YE Xinyue, SHE Bing, WU Ling, ZHU Xinyan, CHENG Yeqing. An Open Source Toolkit for Identifying Comparative Space-time Research Questions[J]. Chinese Geographical Science, 2014, (3): 348-361. doi: 10.1007/s11769-014-0679-0
Citation: YE Xinyue, SHE Bing, WU Ling, ZHU Xinyan, CHENG Yeqing. An Open Source Toolkit for Identifying Comparative Space-time Research Questions[J]. Chinese Geographical Science, 2014, (3): 348-361. doi: 10.1007/s11769-014-0679-0

An Open Source Toolkit for Identifying Comparative Space-time Research Questions

doi: 10.1007/s11769-014-0679-0
Funds:  Under the auspices of Humanities and Social Science Research, Major Project of Chinese Ministry of Education (No. 13JJD790008), Basic Research Funds of National Higher Education Institutions of China (No. 2722013JC030), Zhongnan University of Economics and Law 2012 Talent Grant (No. 31541210702), Key Research Program of Chinese Academy of Sciences (No. KZZD-EW-06-03, KSZD-EW-Z-021-03), National Key Science and Technology Support Program of China (No. 2012BAH35B03)
More Information
  • Corresponding author: CHENG Yeqing. E-mail: yqcheng@iga.ac.cn
  • Received Date: 2013-09-02
  • Rev Recd Date: 2013-11-25
  • Publish Date: 2014-03-27
  • Comparative space-time thinking lies at the heart of spatiotemporally integrated social sciences. The multiple dimensions and scales of socioeconomic dynamics pose numerous challenges for the application and evaluation of public policies in the comparative context. At the same time, social scientists have been slow to adopt and implement new spatiotemporally explicit methods of data analysis due to the lack of extensible software packages, which becomes a major impediment to the promotion of spatiotemporal thinking. The proposed framework will address this need by developing a set of research questions based on space-time-distributional features of socioeconomic datasets. The authors aim to develop, evaluate, and implement this framework in an open source toolkit to comprehensively quantify the changes and level of hidden variation of space-time datasets across scales and dimensions. Free access to the source code allows a broader community to incorporate additional advances in perspectives and methods, thus facilitating interdisciplinary collaboration. Being written in Python, it is entirely cross-platform, lowering transmission costs in research and education.
  • [1] a) Ahmed N, Miller H J, 2007. Time-space transformations of geographic space for exploring, analyzing and visualizing transportation systems. Journal of Transport Geography, 15(1): 2-17. doi:  10.1016/j.jtrangeo.2005.11.004
    [2] b) Andrienko G, Andrienko N, Demsar U et al., 2010. Space, time and visual analytics. International Journal of Geographical Information Science, 24(10): 1577-1600. doi:  10.1080/13658816.2010.508043
    [3] c) Andrienko G, Andrienko N, Keim D et al., 2011. Editorial: Challenging problems of geospatial visual analytics. Journal of Visual Languages and Computing, 22(4): 251-256. doi:  10.1016/j.jvlc.2011.04.001
    [4] d) Andrienko N, Andrienko G, 2006. Exploratory Analysis of Spatial and Temporal Data. Germany: Springer Berlin.
    [5] e) Andrienko N, Andrienko G, 2011. Spatial generalization and aggregation of massive movement data. Visualization and Computer Graphics, IEEE Transactions on, 17(2): 205-219. doi:  10.1109/TVCG.2010.44
    [6] f) Ankenman B, Nelson B L, Staum J, 2010. Stochastic kriging for simulation metamodeling. Operations Research, 58(2): 371-382. doi:  10.1287/opre.1090.0754
    [7] g) Anselin L, 1991. SpaceStat, a Software Program for Analysis of Spatial Data. Santa Barbara: National Center for Geographic Information and Analysis (NCGIA), University of California, Technical report.
