[1] |
Arsanjani J J, Helbich M, Kainz W et al., 2013. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation & Geoinformation, 21: 265–275. doi: 10.1016/j.jag.2011.12.014 |
[2] |
Bhattachan A, Emanuel R E, Ardón M et al., 2018. Evaluating the effects of land-use change and future climate change on vulnerability of coastal landscapes to saltwater intrusion. Elementa: Science of the Anthropocene, 6: 1–11. doi: 10.1525/elementa.316 |
[3] |
Bryan B A, Nolan M, Mckellar L et al., 2016. Land-use and sustainability under intersecting global change and domestic policy scenarios: trajectories for Australia to 2050. Global Environmental Change, 38: 130–152. doi: 10.1016/j.gloenvcha.2016.03.002 |
[4] |
Cao Y H, Liu M Y, Zhang Y et al., 2020. Spatiotemporal evolution of ecological security in the Wanjiang City Belt, China. Chinese Geographical Science, 30(6): 1052–1064. doi: 10.1007/s11769-020-1156-6 |
[5] |
Castella J C, Kam S P, Quang D D et al., 2007. Combining top-down and bottom-up modelling approaches of land use/cover change to support public policies: application to sustainable management of natural resources in northern Vietnam. Land Use Policy, 24(3): 531–545. doi: 10.1016/j.landusepol.2005.09.009 |
[6] |
Chen Y, Wang J L, 2020. Ecological security early-warning in central Yunnan Province, China, based on the gray model. Ecological Indicators, 111: 1–10. doi: 10.1016/j.ecolind.2019.106000 |
[7] |
Christian R R, Brinson M M, Dame J K et al., 2009. Ecological network analyses and their use for establishing reference domain in functional assessment of an estuary. Ecological Modelling, 220(22): 3113–3122. doi: 10.1016/j.ecolmodel.2009.07.012 |
[8] |
Coyle R G, 1997. System dynamics modelling: a practical approach. Journal of the Operational Research Society, 48(5): 544–544. doi: 10.1057/palgrave.jors.2600682 |
[9] |
Dadashpoor H, Azizi P, Moghadasi M, 2019. Land use change, urbanization, and change in landscape pattern in a metropolitan area. Science of The Total Environment, 655: 707–719. doi: 10.1016/j.scitotenv.2018.11.267 |
[10] |
Depietri Y, 2020. The social-ecological dimension of vulnerability and risk to natural hazards. Sustainability Science, 15(2): 587–604. doi: 10.1007/s11625-019-00710-y |
[11] |
Dong Y, Xu L Y, 2019. Aggregate risk of reactive nitrogen under anthropogenic disturbance in the pearl river delta urban agglomeration. Journal of Cleaner Production, 211: 490–502. doi: 10.1016/j.jclepro.2018.11.194 |
[12] |
Fan X, Ma Z, Yang Q et al., 2015. Land use/land cover changes and regional climate over the Loess Plateau during 2001−2009. Part II: interrelationship from observations. Climatic Change, 129(3-4): 441–455. doi: 10.1007/s10584-014-1068-5 |
[13] |
Filonchyk M, Hurynovich V, 2020. Validation of MODIS aerosol products with AERONET measurements of different land cover types in areas over eastern Europe and China. Journal of Geovisualization and Spatial Analysis, 4(1): 1–11. doi: 10.1007/s41651-020-00052-9 |
[14] |
Foody G M, 2003. Geographical weighting as a further refinement to regression modelling: an example focused on the NDVI–rainfall relationship. Remote Sensing of Environment, 88(3): 283–293. doi: 10.1016/j.rse.2003.08.004 |
[15] |
Fotheringham A S, Charlton M E, Brunsdon C, 1998. Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environment and Planning A: Economy and Space, 30(11): 1905–1927. doi: 10.1068/a301905 |
[16] |
Geng B, Zheng X Q, Fu M C, 2017. Scenario analysis of sustainable intensive land use based on SD model. Sustainable Cities and Society, 29: 193–202. doi: 10.1016/j.scs.2016.12.013 |
[17] |
Gong J, Yang J X, Tang W W, 2015. Spatially explicit landscape-level ecological risks induced by land use and land cover change in a national ecologically representative region in China. International Journal of Environmental Research and Public Health, 12(11): 14192–14215. doi: 10.3390/ijerph121114192 |
[18] |
Grimm V, 1999. Ten years of individual-based modelling in ecology: what have we learned and what could we learn in the future? Ecological Modelling, 115(2-3): 129–148. doi: 10.1016/S0304-3800(98)00188-4 |
[19] |
