[1] Ajaz Ahmed M A, Abd-Elrahman A, Escobedo F J et al., 2017. Spatially-explicit modeling of multi-scale drivers of aboveground forest biomass and water yield in watersheds of the Southeastern United States. Journal of Environmental Management, 199:158-171. doi: 10.1016/j.jenvman.2017.05.013
[2] AlKahtani S J H, Xia J C, Veenendaaland B et al., 2015. Building a conceptual framework for determining individual differences of accessibility to tourist attractions. Tourism Management Perspectives, 16:28-42. doi: 10.1016/j.tmp.2015.05.002
[3] Avila-Flores D, Pompa-Garcia M, Antonio-Nemiga X et al., 2010. Driving factors for forest fire occurrence in Durango State of Mexico:a geospatial perspective. Chinese Geographical Science, 20(6):491-497. doi: 10.1007/s11769-010-0437-x
[4] Brunsdon C, Fotheringham A S, Charlton M, 1999. Some notes on parametric significance tests for geographically weighted regression. Journal of Regional Science, 39(3):497-524. doi: 10.1111/0022-4146.00146
[5] Cardozo O D, García-Palomares J C, Gutiérrez J, 2012. Application of geographically weighted regression to the direct forecasting of transit ridership at station-level. Applied Geography, 34:548-558. doi: 10.1016/j.apgeog.2012.01.005
[6] Chalkias C, Papadopoulos A G, Kalogeropoulos K et al., 2013. Geographical heterogeneity of the relationship between childhood obesity and socio-environmental status:empirical evidence from Athens, Greece. Applied Geography, 37:34-43. doi: 10.1016/j.apgeog.2012.10.007
[7] Chen Q, Mei K, Dahlgren R A et al., 2016. Impacts of land use and population density on seasonal surface water quality using a modified geographically weighted regression. Science of the Total Environment, 572:450-466. doi:10.1016/j.scitotenv. 2016.08.052
[8] Chen Y M, Liu X P, Li X et al., 2016. Mapping the fine-scale spatial pattern of housing rent in the metropolitan area by using online rental listings and ensemble learning. Applied Geography, 75:200-212. doi: 10.1016/j.apgeog.2016.08.011
[9] Chiou Y C, Jou R C, Yang C H, 2015. Factors affecting public transportation usage rate:geographically weighted regression. Transportation Research Part A:Policy and Practice, 78:161-177. doi: 10.1016/j.tra.2015.05.016
[10] Dai X Z, Bai X, Xu M, 2016. The influence of Beijing rail transfer stations on surrounding housing prices. Habitat International, 55:79-88. doi: 10.1016/j.habitatint.2016.02.008
[11] De La Luz Hernández-Flores M, Otazo-Sánchez E M, Galeana-Pizaña M et al., 2017. Urban driving forces and megacity expansion threats. Study case in the Mexico City periphery. Habitat International, 64:109-122. doi:10.1016/j. habitatint.2017.04.004
[12] Du H B, Mulley C, 2006. Relationship between transport accessibility and land value:local model approach with geographically weighted regression. Transportation Research Record:Journal of the Transportation Research Board, 1977:197-205. doi: 10.3141/1977-25
[13] Dziauddin M F, 2009. Measuring the Effects of the Light Rail Transit (LRT) System on House Prices in the Klang Valley, Malaysia. Newcastle, UK:Newcastle University.
[14] Dziauddin M F, Ismail K, Othman Z, 2015. Analysing the local geography of the relationship between residential property prices and its determinants. Bulletin of Geography. Socioeconomic Series, 28(28):21-35. doi: 10.1515/bog-2015-0013
[15] Emamgholizadeh S, Shahsavani S, Eslami M A, 2017. Comparison of artificial neural networks, geographically weighted regression and Cokriging methods for predicting the spatial distribution of soil macronutrients (N, P, and K). Chinese Geographical Science, 27(5):747-759. doi: 10.1007/s11769-017-0906-6
[16] Fotheringham A S, Brunsdon C, Charlton M, 2002. Geographically Weighted Regression:the Analysis of Spatially Varying Relationships. Chichester:Wiley, 283-285.
