[1] Atzberger C, Klisch A, Mattiuzzi M et al., 2014. Phenological Metrics Derived over the European Continent from NDVI3g Data and MODIS Time Series. Remote Sensing, 6(1):257-284. doi: 10.3390/rs6010257
[2] Balzarolo M, Vicca S, Nguy-Robertson A L et al., 2016. Matching the phenology of Net Ecosystem Exchange and vegetation in-dices estimated with MODIS and FLUXNET in-situ observa-tions. Remote Sensing of Environment, 174:290-300. doi: 10.1016/j.rse.2015.12.017
[3] Beck P S A, Atzberger C, Høgda K A et al., 2006. Improved mon-itoring of vegetation dynamics at very high latitudes:a new method using MODIS NDVI. Remote Sensing of Environment, 100(3):321-334. doi: 10.1016/j.rse.2005.10.021
[4] Bradley B A, Jacob R W, Hermance J F et al., 2007. A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data. Remote Sensing of Environment, 106(2):137-145. doi: 10.1016/j.rse.2006.08.002
[5] Buitenwerf R, Rose L, Higgins S I, 2015. Three decades of mul-ti-dimensional change in global leaf phenology. Nature Climate Change, 5(4):364-368. doi: 10.1038/nclimate2533
[6] Chen J M, Pavlic G, Brown L et al., 2002. Derivation and valida-tion of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measure-ments. Remote Sensing of Environment, 80(1):165-184. doi: 10.1016/S0034-4257(01)00300-5
[7] Chuine I, Morin X, Bugmann H, 2010. Warming, Photoperiods, and Tree Phenology. Science, 329(5989):277-278. doi: 10.1126/science.329.5989.277-e
[8] Cong N, Wang T, Nan H J et al., 2013. Changes in satellite-derived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010:a multimethod analysis. Global Change Biology, 19(3):881-891. doi:10.1111/gcb. 12077
[9] de Beurs K M, Henebry G M, 2005. Land surface phenology and temperature variation in the International Geosphere-Biosphere Program high-latitude transects. Global Change Biology, 11(5):779-790. doi:10.1111/j.1365-2486.2005. 00949.x
[10] Delpierre N, Dufrêne E, Soudani K et al., 2009. Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agricultural and Forest Meteorology, 149(6-7):938-948. doi: 10.1016/j.agrformet.2008.11.014
[11] Ding M J, Li L H, Zhang Y L et al., 2015. Start of vegetation growing season on the Tibetan Plateau inferred from multiple methods based on GIMMS and SPOT NDVI data. Journal of Geographical Sciences, 25(2):131-148. doi: 10.1007/s11442-015-1158-y
[12] D'Odorico P, Gonsamo A, Gough C M et al., 2015. The match and mismatch between photosynthesis and land surface phenology of deciduous forests. Agricultural and Forest Meteorology, 214-215:25-38. doi:10.1016/j.agrformet.2015.07. 005
[13] Fu Y H, Zhao H F, Piao S L et al., 2015. Declining global warm-ing effects on the phenology of spring leaf unfolding. Nature, 526(7571):104-107. doi: 10.1038/nature15402
[14] Garonna I, de Jong R, Schaepman M E, 2016. Variability and evolution of global land surface phenology over the past three decades (1982-2012). Global Change Biology, 22(4):1456-1468. doi: 10.1111/gcb.13168.