    [8] h) Anselin L, 1995. Local indicators of spatial association—LISA. Geographical Analysis, 27(2): 93-115. doi:  10.1111/j.1538-4632.1995.tb00338.x
    [9] i) Anselin L, 2010. Thirty years of spatial econometrics. Papers in Regional Science, 89(1): 3-25. doi: 10.1111/j.1435-5957.2010. 00279.x
    [10] j) Anselin L, 2012. From spacestat to cyberGIS: Twenty years of spatial data analysis software. International Regional Science Review, 35(2): 131-157. doi:  10.1177/0160017612438615
    [11] k) Anselin L, Getis A, 1992. Spatial statistical analysis and geographic information systems. The Annals of Regional Science, 26(1): 19-33. doi:  10.1007/BF01581478
    [12] l) Anselin L, Rey S J, 2012. Spatial econometrics in an age of CyberGIScience. International Journal of Geographical Information Science, 26(12): 2211-2226. doi: 10.1080/13658816. 2012.664276
    [13] m) Anselin L, Syabri I, Kho Y, 2006. GeoDa: An introduction to spatial data analysis. Geographical Analysis, 38(1): 5-22. doi:  10.1111/j.0016-7363.2005.00671.x
    [14] n) Barro R J, Sala-I-Martin X, Blanchard O J et al., 1991. Convergence across states and regions. Brookings Papers on Economic Activity: 107-182.
    [15] o) Batty M, 2005. Approaches to modeling in GIS: Spatial representation and temporal dynamics. GIS, Spatial Analysis, and Modeling. ESRI Press, 41-61.
    [16] p) Bivand R, 2011. Geocomputation and open source software: components and software stacks. NHH Deptment of Economics Discussion Paper.
    [17] q) Bonnell T R, Dutilleul P, Chapman C A et al., 2013. Analysing small-scale aggregation in animal visits in space and time: The ST-BBD method. Animal Behaviour, 85(2): 483-492. doi:  10.1016/j.anbehav.2012.12.014
    [18] r) Bosch M, Maloney W F, 2010. Comparative analysis of labor market dynamics using Markov processes: An application to informality. Labour Economics, 17(4): 621-631. doi:  10.1016/j.labeco.2010.01.005
    [19] s) Cai Q, Rushton G, Bhaduri B, 2012. Validation tests of an improved kernel density estimation method for identifying disease clusters. Journal of Geographical Systems, 14(3): 243-264. doi:  10.1007/s10109-010-0146-0
    [20] t) Chen J, Fleisher B M, 1996. Regional income inequality and economic growth in China. Journal of Comparative Economics, 22(2): 141-164. doi:  10.1006/jcec.1996.0015
    [21] u) Chen X, Kwan M P, 2012. Choice set formation with multiple flexible activities under space-time constraints. International Journal of Geographical Information Science, 26(5): 941-961. doi:  10.1080/13658816.2011.624520
    [22] v) Chun Y, Griffith D A, 2013. Methods for spatial interpolation in two dimensions. Spatial Statistics and Geostatistics. SAGE Publications Ltd, 127-148.
    [23] w) Corazza M, Abrão T, Lepri F et al., 2012. Monte Carlo method applied to modeling copper transport in river sediments. Stochastic Environmental Research and Risk Assessment, 26(8): 1063-1079. doi:  10.1007/s00477-012-0564-2
    [24] x) Dall'erba S, Le Gallo J, 2008. Regional convergence and the impact of European structural funds over 1989-1999: A spatial econometric analysis. Papers in Regional Science, 87(2): 219-244. doi:  10.1111/j.1435-5957.2008.00184.x
    [25] y) Downs J A, Horner M W, 2012. Probabilistic potential path trees for visualizing and analyzing vehicle tracking data. Journal of Transport Geography, 23: 72-80. doi: 10.1016/j.jtrangeo. 2012.03.017
    [26] z) Elhorst J P, 2010. Spatial panel data models. In: Fischer M M et al. (eds.). Handbook of Applied Spatial Analysis. Germany: Springer Berlin Heidelberg, 377-407.
