[1] Asner G P, Alencar A, 2010. Drought impacts on the amazon forest:the remote sensing perspective. New Phytologist, 187(3):569-578. doi: 10.1111/j.1469-8137.2010.03310.x
[2] Basara J B, Maybourn J N, Peirano C M et al., 2013. Drought and associated impacts in the great plains of the United States-a review. International Journal of Geosciences, 4(6B):72-81. doi: 10.4236/ijg.2013.46A2009
[3] Bigler C, Gavin D G, Gunning C et al., 2007. Drought induces lagged tree mortality in a subalpine forest in the Rocky Moun-tains. Oikos, 116(12):1983-1994. doi: 10.1111/j.2007.0030-1299.16034.x
[4] Boryan C, Yang Z W, Mueller R et al., 2011. Monitoring US ag-riculture:the US Department of Agriculture, National Agri-cultural Statistics Service, Cropland Data Layer Program.
[5] Geocarto International, 26(5):341-358. doi: 10.1080/10106049.2011.562309
[6] Boyer J S, Byrne P, Cassman K G et al., 2013. The U.S. drought of 2012 in perspective:a call to action. Global Food Security, 2(3):139-143. doi: 10.1016/j.gfs.2013.08.002
[7] Breshears D D, Cobb N S, Rich P M et al., 2005. Regional vege-tation die-off in response to global-change-type drought. Pro-ceedings of the National Academy of Sciences of the United States of America, 102(42):15144-15148. doi:10.1073/pnas. 0505734102
[8] Chen T, van der Werf G R, Gobron N et al., 2014. Global cropland monthly gross primary production in the year 2000. Bio-geosciences, 11(14):3871-3880. doi: 10.5194/bg-11-3871-2014
[9] Ciais P, Reichstein M, Viovy N et al., 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437(7058):529-533. doi: 10.1038/nature03972
[10] Cook B I, Ault T R, Smerdon J E, 2015. Unprecedented 21st cen-tury drought risk in the American Southwest and central plains. Science Advances, 1(1):e1400082. doi:10.1126/sciadv. 1400082
[11] Dai A G, 2011. Drought under global warming:a review. Wiley Interdisciplinary Reviews-Climate Change, 2(1):45-65. doi: 10.1002/wcc.81
[12] Dai A G, 2013. Increasing drought under global warming in ob-servations and models. Nature Climate Change, 3(1):52-58. doi: 10.1038/nclimate1633
[13] Daly C, Taylor G H, Gibson W P et al., 2000. High-quality spatial climate data sets for the United States and beyond. Transactions of the ASAE, 43(6):1957-1962. doi:10.13031/2013. 3101
[14] Dunn A L, Barford C C, Wofsy S C et al., 2007. A long-term rec-ord of carbon exchange in a boreal black spruce forest:means, responses to interannual variability, and decadal trends. Global Change Biology, 13(3):577-590. doi: 10.1111/j.1365-2486.2006.01221.x
[15] Farooq M, Wahid A, Kobayashi N et al., 2009. Plant drought stress:effects, mechanisms and management. Agronomy for Sustainable Development, 29(1):185-212. doi: 10.1051/agro:2008021
[16] Frank D, Reichstein M, Bahn M et al., 2015. Effects of climate extremes on the terrestrial carbon cycle:concepts, processes and potential future impacts. Global Change Biology, 21(8):2861-2880. doi: 10.1111/gcb.12916
[17] Granier A, Reichstein M, Bréda N et al., 2007. Evidence for soil water control on carbon and water dynamics in European for-ests during the extremely dry year:2003. Agricultural and For-est Meteorology, 143(1-2):123-145. doi:10.1016/j.agrformet. 2006.12.004
[18] Guanter L, Zhang Y G, Jung M et al., 2014. Global and time-resolved monitoring of crop photosynthesis with chloro-phyll fluorescence. Proceedings of the National Academy of Sciences of the United States of America, 111(14):E1327-E1333. doi: 10.1073/pnas.1320008111
[19] Hoerling M, Eischeid J, Kumar A et al., 2014. Causes and pre-dictability of the 2012 great plains drought. Bulletin of the American Meteorological Society, 95(2):269-282. doi:10. 1175/BAMS-D-13-00055.1
[20] Ji L, Peters A J, 2003. Assessing vegetation response to drought in the northern great plains using vegetation and drought indices. Remote Sensing of Environment, 87(1):85-98. doi:10.1016/S 0034-4257(03)00174-3
[21] Jin C, Xiao X M, Wagle P et al., 2015. Effects of in-situ and rea-nalysis climate data on estimation of cropland gross primary production using the vegetation photosynthesis model. Agri-cultural and Forest Meteorology, 213:240-250. doi: 10.1016/j.agrformet.2015.07.003
[22] Jin Z N, Ainsworth E A, Leakey A D B et al., 2018. Increasing drought and diminishing benefits of elevated carbon dioxide for soybean yields across the US midwest. Global Change Biology, 24(2):e522-e533
[23] Joiner J, Guanter L, Lindstrot R et al., 2013. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements:methodology, simulations, and application to GOME-2. Atmospheric Meas-urement Techniques, 6(10):2803-2823. doi: 10.5194/amt-6-2803-2013
[24] Kellner O, Niyogi D, 2014. Assessing drought vulnerability of agricultural production systems in context of the 2012 drought. Journal of Animal Science, 92(7):2811-2822. doi: 10.2527/jas.2013-7496
[25] Kumar A, Chen M Y, Hoerling M et al., 2013. Do extreme climate events require extreme forcings? Geophysical Research Letters, 40(13):3440-3445. doi: 10.1002/grl.50657
[26] Liu Y, Zhou Y, Ju W et al., 2014. Impacts of droughts on carbon sequestration by China's terrestrial ecosystems from 2000 to 2011. Biogeosciences, 11(10):2583-2599. doi: 10.5194/bg-11-2583-2014
[27] Lobell D B, Roberts M J, Schlenker W et al., 2014. Greater sensi-tivity to drought accompanies maize yield increase in the U.S. midwest. Science, 344(6183):516-519. doi:10.1126/science. 1251423
[28] Mallya G, Zhao L, Song X C et al., 2013. 2012 midwest drought in the United States. Journal of Hydrologic Engineering, 18(7):737-745. doi: 10.1061/(ASCE)HE.1943-5584.0000786
[29] McKee T B, Doesken N J, Kleist J, 1993. The relationship of drought frequency and duration to time scales. In:Proceedings of the Eighth Conference on Applied Climatology. Anaheim, California:AMS, 17-22.