[15] Garrity S R, Bohrer G, Maurer K D et al., 2011. A comparison of multiple phenology data sources for estimating seasonal tran-sitions in deciduous forest carbon exchange. Agricultural and Forest Meteorology, 151(12):1741-1752. doi: 10.1016/j.agrformet.2011.07.008
[16] Ge Q S, Wang H J, Rutishauser T et al., 2015. Phenological re-sponse to climate change in China:a meta-analysis. Global Change Biology, 21(1):265-274. doi: 10.1111/gcb.12648
[17] Guo L, An Ning, Kaicun W, 2016. Reconciling the discrepancy in ground-and satellite-observed trends in the spring phenology of winter wheat in China from 1993 to 2008. Journal of Geo-physical Research:Atmospheres, 121:1027-42. doi: 10.1002/2015JD023969
[18] Helman D, 2018. Land surface phenology:what do we really ‘see’ from space? Science of the Total Environment, 618:665-673. doi: 10.1016/j.scitotenv.2017.07.237
[19] Hird J N, McDermid G J, 2009. Noise reduction of NDVI time series:an empirical comparison of selected techniques. Remote Sensing of Environment, 113(1):248-258. doi: 10.1016/j.rse.2008.09.003
[20] Huete A, Didan K, Miura T et al., 2002. Overview of the radio-metric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2):195-213. doi: 10.1016/S0034-4257(02)00096-2
[21] Jeganathan C, Dash J, Atkinson P M, 2014. Remotely sensed trends in the phenology of northern high latitude terrestrial vegetation, controlling for land cover change and vegetation type. Remote Sensing of Environment, 143:154-170. doi: 10.1016/j.rse.2013.11.020
[22] Jeong S J, Ho C H, Gim H J et al., 2011. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008. Global Change Biology, 17(7):2385-2399. doi:10.1111/j.1365-2486. 2011.02397.x
[23] Jin H X, Eklundh L, 2014. A physically based vegetation index for improved monitoring of plant phenology. Remote Sensing of Environment, 152:512-525. doi: 10.1016/j.rse.2014.07.010
[24] Karkauskaite P, Tagesson T, Fensholt R, 2017. Evaluation of the Plant Phenology Index (PPI), NDVI and EVI for start-of-season trend analysis of the northern hemisphere boreal zone. Remote Sensing, 9(5):485. doi: 10.3390/rs9050485
[25] Liang L, Schwartz M D, Fei S L, 2011. Validating satellite phe-nology through intensive ground observation and landscape scaling in a mixed seasonal forest. Remote Sensing of Envi-ronment, 115(1):143-157. doi: 10.1016/j.rse.2010.08.013
[26] Lieth H, Radford J S, 1971. Phenology, resource management, and synagraphic computer mapping. BioScience, 21(881):62-70. doi: 10.2307/1295541
[27] Liu R G, Liu Y, 2013. Generation of new cloud masks from MODIS land surface reflectance products. Remote Sensing of Environment, 133:21-37. doi: 10.1016/j.rse.2013.01.019
[28] Liu R G, Shang R, Liu Y et al., 2017. Global evaluation of gap-filling approaches for seasonal NDVI with considering vegetation growth trajectory, protection of key point, noise re-sistance and curve stability. Remote Sensing of Environment, 189:164-179. doi: 10.1016/j.rse.2016.11.023
[29] Menzel A, Sparks T H, Estrella N et al., 2006. European pheno-logical response to climate change matches the warming pattern. Global Change Biology, 12(10):1969-1976. doi: 10.1111/j.1365-2486.2006.01193.x.
[30] Mutanga O, Skidmore A K, 2004. Narrow band vegetation indices overcome the saturation problem in biomass estimation. In-ternational Journal of Remote Sensing, 25(19):3999-4014. doi: 10.1080/01431160310001654923
[31] Nagai S, Nasahara K N, Muraoka H et al., 2010. Field experiments to test the use of the normalized-difference vegetation index for phenology detection. Agricultural and Forest Meteorology, 150(2):152-160. doi:10.1016/j.agrformet.2009.09. 010
[32] Peng S S, Piao S L, Ciais P et al., 2013. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature, 501(7465):88-92. doi:10.1038/nature 1243
[33] Peñuelas J, Filella I, 2001. Phenology; Responses to a warming world. Science, 294(5543):793-795. doi:10.1126/science. 1066860