    [27] aa) Ezcurra R, 2007. Is income inequality harmful for regional growth? evidence from the European Union. Urban Studies, 44(10): 1953-1971. doi:  10.1080/00420980701471877
    [28] bb) Farber S, Neutens T, Miller H J et al, 2012. The social interaction potential of metropolitan regions: A time-geographic measurement approach using joint accessibility. Annals of the Association of American Geographers, 103(3): 483-504. doi:  10.1080/00045608.2012.689238
    [29] cc) Fingleton B, López-Bazo E, 2006. Empirical growth models with spatial effects. Papers in Regional Science, 85(2): 177-198. doi:  10.1111/j.1435-5957.2006.00074.x
    [30] dd) Funwi-Gabga N, Mateu J, 2012. Understanding the nesting spatial behaviour of gorillas in the Kagwene Sanctuary, Cameroon. Stochastic Environmental Research and Risk Assessment, 26(6): 793-811. doi:  10.1007/s00477-011-0541-1
    [31] ee) Galanis G, Chu P, Kallos G et al., 2012. Wave height characteristics in the north Atlantic ocean: A new approach based on statistical and geometrical techniques. Stochastic Environmental Research and Risk Assessment, 26(1): 83-103. doi:  10.1007/s00477-011-0540-2
    [32] ff) Gao S, Liu Y, Wang Y et al., 2013. Discovering spatial interaction communities from mobile phone data. Transactions in GIS, 17(3): 463-481. doi:  10.1111/tgis.12042
    [33] gg) García A M, Santé I, Boullón M et al., 2012. A comparative analysis of cellular automata models for simulation of small urban areas in Galicia, NW Spain. Computers, Environment and Urban Systems, 36(4): 291-301. doi:  10.1016/j.compenvurbsys.2012.01.001
    [34] hh) Getis A, Mur J, Zoller H G et al., 2004. Spatial Econometrics and Spatial Statistics. Hampshire: Palgrave Macmillan.
    [35] ii) Goodchild M F, Janelle D, 2010. Toward critical spatial thinking in the social sciences and humanities. GeoJournal, 75(1): 3-13. doi:  10.1007/s10708-010-9340-3
    [36] jj) Goodchild M F, 2008. Geographic information science: The grand challenges. In: Wilson J et al. (eds.). The Handbook of Geographic Information Science. Malden: Blackwell Publishing Ltd, 596-608.
    [37] kk) Goodchild M F, Anselin L, Appelbaum R P et al., 2000. Toward spatially integrated social science. International Regional Science Review, 23(2): 139-159. doi: 10.1177/01600176000 2300201
    [38] ll) Goodchild M F, Glennon A, 2008. Representation and computation of geographic dynamics. In: Hornsby K S et al. (eds.). Understanding Dynamics of Geographic Domains. Boca Raton: CRC Press, 13-30.
    [39] mm) Gui Z, Yang C, Xia J et al., 2012. A performance, semantic and service quality-enhanced distributed search engine for improving geospatial resource discovery. International Journal of Geographical Information Science, 27(6): 1109-1132. doi:  10.1080/13658816.2012.739692
    [40] nn) Guo D, Zhu X, Jin H et al., 2012a. Discovering spatial patterns in origin-destination mobility data. Transactions in GIS, 16(3): 411-429. doi:  10.1111/j.1467-9671.2012.01344.x
    [41] oo) Guo J, Chen H, Xu C Y et al., 2012b. Prediction of variability of precipitation in the Yangtze River Basin under the climate change conditions based on automated statistical downscaling. Stochastic Environmental Research and Risk Assessment, 26(2): 157-176. doi:  10.1007/s00477-011-0464-x
    [42] pp) Hägerstrand T, 1970. What about people in regional science? Papers of the Regional Science Association, 24(1): 6-21. doi:  10.1007/BF01936872
    [43] qq) Henriques R, Bacao F, Lobo V, 2012. Exploratory geospatial data analysis using the GeoSOM suite. Computers, Environment and Urban Systems, 36(3): 218-232. doi: 10.1016/j. compenvurbsys.2011.11.003
    [44] rr) Horner M W, Zook B, Downs J A, 2012. Where were you? Development of a time-geographic approach for activity destination re-construction. Computers, Environment and Urban Systems, 36(6): 488-499. doi:  10.1016/j.compenvurbsys.2012.06.002
    [45] ss) Jones O, Cloke P, 2008. Non-human agencies: Trees in place and time. In: Malafouris L et al. (eds.). Material Agency. Springer US, 79-96.