[17] Fotheringham A S, Charlton M E, Brunsdon C, 1998. Geographically weighted regression:a natural evolution of the expansion method for spatial data analysis. Environment and Planning A, 30(11):1905-1927. doi: 10.1068/a301905
[18] Fotheringham A S, Crespo R, Yao J, 2015. Exploring, modelling and predicting spatiotemporal variations in house prices. The Annals of Regional Science, 54(2):417-436. doi:10.1007/s 00168-015-0660-6
[19] Geniaux G, Martinetti D, 2017. A new method for dealing simultaneously with spatial autocorrelation and spatial heterogeneity in regression models. Regional Science and Urban Economics. doi: 10.1016/j.regsciurbeco.2017.04.001
[20] Griffin G P, Jiao J, 2015. Where does bicycling for health happen? Analysing volunteered geographic information through place and plexus. Journal of Transport & Health, 2(2):238-247. doi: 10.1016/j.jth.2014.12.001
[21] Guo Y X, Tang Q H, Gong D Y et al., 2017. Estimating groundlevel PM2.5 concentrations in Beijing using a satellite-based geographically and temporally weighted regression model. Remote Sensing of Environment, 198:140-149. doi: 10.1016/j.rse.2017.06.001
[22] Harris P, Brunsdon C, Gollini I et al., 2015. Using bootstrap methods to investigate coefficient non-stationarity in regression models:an empirical case study. Procedia Environmental Sciences, 27:112-115. doi: 10.1016/j.proenv.2015.07.106
[23] Huang B, Wu B, Barry M, 2010. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. International Journal of Geographical Information Science, 24(3):383-401. doi:10.1080/136588108026 72469
[24] Ibeas Á, Cordera R, Dell'Olio L et al., 2012. Modelling transport and real-estate values interactions in urban systems. Journal of Transport Geography, 24:370-382. doi:10.1016/j.jtrangeo. 2012.04.012
[25] Jang M, Kang C D, 2015. Retail accessibility and proximity effects on housing prices in Seoul, Korea:a retail type and housing submarket approach. Habitat International, 49:516-528. doi: 10.1016/j.habitatint.2015.07.004
[26] Jeon C H, Park J S, Lee J H et al., 2017. Comparison of brain computed tomography and diffusion-weighted magnetic resonance imaging to predict early neurologic outcome before target temperature management comatose cardiac arrest survivors. Resuscitation, 118:21-26. doi:10.1016/j.resuscitation. 2017.06.021
[27] Jiang J F, Kell S, Fan X C et al., 2015. The wild relatives of grape in China:diversity, conservation gaps and impact of climate change. Agriculture, Ecosystems & Environment, 210:50-58. doi: 10.1016/j.agee.2015.03.021
[28] Kestens Y, Thériault M, Des Rosiers F, 2006. Heterogeneity in hedonic modelling of house prices:looking at buyers' household profiles. Journal of Geographical Systems, 8(1):61-96. doi: 10.1007/s10109-005-0011-8
[29] Kontokosta C E, Jain R K, 2015. Modeling the determinants of large-scale building water use:implications for data-driven urban sustainability policy. Sustainable Cities and Society, 18:44-55. doi: 10.1016/j.scs.2015.05.007
[30] Li C, Zhao J, Xu Y, 2017. Examining spatiotemporally varying effects of urban expansion and the underlying driving factors. Sustainable Cities and Society, 28:307-320. doi: 10.1016/j.scs.2016.10.005
[31] Lin T, Xia J H, Robinson T P et al., 2014. Spatial analysis of access to and accessibility surrounding train stations:a case study of accessibility for the elderly in Perth, Western Australia. Journal of Transport Geography, 39:111-120. doi: 10.1016/j.jtrangeo.2014.06.022
[32] Lu B, Harris P, Charlton M et al., 2015. Calibrating a geographically weighted regression model with parameter-specific distance metrics. Procedia Environmental Sciences, 26:109-114. doi: 10.1016/j.proenv.2015.05.011
[33] Luo Ganghui, 2007. Spatial Structure of Urban Housing Land Prices based on GWR Model. Hangzhou:Zhejiang University, 165. (in Chinese)
[34] Lv Z, 2016. Spatial Differentiation of Urban Residential Land Price and Its Influencing Factors based on GWR Model. Lanzhou:Gansu Agricultural University, 65. (in Chinese)
[35] Ministry of Housing and Urban-Rural Development of the People's Republic of China, 2016. CJJ 37-2012 Code for design of urban road engineering. Beijing:China Architecture & Building Press.
