[1] Alamgir M, Turton S M, Macgregor C et al., 2016. Ecosystem services capacity across heterogeneous forest types:understanding the interactions and suggesting pathways for sustaining multiple ecosystem services. Science of the Total Environment, 566-567:584-595. doi:10.1016/j.scitotenv.2016. 05.107
[2] Bonan G B, 2008. Forests and climate change:forcings, feedbacks, and the climate benefits of forests. Science, 320:1444-1449. doi: 10.1126/science.1155121
[3] Brinkmann K, Patzelt A, Schlecht E et al., 2011. Use of environmental predictors for vegetation mapping in semi-arid mountain rangelands and the determination of conservation hotspots. Applied Vegetation Science, 14(1):17-30. doi: 10.1111/j.1654-109x.2010.01097.x
[4] Brown de Colstoun E C, Story M H, Thompson C et al., 2003. National park vegetation mapping using multi-temporal LANDSAT 7 data and a decision tree classifier. Remote Sensing of Environment, 85(3):316-327. doi: 10.1016/S0034-4257(03)00010-5
[5] Cai D L, Guan Y N, Guo S et al., 2014. Mapping plant functional types over broad mountainous regions:a hierarchical soft time-space classification applied to the Tibetan Plateau. Remote Sensing, 6(4):3511-3532. doi: 10.3390/rs6043511
[6] Cawsey E M, Austin M P, Baker B L, 2002. Regional vegetation mapping in Australia:a case study in the practical use of statistical modelling. Biodiversity and Conservation, 11(12):2239-2274. doi: 10.1023/a:1021350813586
[7] Ebrahimi M, Khosravi H, Rigi M, 2016. Short-term grazing exclusion from heavy livestock rangelands affects vegetation cover and soil properties in natural ecosystems of southeastern Iran. Ecological Engineering, 95:10-18. doi:10.1016/j. ecoleng.2016.06.069
[8] Eppink F V, van den Bergh J C J M, Rietveld P, 2004. Modelling biodiversity and land use:urban growth, agriculture and nature in a wetland area. Ecological Economics, 51(3-4):201-216. doi: 10.1016/j.ecolecon.2004.04.011
[9] Fang J Y, Yu G R, Liu L L et al., 2018. Climate change, human impacts, and carbon sequestration in China. Proceedings of the National Academy of Sciences of the United States of America, 115(16):4015-4020. doi: 10.1073/pnas.1700304115
[10] Friedl M A, Sulla-Menashe D, Tan B et al., 2010. MODIS collection 5 global land cover:algorithm refinements and characterization of new datasets. Remote Sensing of Environment, 114(1):168-182. doi: 10.1016/j.rse.2009.08.016
[11] Fu B J, Liu Y, Lü Y H et al., 2011. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecological Complexity, 8(4):284-293. doi: 10.1016/j.ecocom.2011.07.003
[12] Gallet S, Sawtschuk J, 2014. Restoration dynamics evaluation by vegetation mapping and transition matrix modelling:analysis of 20 yr of restoration and management at the megalithic site of Carnac (Brittany, France). Applied Vegetation Science, 17(2):225. doi: 10.1111/avsc.12080
[13] Garzón-Machado V, Otto R, del Arco Aguilar M J, 2013. Bioclimatic and vegetation mapping of a topographically complex oceanic island applying different interpolation techniques. International Journal of Biometeorology, 58(5):887-899. doi: 10.1007/s00484-013-0670-y
[14] Graves S J, Caughlin T T, Asner G P et al., 2018. A tree-based approach to biomass estimation from remote sensing data in a tropical agricultural landscape. Remote Sensing of Environment, 218:32-43. doi: 10.1016/j.rse.2018.09.009
[15] Hall F G, Bergen K, Blair J B et al., 2011. Characterizing 3D vegetation structure from space:mission requirements. Remote Sensing of Environment, 115(11):2753-2775. doi: 10.1016/j.rse.2011.01.024
[16] Hao R F, Yu D Y, Wu J G, 2017. Relationship between paired ecosystem services in the grassland and agro-pastoral transitional zone of China using the constraint line method. Agriculture, Ecosystems & Environment, 240:171-181. doi: 10.1016/j.agee.2017.02.015
[17] Hlatshwayo S T, Mutanga O, Lottering R T et al., 2019. Mapping forest aboveground biomass in the reforested Buffelsdraai landfill site using texture combinations computed from SPOT-6 pan-sharpened imagery. International Journal of Applied Earth Observation and Geoinformation, 74:65-77. doi: 10.1016/j.jag.2018.09.005
