006
    [7] Du Y D, Xing M, Chen X et al., 2011. Genetic diversity caused by environmental stress in natural populations of Niupidujuan (Rhododendron chrysanthum), a species endemic to Changbai Mountain, Northeast China, as revealed by RAPD technique. Chemical Research in Chinese Universites, 27(4):641-645. doi: 1005-9040(2011)-04-641-05
    [8] Duineveld B M, Kowalchuk G A, Keijzer A et al., 2001. Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16SrRNA as well as DNA fragments coding for 16S rRNA. Applied and Environmental Microbiology, 67(1):172-178. doi: 10.1128/AEM.67.1.172-178.2001
    [9] Foster R C, 1988. Microenvironments of soil microorganisms. Biology and Fertility of Soils, 6(3):189-203. doi: 10.1007/BF00260816
    [10] Gong Yu, Liu Xianhu, Zhang Chunying et al., 2010. The anatomy structure of leaf-blades from Rhododendron chrysanthum Pall in different regions. Journal of Agricultural Science Yanbian University, 32(1):22-25. (in Chinese)
    [11] Govaerts B, Mezzalama M, Sayre K D et al., 2008. Long-term consequences of tillage, residue management, and crop rotation on selected soil micro-flora groups in the subtropical highlands. Applied Soil Ecology, 38(3):197-210. doi:10. 1016/j.apsoil.2005.07.010
    [12] Hassan M M, Majumder A H, 1990. Distribution of organic matter in some representative forest soils of Bangladesh. Indian Journal of Forestry, 13(4):281-287. doi: 19930672829
    [13] Hu Linzhen, Fang Mingyuan, 1994. Flora of China. Beijing:Science Press, 144. (in Chinese)
    [14] Jin J, Wang G H, Liu X B, 2009. Temporal and spatial dynamics of bacterial community in the rhizosphere of soybean genotypes grown in a black soil. Pedosphere, 19(6):808-816. doi: 10.1016/S1002-0160(09)60176-4
    [15] Johnson D W, Cheng W, Ball J T, 2000. Effects of CO2 and N fertilization on decomposition and immobilization in ponderosa pine litter. Plant and Soil, 224(1):115-122. doi:10. 1023/A:1004606901550
    [16] Kudo G, 1993. Relationships between flowering time and fruit set of the entomophilous alpine shrub, rhododendron aureum (Ericaceae), inhabiting snow patches. American Journal of Botany, 80(11):1300-1304. doi: 10.2307/2445714
    [17] Lambers H, Mougel C, Jaillard B et al., 2009. Plant-microbesoil interactions in the rhizosphere:an evolutionary perspective. Plant & Soil, 321(1-2):83-115. doi: 10.1007/s11104-009-0042-x
    [18] Lipson D A, Monson R K, 1998. Plant-microbe competition for soil amino acids in the alpine tundra:effects of freezethaw and dry-rewet events. Oecologia, 113(3):406-414. doi:10.1007/s 004420050393
    [19] Liu Y F, Xing M, Zhao W et al., 2012. Genetic diversity analysis of Rhododendron aureum Georgi (Ericaceae) located on Changbai Mountain using ISSR and RAPD markers. Plant Systematics and Evolution, 298(5):921-930. doi:10.1007/s 00606-012-0601-0
    [20] Marilley L, Aragno M, 1999. Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Applied Soil Ecology, 13(2):127-136. doi: 10.1016/S0929-1393(99)00028-1
    [21] Marschner P, Neumann G, Kania A et al., 2002. Spatial and tem-poral dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin (Lupinus albus L.). Plant & Soil, 246(2):167-174. doi: 10.1038/ismej.2012.26
    [22] Miethling R, Wieland G, Backhaus H et al., 2000. Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Microbial Ecology, 40(1):43-56. doi:10.1007/s 002480000021
    [23] Nielsen U N, Osler G H R, Campbell C D et al., 2010. The influ-ence of vegetation type, soil properties and precipitation on the composition of soil mite and microbial communities at the landscape scale. Journal of Biogeography, 37(7):1317-1328. doi: 10.1111/j.1365-2699.2010.02281.x
    [24] Qi Linghuang, Zhang Xudong, Sun Qixiang et al., 2007. Soil vegetation system and its influences on soil health. World Forestry Research, 20(3):1-8. (in Chinese)
    [25] Rajaniemi T K, Allison V J, 2009. Abiotic conditions and plant cover differentially affect microbial biomass and community composition on dune gradients. Soil Biology & Biochemistry, 41(1):102-109. doi: 10.1016/j.soilbio.2008.10.001
    [26] Schmalenberger A, Tebbe C C, 2003. Bacterial diversity in maize rhizospheres:conclusions on the use of genetic profiles based on PCR-amplified partial small subunit rRNA genes in eco-logical studies. Molecular Ecology, 12(1):251-261. doi: 10.1046/j.1365-294X.2003.01716.x
    [27] Shen C, Xiong J, Zhang H et al., 2013. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biology and Biochemistry, 573:204-211. doi: 10.1016/j.soilbio.2012.07.013
    [28] Shirokikh I G, Zenova G M, Zvyagintsev D G, 2002. Actinomycetes in the rhizosphere of barley grown on acid soddy podzolic soil. Microbiology, 71(4):455-459. doi: 10.1023/A:1019853812690
    [29] Stephan A, Meyer A H, Schmid B, 2000. Plant diversity affects culturable soil bacteria in experimental grassland communi-ties. Journal of Ecology, 88(6):988-998. doi: 10.1046/j.1365-2745.2000.00510.x
    [30] Sun G, Luo P, Wu N et al., 2009. Stellera chamaejasme L. in-creases soil N availability, turnover rates and microbial biomass in an alpine meadow ecosystem on the eastern Tibetan Plateau of China. Soil Biology & Biochemistry, 41(1):86-91. doi: 10.1016/j.soilbio.2008.09.022
    [31] Thangapandian V, Ponmurugan P, Pomnurugan K, 2007. Actinomycetes diversity in the rhizosphere soils of different me-dicinal plants in Kolly Hills-Tamilnadu, India, for secondary metabolite production. Asian Journal of Plant Sciences, 6(1):66-70.
    [32] Wagai R, Kitayama K, Satomura T et al., 2011. Interactive influ-ences of climate and parent material on soil microbial commu-nity structure in Bornean tropical forest ecosystems. Ecological Research, 26(3):627-636. doi: 10.1007/s11284-011-0822-7
    [33] Wallenstein M D, McMahon S, Schimel J, 2007. Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiology Ecology, 59(2):428-435. doi: 10.1111/j.1574-6941.2006.00260.x
    [34] Xu Guanghuing, Zheng Hongyuan, 1986. Handbook of Analysis of Soil Microorganism. Beijing:Agriculture Press, 107-109. (in Chinese)
    [35] Xu Wenduo, He Xingyuan, Chen Wei et al., 2004. Characteristics and succession rules of vegetation types in Changbai Mountain. Chinese Journal of Ecology, 23(5):162-174. (in Chinese)
    [36] Yang X, Wu G, 1998. The strategy for conservation and sustaina-ble utilization of biodiversity in Changbaishan Biosphere Re-serve. Journal of Forestry Research, 9(3):217-222. doi: 10.1007/BF02910074
    [37] Zhang M, Zhang X K, Liang W J et al., 2011. Distribution of soil organic carbon fractions along the altitudinal gradient in Changbai Mountain, China. Pedosphere, 21(5):615-620. doi: 10.1016/S1002-0160(11)60163-X
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(493) PDF downloads(672) Cited by()