    [46] tt) Juan P, Mateu J, Saez M, 2012. Pinpointing spatio-temporal interactions in wildfire patterns. Stochastic Environmental Research and Risk Assessment, 26(8): 1131-1150. doi:  10.1007/s00477-012-0568-y
    [47] uu) Kerry R, Goovaerts P, Rawlins B G et al., 2012. Disaggregation of legacy soil data using area to point kriging for mapping soil organic carbon at the regional scale. Geoderma, 170: 347-358. doi:  10.1016/j.geoderma.2011.10.007
    [48] vv) Krugman P, 1999. The role of geography in development. International Regional Science Review, 22(2): 142-161. doi:  10.1177/016001799761012307
    [49] ww) Kuijpers B, Grimson R, Othman W, 2011. An analytic solution to the alibi query in the space-time prisms model for moving object data. International Journal of Geographical Information Science, 25(2): 293-322. doi:  10.1080/13658810902967397
    [50] xx) Kuijpers B, Miller H J, Neutens T et al., 2010. Anchor uncertainty and space-time prisms on road networks. International Journal of Geographical Information Science, 24(8): 1223-1248. doi:  10.1080/13658810903321339
    [51] yy) Kuijpers B, Othman W, 2009. Modeling uncertainty of moving objects on road networks via space-time prisms. International Journal of Geographical Information Science, 23(9): 1095-1117. doi:  10.1080/13658810802097485
    [52] zz) Kwan M P, 2000a. Human extensibility and individual hybrid-accessibility in space-time: A multi-scale representation using GIS. In: Janelle D et al. (eds.). Information, Place, and Cyberspace. Springer Berlin Heidelberg, 241-256.
    [53] aaa) Kwan M P, 2000b. Interactive geovisualization of activity-travel patterns using three-dimensional geographical information systems: A methodological exploration with a large data set. Transportation Research Part C: Emerging Technologies, 8(1-6): 185-203. doi:  10.1016/S0968-090X(00)00017-6
    [54] bbb) Kwan M P, Lee J, 2003. Geovisualization of human activity patterns using 3D GIS: A time-geographic approach. In: Goodchild M et al. (eds.). Spatially Integrated Social Science: Examples in Best Practice. Oxford: Oxford University Press.
    [55] ccc) Le Gallo J, Ertur C, 2003. Exploratory spatial data analysis of the distribution of regional per capita GDP in Europe, 1980-1995. Papers in Regional Science, 82(2): 175-201. doi:  10.1007/s101100300145
    [56] ddd) Le Gallo J, Kamarianakis Y, 2010. The evolution of regional productivity disparities in the European Union from 1975 to 2002: A combination of shift-share and spatial econometrics. Regional Studies, 45(1): 123-139. doi: 10.1080/0034340090 3234662
    [57] eee) Lesage J, Pace R K, 2009. Introduction to Spatial Econometrics. Boca Raton, FL: CRC Press Taylor & Francis Group.
    [58] fff) Levy A, Chowdhury K, 1995. A geographical decomposition of intercountry income inequality. Comparative Economic Studies, 37(4): 1-17. doi:  10.1057/ces.1995.38
    [59] ggg) Lewis B, 2012. Open Source GIS. Available at: http://opensourcegis. org
    [60] hhh) Li Y, Wei Y H D, 2010. The spatial-temporal hierarchy of regional inequality of China. Applied Geography, 30(3): 303-316. doi:  10.1016/j.apgeog.2009.11.001
    [61] iii) Long J A, Nelson T A, 2012a. A review of quantitative methods for movement data. International Journal of Geographical Information Science, 27(2): 292-318. doi: 10.1080/13658816. 2012.682578
    [62] jjj) Long J A, Nelson T A, 2012b. Time geography and wildlife home range delineation. The Journal of Wildlife Management, 76(2): 407-413. doi:  10.1002/jwmg.259
    [63] kkk) Loo B P Y, Shenjun Y, Jianping W, 2011. Spatial point analysis of road crashes in Shanghai: A GIS-based network kernel density method. Geoinformatics, 2011 19th International Conference on, 1-6.