[18] Huang H B, Liu C X, Wang X Y et al., 2017. Mapping vegetation heights in China using slope correction ICESat data, SRTM, MODIS-derived and climate data. ISPRS Journal of Photogrammetry and Remote Sensing, 129:189-199. doi: 10.1016/j.isprsjprs.2017.04.020
[19] Jiang C, Wang F, Zhang H Y et al., 2016. Quantifying changes in multiple ecosystem services during 2000-2012 on the Loess Plateau, China, as a result of climate variability and ecological restoration. Ecological Engineering, 97:258-271. doi: 10.1016/j.ecoleng.2016.10.030
[20] Joy S M, Reich R M, Reynolds R T, 2003. A non-parametric, supervised classification of vegetation types on the Kaibab National Forest using decision trees. International Journal of Remote Sensing, 24(9):1835-1852. doi:10.1080/01431160 210154948
[21] Karami M, Westergaard-Nielsen A, Normand S et al., 2018. A phenology-based approach to the classification of Arctic tundra ecosystems in Greenland. ISPRS Journal of Photogrammetry and Remote Sensing, 146:518-529. doi: 10.1016/j.isprsjprs.2018.11.005
[22] Lü Y H, Fu B J, Feng X M et al., 2012. A policy-driven large scale ecological restoration:quantifying ecosystem services changes in the Loess Plateau of China. PloS One, 7(2):e31782. doi: 10.1371/journal.pone.0031782
[23] Lü Y H, Zhang L W, Zeng Y et al., 2017. Representation of critical natural capital in China. Conservation Biology, 31(4):894-902. doi: 10.1111/cobi.12897
[24] Li Z, Zhou T, Zhao X et al., 2015. Assessments of drought impacts on vegetation in China with the optimal time scales of the climatic drought index. International Journal of Environmental Research and Public Health, 12(7):7615-7634. doi: 10.3390/ijerph120707615
[25] Liu L L, Zhang X Y, Donnelly A et al., 2016a. Interannual variations in spring phenology and their response to climate change across the Tibetan Plateau from 1982 to 2013. International Journal of Biometeorology, 60(10):1563-1575. doi: 10.1007/s00484-016-1147-6
[26] Liu Shuangna, Zhou Tao, Wei Linyan et al., 2012. The spatial distribution of forest carbon sinks and sources in China. Chinese Science Bulletin, 57(14):1699-1707. (in Chinese)
[27] Liu Y X, Lü Y H, Fu B J et al., 2019. Quantifying the spatio-temporal drivers of planned vegetation restoration on ecosystem services at a regional scale. Science of the Total Environment, 650(1):1029-1040. doi:10.1016/j.scitotenv.2018. 09.082
[28] Liu Y X, Zhao W W, Zhang X et al., 2016b. Soil water storage changes within deep profiles under introduced shrubs during the growing season:evidence from semiarid Loess Plateau, China. Water, 8(10):475. doi: 10.3390/w8100475
[29] Manies K L, Mladenoff D J, 2000. Testing methods to produce landscape-scale presettlement vegetation maps from the U.S. public land survey records. Landscape Ecology, 15(8):741-754. doi: 10.1023/a:1008115200471
[30] Massetti A, Sequeira M M, Pupo A et al., 2016. Assessing the effectiveness of RapidEye multispectral imagery for vegetation mapping in Madeira Island (Portugal). European Journal of Remote Sensing, 49(1):643-672. doi:10.5721/eujrs 20164934
[31] Mohamed M A, Babiker I S, Chen Z M et al., 2004. The role of climate variability in the inter-annual variation of terrestrial net primary production (NPP). Science of the Total Environment, 332(1-3):123-137. doi:10.1016/j.scitotenv.2004. 03.009
[32] Molnár Z, Bartha S, Seregélyes T et al., 2007. A grid-based, satellite-image supported, multi-attributed vegetation mapping method (MÉTA). Folia Geobotanica, 42(3):225-247. doi: 10.1007/BF02806465
[33] Muchoney D, Strahler A, 2002. Regional vegetation mapping and direct land surface parameterization from remotely sensed and site data. International Journal of Remote Sensing, 23(6):1125-1142. doi: 10.1080/01431160110070771