Proportional views
Related

Characterization of Microbial Community Structure in Rhizosphere Soils of Cowskin Azalea (Rhododendron aureum Georgi) on Northern Slope of Changbai Mountains, China

doi: 10.1007/s11769-015-0787-5
Funds:  Under the auspices of Wildlife Conservation and Management of National Forestry Bureau of China
    Corresponding author: CHEN Xia. E-mail:chenxiajlu@163.com

Abstract: The vegetation and soil are mutual environmental factors, soil characteristics, such as chemical properties and microorganism that affect the vegetation occurrence, development and succession speed. In this study, we evaluated the structure of microbial communities of rhizosphere of Cowskin Azalea (Rhododendron aureum Georgi) populations and compared with non-rhizosphere soils at four sample sites of the Changbai Mountains, China, and analyzed the correlation between chemical properties of soil and microbial communities. The results showed that microbial structure and soil chemical properties are significant superior to non-rhizosphere at all four sample sites. The rhizosphere microorganisms are mainly composed of bacteria, actinomycetes, followed by fungi least. The principal component analysis (PCA) biplot displayed that there are differences between rhizosphere and non-rhizosphere soils for microflora; Through correlation analysis, we found that the bacteria is clearly influenced by pH on the Changbai Mountains, besides pH, other soil features such as NO3-—N. These data highlight that R. aureum as the dominant vegetation living in the alpine tundra is a key factor in the formation of soil microorganism and improving soil fertility, and is of great significance for the maintenance of alpine tundra ecosystem.

ZHAO Wei, QI Xiaojuan, LYU Jianwei, YU Zhengxiang, CHEN Xia. Characterization of Microbial Community Structure in Rhizosphere Soils of Cowskin Azalea (Rhododendron aureum Georgi) on Northern Slope of Changbai Mountains, China[J]. Chinese Geographical Science, 2016, 26(1): 78-89. doi: 10.1007/s11769-015-0787-5
Citation: ZHAO Wei, QI Xiaojuan, LYU Jianwei, YU Zhengxiang, CHEN Xia. Characterization of Microbial Community Structure in Rhizosphere Soils of Cowskin Azalea (Rhododendron aureum Georgi) on Northern Slope of Changbai Mountains, China[J]. Chinese Geographical Science, 2016, 26(1): 78-89. doi: 10.1007/s11769-015-0787-5
Reference (37)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return