    [64] lll) Mínguez R, Abascal A J, Castanedo S et al., 2012. Stochastic Lagrangian trajectory model for drifting objects in the ocean. Stochastic Environmental Research and Risk Assessment, 26(8): 1081-1093. doi:  10.1007/s00477-011-0548-7
    [65] mmm) Marrero G A, Rodríguez J G, 2013. Inequality of opportunity and growth. Journal of Development Economics, 104(0): 107-122. doi:  10.1016/j.jdeveco.2013.05.004
    [66] nnn) Mennis J, Guo D, 2009. Spatial data mining and geographic knowledge discovery—An introduction. Computers, Environment and Urban Systems, 33(6): 403-408. doi: 10.1016/j. compenvurbsys.2009.11.001
    [67] ooo) Miller H J, 1991. Modelling accessibility using space-time prism concepts within geographical information systems. International Journal of Geographical Information Systems, 5(3): 287-301. doi:  10.1080/02693799108927856
    [68] ppp) Miller H J, 2005a. A Measurement Theory for Time Geography. Geographical Analysis, 37(1): 17-45. doi:  10.1111/j.1538-4632.2005.00575.x
    [69] qqq) Miller H J, 2005b. Necessary space-time conditions for human interaction. Environment and Planning B: Planning and Design, 32(3): 381-401.
    [70] rrr) Miller H J, Wentz E A, 2003. Representation and spatial analysis in Geographic Information Systems. Annals of the Association of American Geographers, 93(3): 574-594. doi:  10.1111/1467-8306.9303004
    [71] sss) Moulaert F, Mehmood A, 2009. Analysing regional development and policy: A structural-realist approach. Regional Studies, 44(1): 103-118. doi:  10.1080/00343400802251478
    [72] ttt) Murray A, Liu Y, Rey S et al., 2012. Exploring movement object patterns. The Annals of Regional Science, 49(2): 471-484. doi:  10.1007/s00168-011-0459-z
    [73] uuu) Neutens T, Schwanen T, Miller H J, 2010. Dealing with timing and synchronization in opportunities for joint activity participation. Geographical Analysis, 42(3): 245-266. doi:  10.1111/j.1538-4632.2010.00792.x
    [74] vvv) O'sullivan D, Unwin D J, 2010. Describing and analyzing fields. Geographic Information Analysis. John Wiley & Sons, Inc., 239-276.
    [75] www) Ratcliffe J H, 2006. A temporal constraint theory to explain opportunity-based spatial offending patterns. Journal of Research in Crime and Delinquency, 43(3): 261-291. doi:  10.1177/0022427806286566
    [76] xxx) Rey S J, Ye X Y, 2010. Comparative spatial dynamics of regional systems. In: Páez A et al. (eds.). Progress in Spatial Analysis. Germany: Springer Berlin Heidelberg, 441-463.
    [77] yyy) Rey S J, 2009. Show me the code: Spatial analysis and open source. Journal of Geographical Systems, 11(2): 191-207. doi:  10.1007/s10109-009-0086-8
    [78] zzz) Rey S J, Anselin L, 2006. Recent advances in software for spatial analysis in the social sciences. Geographical Analysis, 38(1): 1-4. doi:  10.1111/j.0016-7363.2005.00670.x
    [79] aaaa) Rey S J, Anselin L, 2007. PySAL: A python library of spatial analytical methods. The Review of Regional Studies, 37.
    [80] bbbb) Rey S J, Anselin L, Pahle R et al., 2013. Parallel optimal choropleth map classification in PySAL. International Journal of Geographical Information Science, 27(5): 1023-1039. doi:  10.1080/13658816.2012.752094
    [81] cccc) Rey S J, Janikas M V, 2005. Regional convergence, inequality, and space. Journal of Economic Geography, 5(2): 155-176. doi:  10.1093/jnlecg/lbh044
    [82] dddd) Rey S J, Janikas M V, 2006. STARS: Space-time analysis of regional systems. Geographical Analysis, 38(1): 67-86. doi:  10.1111/j.0016-7363.2005.00675.x
    [83] eeee) Rey S J, Janikas M V, Smirnov O, 2005. Exploratory geovisualization of spatial dynamics. Geocomputation 2005 Proceedings, Michigan.