Han H, Yang C, Song J, 2015. Scenario Simulation and the Prediction of Land Use and Land Cover Change in Beijing, China. Sustainability, 7(4): 4260–4279. doi: 10.3390/su7044260 |
[20] |
Hunsaker C T, Graham R L, Suter G W et al., 1990. Assessing ecological risk on a regional scale. Environmental Management, 14(3): 325–332. doi: 10.1007/bf02394200 |
[21] |
He L, 2019. Evolution Characteristics of Landscape Pattern in the Yangtze River Delta Urban Agglomeration And Simulation Prediction. Beijing: China University of Geosciences. (in Chinese) |
[22] |
Itami R M, 1994. Simulating spatial dynamics: cellular automata theory. Landscape and Urban Planning, 30(1-2): 27–47. doi: 10.1016/0169-2046(94)90065-5 |
[23] |
Jiao M Y, Hu M M, Xia B C, 2019. Spatiotemporal dynamic simulation of land-use and landscape pattern in the Pearl River Delta, China. Sustainable Cities and Society, 49: 1–10. doi: 10.1016/j.scs.2019.101581 |
[24] |
Kates R W, Clark W C, Corell R et al., 2001. Sustainability science. Science, 292(5517): 641–642. doi: 10.1126/science.1059386 |
[25] |
Kefalas G, Kalogirou S, Poirazidis K et al., 2019. Landscape transition in Mediterranean islands: the case of Ionian islands, Greece 1985−2015. Landscape and Urban Planning, 191: 1–19. doi: 10.1016/j.landurbplan.2019.103641 |
[26] |
Ladevèze P, Chamoin L, 2011. On the verification of model reduction methods based on the proper generalized decomposition. Computer Methods in Applied Mechanics and Engineering, 200(23−24): 2032–2047. doi: 10.1016/j.cma.2011.02.019 |
[27] |
Lauf S, Haase D, Hostert P et al., 2012. Uncovering land-use dynamics driven by human decision-making – A combined model approach using cellular automata and system dynamics. Environmental Modelling & Software, 27: 71–82. doi: 10.1016/j.envsoft.2011.09.005 |
[28] |
Li J, Rodriguez D, Tang X Y, 2017a. Effects of land lease policy on changes in land use, mechanization and agricultural pollution. Land Use Policy, 64: 405–413. doi: 10.1016/j.landusepol.2017.03.008 |
[29] |
Li H L, Peng J, Yanxu L et al., 2017b. Urbanization impact on landscape patterns in Beijing City, China: a spatial heterogeneity perspective. Ecological Indicators, 82: 50–60. doi: 10.1016/j.ecolind.2017.06.032 |
[30] |
Li Z T, Hu M M, Li M et al., 2020. Identification and countermeasures of limiting factors of regional sustainable development: a case study in the pearl river delta of China. Environment, Development and Sustainability, 22(5): 4209–4224. doi: 10.1007/s10668-019-00379-4 |
[31] |
Liang X, Liu X P, Li X et al., 2018. Delineating multi-scenario urban growth boundaries with a CA-based FLUS model and morphological method. Landscape and Urban Planning, 177: 47–63. doi: 10.1016/j.landurbplan.2018.04.016 |
[32] |
Liu X P, Liang X, Li X et al., 2017. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landscape and Urban Planning, 168: 94–116. doi: 10.1016/j.landurbplan.2017.09.019 |
[33] |
Luo D, Liang L W, Wang Z B et al., 2021. Exploration of coupling effects in the Economy-Society-Environment system in urban areas: Case study of the Yangtze River Delta Urban Agglomeration. Ecological Indicators, 128: 1–14. doi: 10.1016/j.ecolind.2021.107858 |
[34] |
Mann D, Anees M M, Rankavat S et al., 2021. Spatio-temporal variations in landscape ecological risk related to road network in the Central Himalaya. Human and Ecological Risk Assessment: An International Journal, 27(2): 289–306. doi: 10.1080/10807039.2019.1710693 |
[35] |
Marhaento H, Booij M J, Hoekstra A Y, 2017. Attribution of changes in stream flow to land use change and climate change in a mesoscale tropical catchment in Java, Indonesia. Hydrology Research, 48(4): 1143–1155. doi: 10.2166/nh.2016.110 |
[36] |
Meneses B M, Reis R, Vale M J et al., 2015. Land use and land cover changes in Zêzere watershed (Portugal)—water quality implications. Science of the Total Environment, 527-528C: 439–447. doi: 10.1016/j.scitotenv.2015.04.092 |
[37] |
Nan Ying, Wang Bingbing, Zhang Da et al., 2020. Spatial Patterns of LULC and driving forces in the Transnational Area of Tumen River: a comparative analysis of the sub-regions of China, the DPRK, and Russia. Chinese Geographical Science, 30(4): 588–599. doi: 10.1007/s11769-020-1136-x |
[38] |