[34] Nijland W, Reshitnyk L, Rubidge E, 2019. Satellite remote sensing of canopy-forming kelp on a complex coastline:a novel procedure using the Landsat image archive. Remote Sensing of Environment, 220:41-50. doi: 10.1016/j.rse.2018.10.032
[35] Novo-Fernández A, Franks S, Wehenkel C et al., 2018. Landsat time series analysis for temperate forest cover change detection in the Sierra Madre Occidental, Durango, Mexico. International Journal of Applied Earth Observation & Geoinformation, 73(1):230-244. doi: 10.1016/j.jag.2018.06.015
[36] Ouyang Zhiyuan, Zhang Lu, Wu Bingfang et al., 2015. An ecosystem classification system based on remote sensor information in China. Acta Ecologica Sinica, 35(2), 219-226. (in Chinese)
[37] Peng J, Hu Y N, Liu Y X et al., 2018. A new approach for urban-rural fringe identification:integrating impervious surface area and spatial continuous wavelet transform. Landscape and Urban Planning, 175:72-79. doi: doi.org/10.1016/j.landurbplan.2018.03.008
[38] Potter C S, Randerson J T, Field C B et al., 1993. Terrestrial ecosystem production:a process model based on global satellite and surface data. Global Biogeochemical Cycles, 7:811-841. doi: 10.1029/93GB02725
[39] Qiu B W, Liu Z, Tang Z H et al., 2016. Developing indices of temporal dispersion and continuity to map natural vegetation. Ecological Indicators, 64:335-342. doi:10.1016/j.ecolind. 2016.01.006
[40] Ren Y J, Lü Y H, Fu B J, 2016. Quantifying the impacts of grassland restoration on biodiversity and ecosystem services in China:a meta-analysis. Ecological Engineering, 95:542-550. doi: 10.1016/j.ecoleng.2016.06.082
[41] Sader S A, Bertrand M, Wilson E H, 2003. Satellite change detection of forest harvest patterns on an industrial forest landscape. Forest Science, 49(3):341-353. doi:10.1046/j.1439-0329. 2003.00323.x
[42] Schlaepfer D R, Bradford J B, Lauenroth W K et al., 2017. Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nature Communications, 8:14196. doi: 10.1038/ncomms14196
[43] Shamsoddini A, Raval S, 2018. Mapping red edge-based vegetation health indicators using Landsat TM data for Australian native vegetation cover. Earth Science Informatics, 11:1-8. doi: 10.1007/s12145-018-0347-5
[44] Sui X H, Zhou G S, 2012. Carbon dynamics of temperate grassland ecosystems in China from 1951 to 2007:an analysis with a process-based biogeochemistry model. Environmental Earth Sciences, 68(2):521-533. doi: 10.1007/s12665-012-1756-2
[45] Walker K J, Stevens P A, Stevens D P et al., 2004. The restoration and re-creation of species-rich lowland grassland on land formerly managed for intensive agriculture in the UK. Biological Conservation, 119(1):1-18. doi:10.1016/j.biocon.2003.10. 020
[46] Wang S, Fu B J, Piao S L et al., 2015a. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nature Geoscience, 9(1):38-41. doi: 10.1038/ngeo2602
[47] Wang Q F, Zheng H, Zhu X J et al., 2015b. Primary estimation of Chinese terrestrial carbon sequestration during 2001-2010. Science Bulletin, 60(6):577-590. doi: 10.1007/s11434-015-0736-9
[48] Wu B F, Zeng Y, Qian J K et al., 2017. Land Cover Atlas of the People's Republic of China (1:1 000 000). Beijing:SinoMaps Press.
[49] Wu Bingfang, Yuan Quanzhi, Yan Changzhen et al., 2014. Land cover changes of China from 2000 to 2010. Quaternary Sciences, 34(4):723-731. (in Chinese)
[50] Zhang Y W, Shangguan Z P, 2016. The coupling interaction of soil water and organic carbon storage in the long vegetation restoration on the Loess Plateau. Ecological Engineering, 91(9):574-581. doi: 10.1016/j.ecoleng.2016.03.033
[51] Zhao D S, Wu S H, 2013. Responses of vegetation distribution to climate change in China. Theoretical and Applied Climatology, 117(1-2):15-28. doi: 10.1007/s00704-013-0971-4
[52] Zhao M Y, Peng J, Liu Y X et al., 2018. Mapping watershed-level ecosystem service bundles in the Pearl River Delta, China. Ecological Economics, 152:106-117. doi:10.1016/j.ecolecon. 2018.04.023
[53] Zhu Wenquan, Pan Yaozhong, Zhang Jinshui, 2007. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing. Journal of Plant Ecology, 31(3):413-424. (in Chinese)