    [84] ffff) Rohde D, Corcoran J, 2012. Graphical tools for conditional probabilistic exploration of multivariate spatial datasets. Computers, Environment and Urban Systems, 36(5): 359-370. doi:  10.1016/j.compenvurbsys.2012.03.003
    [85] gggg) Rosés J R, Martínez-Galarraga J, Tirado D A, 2010. The upswing of regional income inequality in Spain (1860-1930). Explorations in Economic History, 47(2): 244-257. doi: 10.1016/j.eeh. 2010.01.002
    [86] hhhh) Sadahiro Y, 2012. Exploratory analysis of polygons distributed with overlap. Geographical Analysis, 44(4): 350-367. doi:  10.1111/j.1538-4632.2012.00857.x
    [87] iiii) Shao J, Kuk G, Anand S et al., 2012. Mapping collaboration in open source geospatial ecosystem. Transactions in GIS, 16(4): 581-597. doi:  10.1111/j.1467-9671.2012.01305.x
    [88] jjjj) Shaw S L, Yu H, 2009. A GIS-based time-geographic approach of studying individual activities and interactions in a hybrid physical-virtual space. Journal of Transport Geography, 17(2): 141-149. doi:  10.1016/j.jtrangeo.2008.11.012
    [89] kkkk) Shneiderman B, 1996. The eyes have it: a task by data type taxonomy for information visualizations. Proceedings of the 1996 IEEE Symposium on Visual Languages, Piscataway, 336-343.
    [90] llll) Song C, Qu Z, Blumm N et al., 2010. Limits of predictability in human mobility. Science, 327(5968): 1018-1021. doi:  10.1126/science.1177170
    [91] mmmm) Spencer J, Angeles G, 2007. Kernel density estimation as a technique for assessing availability of health services in Nicaragua. Health Services and Outcomes Research Methodology, 7(3-4): 145-157. doi:  10.1007/s10742-007-0022-7
    [92] nnnn) Steiniger S, Hunter A J S, 2013. The 2012 free and open source GIS software map-A guide to facilitate research, development, and adoption. Computers, Environment and Urban Systems, 39(0): 136-150. doi:  10.1016/j.compenvurbsys.2012.10.003
    [93] oooo) Sugihara K, Satoh T, Okabe A, 2010. Simple and unbiased kernel function for network analysis. 10th International Symposium on Communications and Information Technologies. Meiji University, Japan, 827-832.
    [94] pppp) Sui D, 2012. Looking through Hägerstrand′s dual vistas: Towards a unifying framework for time geography. Journal of Transport Geography, 23(0): 5-16. doi: 10.1016/j.jtrangeo.2012.03. 020
    [95] qqqq) Templ M, Hulliger B, Kowarik A et al., 2012. Combining geographical information and traditional plots: The checkerplot. International Journal of Geographical Information Science, 27(4): 685-698. doi:  10.1080/13658816.2012.684386
    [96] rrrr) Timmermans H, Arentze T, Joh C H, 2002. Analysing space-time behaviour: New approaches to old problems. Progress in Human Geography, 26(2): 175-190. doi: 10.1191/0309132502 ph363ra
    [97] ssss) Tobler W R, 1970. A computer movie simulating urban growth in the Detroit Region. Economic Geography, 46: 234-240. doi:  10.2307/143141
    [98] tttt) Tonts M, Plummer P, Lawrie M, 2012. Socio-economic wellbeing in Australian mining towns: A comparative analysis. Journal of Rural Studies, 28(3): 288-301. doi: 10.1016/j.jrurstud.2011. 10.006
    [99] uuuu) Traun C, Loidl M, 2012. Autocorrelation-based regioclassification: A self-calibrating classification approach for choropleth maps explicitly considering spatial autocorrelation. International Journal of Geographical Information Science, 26(5): 923-939. doi:  10.1080/13658816.2011.614246
    [100] vvvv) Tselios V, 2009. Growth and convergence in income per capita and income inequality in the regions of the EU. Spatial Economic Analysis, 4(3): 343-370. doi: 10.1080/1742177090 3114711
    [101] wwww) Tukey J W, 1977. Exploratory Data Analysis. MA: Addison-Wesley.