Pešić A M, Brankov J, Joksimović D M, 2020. Water quality assessment and populations’ perceptions in the National park Djerdap (Serbia): key factors affecting the environment. Environment, Development and Sustainability, 22(3): 2365–2383. doi: 10.1007/s10668-018-0295-8 |
[39] |
Rasmussen L V, Rasmussen K, Reenberg A et al., 2012. A system dynamics approach to land use changes in agro-pastoral systems on the desert margins of Sahel. Agricultural Systems, 107: 56–64. doi: 10.1016/j.agsy.2011.12.002 |
[40] |
Sajikumar N, Remya R S, 2015. Impact of land cover and land use change on runoff characteristics. Journal of Environmental Man-agement, 161: 460–468. doi: 10.1016/j.jenvman.2014.12.041 |
[41] |
Siddiqui A, Siddiqui A, Maithani S et al., 2018. Urban growth dynamics of an indian metropolitan using ca markov and logistic regression. The Egyptian Journal of Remote Sensing and Space Science, 21(3): 229–236. doi: 10.1016/j.ejrs.2017.11.006 |
[42] |
Singh R, Kalota D, 2019. Urban sprawl and its impact on generation of urban heat island: a case study of Ludhiana city. Journal of the Indian Society of Remote Sensing, 47(9): 1567–1576. doi: 10.1007/s12524-019-00994-8 |
[43] |
Swart R J, Raskin P, Robinson J, 2004. The Problem of the future: sustainability science and scenario analysis. Global Environmental Change, 14(2): 137–146. doi: 10.1016/j.gloenvcha.2003.10.002 |
[44] |
Tuholske C, Tane Z, López-Carr D et al., 2017. Thirty years of land use/cover change in the caribbean: assessing the relationship between urbanization and mangrove loss in Roatan, Honduras. Applied Geography, 88: 84–93. doi: 10.1016/j.apgeog.2017.08.018 |
[45] |
Vadrevu K P, Ohara T, 2020. Focus on land use cover changes and environmental impacts in South/Southeast Asia. Environmental Research Letters, 15(10): 1–5. doi: 10.1088/1748-9326/abb5cb |
[46] |
Wang J Z, Ma X, Wu J et al., 2012. Optimization models based on GM (1,1) and seasonal fluctuation for electricity demand forecasting. Electrical Power & Energy Systems, 43(1): 109–117. doi: 10.1016/j.ijepes.2012.04.027 |
[47] |
Xu X M, Du Z Q, Zhang H, 2016a. Integrating the system dynamic and cellular automata models to predict land use and land cover change. International Journal of Applied Earth Observation and Geoinformation, 52: 568–579. doi: 10.1016/j.jag.2016.07.022 |
[48] |
Xu Y, Zhong Y X, Feng X H et al., 2016b. Ecological risk pattern of poyang lake basin based on land use. Acta Ecologica Sinica, 36(23): 7850–7857. (in Chinese) |
[49] |
Yang J, Bao Y J, Zhang Y Q et al., 2018. Impact of accessibility on housing prices in Dalian City of China based on a geographically weighted regression model. Chinese Geographical Science, 28(3): 505–515. doi: 10.1007/s11769-018-0954-6 |
[50] |
Zhang F, Yushanjiang A, Wang D F, 2018. Ecological risk assessment due to land use/cover changes (LUCC) in Jinghe County, Xinjiang, China from 1990 to 2014 based on landscape patterns and spatial statistics. Environmental Earth Sciences, 77(13): 1–16. doi: 10.1007/s12665-018-7676-z |
[51] |
Zhang P Y, Yang D, Qin M Z et al., 2020a. Spatial heterogeneity analysis and driving forces exploring of built-up land development intensity in Chinese prefecture-level cities and implications for future Urban Land intensive use. Land Use Policy, 99: 1–12. doi: 10.1016/j.landusepol.2020.104958 |
[52] |
Zhang W, Chang W J, Zhu Z C et al., 2020b. Landscape ecological risk assessment of Chinese coastal cities based on land use change. Applied Geography, 117: 1–9. doi: 10.1016/j.apgeog.2020.102174 |
[53] |
Zhang Y, Liu J F, Wen Z Y, 2021. Predicting Surface Urban Heat Island in Meihekou City, China: A Combination Method of Monte Carlo and Random Forest. Chinese Geographical Science, 31(4): 659–670. doi: 10.1007/s11769-021-1215-7 |
[54] |
Zhou L, Dang X W, Sun Q K et al., 2020. Multi-scenario simulation of urban land change in Shanghai by random forest and CA-Markov model. Sustainable Cities and Society, 55: 1–10. doi: 10.1016/j.scs.2020.102045 |
[55] |
Zhou L, Dang X W, Mu H W et al., 2021. Cities are going uphill: slope gradient analysis of urban expansion and its driving factors in China. Science of the Total Environment, 775: 1–10. doi: 10.1016/j.scitotenv.2021.145836 |