[36] Propastin P, 2012. Modifying geographically weighted regression for estimating aboveground biomass in tropical rainforests by multispectral remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 18:82-90. doi: 10.1016/j.jag.2011.12.013
[37] Ramezankhani R, Hosseini A, Sajjadi N et al., 2017. Environmental risk factors for the incidence of cutaneous leishmaniasis in an endemic area of Iran:a GIS-based approach. Spatial and Spatio-temporal Epidemiology, 21:57-66. doi:10.1016/j.sste. 2017.03.003
[38] Robinson D P, Lloyd C D, McKinley J M, 2013. Increasing the accuracy of nitrogen dioxide (NO2) pollution mapping using geographically weighted regression (GWR) and geostatistics. International Journal of Applied Earth Observation and Geoinformation, 21:374-383. doi: 10.1016/j.jag.2011.11.001
[39] Shen Y, Karimi K, 2017. The economic value of streets:mix-scale spatio-functional interaction and housing price patterns. Applied Geography, 79:187-202. doi:10.1016/j. apgeog.2016.12.012
[40] Sheng J C, Han X, Zhou H, 2017. Spatially varying patterns of afforestation/reforestation and socio-economic factors in China:a geographically weighted regression approach. Journal of Cleaner Production, 153:362-371. doi:10.1016/j.jclepro. 2016.06.055
[41] Song X D, Brus D J, Liu F et al., 2016. Mapping soil organic carbon content by geographically weighted regression:a case study in the Heihe River Basin, China. Geoderma, 261:11-22. doi: 10.1016/j.geoderma.2015.06.024
[42] State Construction Commission, 1980. Interim Provisions on quota targets of urban planning. Tu J, Tu W, Tedders S H, 2016. Spatial variations in the associations of term birth weight with ambient air pollution in Georgia, USA. Environment International, 92-93:146-156. doi: 10.1016/j.envint.2016.04.005
[43] Wen H Z, Xiao Y, Zhang L, 2017. Spatial effect of river landscape on housing price:an empirical study on the Grand Canal in Hangzhou, China. Habitat International, 63:34-44. doi: 10.1016/j.habitatint.2017.03.007
[44] Wu C, Ye X Y, Du Q Y et al., 2017. Spatial effects of accessibility to parks on housing prices in Shenzhen, China. Habitat International, 63:45-54. doi: 10.1016/j.habitatint.2017.03.010
[45] Wu S, Yang H, Guo F et al., 2017. Spatial patterns and origins of heavy metals in Sheyang River catchment in Jiangsu, China based on geographically weighted regression. Science of the Total Environment, 580:1518-1529. doi:10.1016/j.scitotenv. 2016.12.137
[46] Yu D L, Wei Y D, Wu C S, 2007. Modeling spatial dimensions of housing prices in Milwaukee, WI. Environment and Planning B:Planning and Design, 34(6):1085-1102. doi:10.1068/b 32119
[47] Zhang H, Guo L, Chen J et al., 2014. Modeling of spatial distributions of farmland density and its temporal change using geographically weighted regression model. Chinese Geographical Science, 24(2):191-204. doi: 10.1007/s11769-013-0631-8