    [102] xxxx) Tutmez B, Kaymak U, Tercan A E, 2012. Local spatial regression models: A comparative analysis on soil contamination. Stochastic Environmental Research and Risk Assessment, 26(7): 1013-1023. doi:  10.1007/s00477-011-0532-2
    [103] yyyy) Vasquez K G, 2011. A pluralist alternative: Mexican women, migration, and regional development. American Journal of Economics and Sociology, 70(3): 671-698. doi: 10.1111/j. 1536-7150.2011.00788.x
    [104] zzzz) Wang F, 2005. Job access and homicide patterns in Chicago: An analysis at multiple geographic levels based on scale-space theory. Journal of Quantitative Criminology, 21(2): 195-217. doi:  10.1007/s10940-005-2492-5
    [105] aaaaa) Wang F, Arnold M T, 2008. Localized income inequality, concentrated disadvantage and homicide. Applied Geography, 28(4): 259-270. doi:  10.1016/j.apgeog.2008.07.004
    [106] bbbbb) Wei Y D, 2013. Regional Development in China: States, Globalization and Inequality. Taylor & Francis.
    [107] ccccc) Wei Y H D and Liefner I, 2012. Globalization, industrial restructuring, and regional development in China. Applied Geography, 32(1): 102-105. doi: 10.1016/j.apgeog.2011.02. 005
    [108] ddddd) Wells W, Wu L, Ye X Y, 2012. Patterns of near-repeat gun assaults in Houston. Journal of Research in Crime and Delinquency, 49(2): 186-212. doi:  10.1177/0022427810397946
    [109] eeeee) Winter S, Raubal M, 2006. Time geography for Ad Hoc dhared-tide trip planning. Mobile Data Management, 2006. MDM 2006. 7th International Conference on.
    [110] fffff) Winter S, Yin Z C, 2011. The elements of probabilistic time geography. GeoInformatica, 15(3): 417-434. doi:  10.1007/s10707-010-0108-1
    [111] ggggg) Wu K Y, Ye X Y, Qi Z F et al., 2013. Impacts of land use/land cover change and socioeconomic development on regional ecosystem services: The case of fast-growing Hangzhou metropolitan area, China. Cities, 31: 276-284. doi:  10.1016/j.cities.2012.08.003
    [112] hhhhh) Xie Z, Yan J, 2008. Kernel density estimation of traffic accidents in a network space. Computers, Environment and Urban Systems, 32(5): 396-406. doi: 10.1016/j.compenvurbsys.2008.05. 001
    [113] iiiii) Yang C, Raskin R, Goodchild M et al., 2010. Geospatial cyberinfrastructure: Past, present and future. Computers, Environment and Urban Systems, 34(4): 264-277. doi: 10.1016/j. compenvurbsys. 2010.04.001
    [114] jjjjj) Yang T, Xu C Y, Zhang Q et al., 2012. DEM-based numerical modelling of runoff and soil erosion processes in the hilly-gully loess regions. Stochastic Environmental Research and Risk Assessment, 26(4): 581-597. doi:  10.1007/s00477-011-0515-3
    [115] kkkkk) Ye X Y, 2010. Comparative Space Time Dynamics. University of California, Santa Barbara and San Diego State University.
    [116] lllll) Ye X Y, Carroll M C, 2011a. Exploratory space-time analysis of local economic development. Applied Geography, 31(3): 1049-1058. doi:  10.1016/j.apgeog.2011.02.003
    [117] mmmmm) Ye X Y, Carroll M C, 2011b. The warn notice toolbox: Open-source geovisualization of large layoff events data. 19th International Conference on Geoinformatics, Shanghai: 1-4.
    [118] nnnnn) Ye X and Liu L, 2012. Special issue on spatial crime analysis and modeling. Annals of GIS, 18(3): 157-241. doi:  10.1080/19475683.2012.693342
    [119] ooooo) Ye X Y, Rey S J, 2013. A framework for exploratory space-time analysis of economic data. The Annals of Regional Science, 50(1): 315-339. doi:  10.1007/s00168-011-0470-4
    [120] ppppp) Ye X Y, Shi X, 2012. Pursuing spatiotemporally integrated social science over cyberinfrastructure. GIScience 2012 proceedings, Ohio.