[34] Piao S L, Fang J Y, Zhou L M et al., 2006. Variations in satel-lite-derived phenology in China's temperate vegetation. Global Change Biology, 12(4):672-685. doi:10.1111/j.1365-2486. 2006.01123.x
[35] Piao S L, Tan J G, Chen A P et al., 2015. Leaf onset in the northern hemisphere triggered by daytime temperature. Nature Communications, 6:6911. doi: 10.1038/ncomms7911
[36] Richardson A D, Black T A, Ciais P et al., 2010. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philosophical Transactions of the Royal Society B:Biological Sciences, 365(1555):3227-3246. doi: 10.1098/rstb.2010.0102
[37] Schwartz M D, Ahas R, Aasa A, 2006. Onset of spring starting earlier across the Northern Hemisphere. Global Change Biol-ogy, 12(2):343-351. doi: 10.1111/j.1365-2486.2005.01097.x
[38] Slayback D A, Pinzon J E, Los S O et al., 2003. Northern hemi-sphere photosynthetic trends 1982-99. Global Change Biology, 9(1):1-15. doi: 10.1046/j.1365-2486.2003.00507.x
[39] Steltzer H, Post E, 2009. Seasons and Life Cycles. Science, 324(5929):886-887. doi: 10.1126/science.1171542
[40] Studer S, Stockli R, Appenzeller C et al., 2007. A comparative study of satellite and ground-based phenology. International Journal of Biometeorology, 51(5):405-414. doi: 10.1007/s00484-006-0080-5
[41] Vermote E F, Kotchenova S, 2008. Atmospheric correction for the monitoring of land surfaces. Journal of Geophysical Re-search-Atmospheres, 113(D23):D23S90. doi:10.1029/2007 JD009662
[42] Viña A, Gitelson A A, Nguy-Robertson A L et al., 2011. Compar-ison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sensing of Environment, 115(12):3468-3478. doi:10.1016/j.rse.2011. 08.010
[43] White K, Pontius J, Schaberg P, 2014. Remote sensing of spring phenology in northeastern forests:a comparison of methods, field metrics and sources of uncertainty. Remote Sensing of Environment, 148:97-107. doi: 10.1016/j.rse.2014.03.017
[44] White M A, de Beurs K M, Didan K et al., 2009. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982-2006. Global Change Biology, 15(10):2335-2359. doi: 10.1111/j.1365-2486.2009.01910.x
[45] Wu C Y, Gonsamo A, Gough C M et al., 2014. Modeling growing season phenology in North American forests using seasonal mean vegetation indices from MODIS. Remote Sensing of En-vironment, 147:79-88. doi: 10.1016/j.rse.2014.03.001
[46] Wu C Y, Hou X H, Peng D L et al., 2016. Land surface phenology of China's temperate ecosystems over 1999-2013:Spa-tial-temporal patterns, interaction effects, covariation with climate and implications for productivity. Agricultural and Forest Meteorology, 216:177-187. doi:10.1016/j.agrformet. 2015.10.015
[47] Yang Y T, Guan H D, Shen M G et al., 2015. Changes in autumn vegetation dormancy onset date and the climate controls across temperate ecosystems in China from 1982 to 2010. Global Chang Biology, 21(2):652-665. doi:10.1111/gcb. 12778
[48] Zhang G L, Zhang Y J, Dong J W et al., 2013. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proceedings of the National Academy of Sciences of the United States of America, 110(11):4309-4314. doi: 10.1073/pnas.1210423110
[49] Zhang X Y, Friedl M A, Schaaf C B et al., 2003. Monitoring veg-etation phenology using MODIS. Remote Sensing of Environ-ment, 84(3):471-475. doi:10.1016/S0034-4257(02) 00135-9
[50] Zhang X Y, Friedl M A, Schaaf C B et al., 2004. Climate controls on vegetation phenological patterns in northern mid-and high latitudes inferred from MODIS data. Global Change Biology, 10(7):1133-1145. doi: 10.1111/j.1529-8817.2003.00784.x
[51] Zhang X Y, Friedl M A, Schaaf C B, 2006. Global vegetation phenology from Moderate Resolution Imaging Spectroradi-ometer (MODIS):evaluation of global patterns and comparison with in situ measurements. Journal of Geophysical Re-search-Biogeosciences, 111(G4):G04017. doi:10.1029/2006 JG000217
[52] Zhao Hu, Yang Zhengwei, Li Lin et al., 2011. Improvement and comparative analysis of indices of crop growth condition mon-itoring by remote sensing. Transactions of the Chinese Socie-ty of Agricultural Engineering, 27(1):243-249. (in Chinese)