    [121] qqqqq) Ye X Y, Wei Y D, 2005. Geospatial analysis of regional development in China: The case of Zhejiang Province and the Wenzhou Model. Eurasian Geography and Economics, 46(6): 445-464. doi:  10.2747/1538-7216.46.6.445
    [122] rrrrr) Ye X Y, Wei Y H D, 2012. Special issues on globalization, regional development and public policy in Asia. Regional Science Policy & Practice, 4(3): 179-333. doi:  10.1111/j.1757-7802.2012.01067.x
    [123] sssss) Ye X Y, Xie Y C, 2012. Re-examination of Zipf′s law and urban dynamic in China: A regional approach. The Annals of Regional Science, 49(1): 135-156. doi:  10.1007/s00168-011-0442-8
    [124] ttttt) Yeung H W C, 2009. Regional development and the competitive dynamics of global production networks: An East Asian perspective. Regional Studies, 43(3): 325-351. doi:  10.1080/00343400902777059
    [125] uuuuu) Yu H, Shaw S L, 2008. Exploring potential human activities in physical and virtual spaces: A spatiotemporal GIS approach. International Journal of Geographical Information Science, 22(4): 409-430. doi:  10.1080/13658810701427569
    [126] vvvvv) Yue W, Liu Y, Fan P et al., 2012. Assessing spatial pattern of urban thermal environment in Shanghai, China. Stochastic Environmental Research and Risk Assessment, 26(7): 899-911. doi: 10.1007/s00477-012-0638-1Zhang Z, 2012. Iterative posterior inference for Bayesian Kriging. Stochastic Environmental Research and Risk Assessment, 26(7): 913-923. doi: 10.1007/s00477-011-0544-y
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(351) PDF downloads(870) Cited by()

Proportional views
Related

An Open Source Toolkit for Identifying Comparative Space-time Research Questions

doi: 10.1007/s11769-014-0679-0
Funds:  Under the auspices of Humanities and Social Science Research, Major Project of Chinese Ministry of Education (No. 13JJD790008), Basic Research Funds of National Higher Education Institutions of China (No. 2722013JC030), Zhongnan University of Economics and Law 2012 Talent Grant (No. 31541210702), Key Research Program of Chinese Academy of Sciences (No. KZZD-EW-06-03, KSZD-EW-Z-021-03), National Key Science and Technology Support Program of China (No. 2012BAH35B03)
    Corresponding author: CHENG Yeqing. E-mail: yqcheng@iga.ac.cn

Abstract: Comparative space-time thinking lies at the heart of spatiotemporally integrated social sciences. The multiple dimensions and scales of socioeconomic dynamics pose numerous challenges for the application and evaluation of public policies in the comparative context. At the same time, social scientists have been slow to adopt and implement new spatiotemporally explicit methods of data analysis due to the lack of extensible software packages, which becomes a major impediment to the promotion of spatiotemporal thinking. The proposed framework will address this need by developing a set of research questions based on space-time-distributional features of socioeconomic datasets. The authors aim to develop, evaluate, and implement this framework in an open source toolkit to comprehensively quantify the changes and level of hidden variation of space-time datasets across scales and dimensions. Free access to the source code allows a broader community to incorporate additional advances in perspectives and methods, thus facilitating interdisciplinary collaboration. Being written in Python, it is entirely cross-platform, lowering transmission costs in research and education.

YE Xinyue, SHE Bing, WU Ling, ZHU Xinyan, CHENG Yeqing. An Open Source Toolkit for Identifying Comparative Space-time Research Questions[J]. Chinese Geographical Science, 2014, (3): 348-361. doi: 10.1007/s11769-014-0679-0
Citation: YE Xinyue, SHE Bing, WU Ling, ZHU Xinyan, CHENG Yeqing. An Open Source Toolkit for Identifying Comparative Space-time Research Questions[J]. Chinese Geographical Science, 2014, (3): 348-361. doi: 10.1007/s11769-014-0679-0
Reference (126)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return