[30] Mesinger F, DiMego G, Kalnay E et al., 2006. North American regional reanalysis. Bulletin of the American Meteorological Society, 87(3):343-360. doi: 10.1175/BAMS-87-3-343
[31] Mo K C, Lettenmaier D P, 2016. Precipitation deficit flash droughts over the United States. Journal of Hydrometeorology, 17(4):1169-1184. doi: 10.1175/JHM-D-15-0158.1
[32] Mueller N D, Butler E E, McKinnon K A et al., 2016. Cooling of US midwest summer temperature extremes from cropland in-tensification. Nature Climate Change, 6(3):317-322. doi: 10.1038/nclimate2825
[33] Naumann G, Alfieri L, Wyser K et al., 2018. Global changes in drought conditions under different levels of warming. Geo-physical Research Letters, 45(7):3285-3296. doi: 10.1002/2017GL076521
[34] Noormets A, Gavazzi M J, Mcnulty S G et al., 2010. Response of carbon fluxes to drought in a coastal plain loblolly pine forest. Global Change Biology, 16(1):272-287. doi:10.1111/j. 1365-2486.2009.01928.x
[35] Otkin J A, Anderson M C, Hain C et al., 2013. Examining rapid onset drought development using the thermal infrared-based evaporative stress index. Journal of Hydrometeorology, 14(4):1057-1074. doi: 10.1175/JHM-D-12-0144.1
[36] Otkin J A, Anderson M C, Hain C et al., 2016. Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought. Agricultural and Forest Meteorology, 218-219:230-242. doi:10.1016/j.agrformet. 2015.12.065
[37] Otkin J A, Svoboda M, Hunt E D et al., 2018. Flash droughts:a review and assessment of the challenges imposed by rap-id-onset droughts in the United States. Bulletin of the American Meteorological Society, 99(5):911-919. doi: 10.1175/BAMS-D-17-0149.1
[38] Phillips O L, van der Heijden G, Lewis S L et al., 2010. Drought-mortality relationships for tropical forests. New Phy-tologist, 187(3):631-646. doi:10.1111/j.1469-8137.2010. 03359.x
[39] Reddy A R, Chaitanya K V, Vivekanandan M, 2004. Drought-induced responses of photosynthesis and antioxidant metabo-lism in higher plants. Journal of Plant Physiology, 161(11):1189-1202. doi: 10.1016/j.jplph.2004.01.013
[40] Reichstein M, Ciais P, Papale D et al., 2007. Reduction of eco-system productivity and respiration during the European summer 2003 climate anomaly:a joint flux tower, remote sensing and modelling analysis. Global Change Biology, 13(3):634-651. doi: 10.1111/j.1365-2486.2006.01224.x
[41] Reyer C P O, Leuzinger S, Rammig A et al., 2013. A plant's per-spective of extremes:terrestrial plant responses to changing climatic variability. Global Change Biology, 19(1):75-89. doi: 10.1111/gcb.12023
[42] Schaefer K, Schwalm C R, Williams C et al., 2012. A model-data comparison of gross primary productivity:results from the North American carbon program site synthesis. Journal of Geophysical Research-Biogeosciences, 117(G3):G03010. doi: 10.1029/2012JG001960
[43] Schwalm C R, Williams C A, Schaefer K et al., 2010. Assimilation exceeds respiration sensitivity to drought:a FLUXNET synthesis. Global Change Biology, 16(2):657-670. doi:10. 1111/j.1365-2486.2009.01991.x
[44] Schwalm C R, Williams C A, Schaefer K et al., 2012. Reduction in carbon uptake during turn of the century drought in western North America. Nature Geoscience, 5(8):551-556. doi: 10.1038/ngeo1529
[45] Sitch S, Huntingford C, Gedney N et al., 2008. Evaluation of the terrestrial carbon cycle, future plant geography and cli-mate-carbon cycle feedbacks using five Dynamic Global Veg-etation Models (DGVMs). Global Change Biology, 14(9):2015-2039. doi: 10.1111/j.1365-2486.2008.01626.x
[46] Svoboda M, LeComte D, Hayes M et al., 2002. The drought mon-itor. Bulletin of the American Meteorological Society, 83(8):1181-1190. doi: 10.1175/1520-0477-83.8.1181
[47] van der Molen M K, Dolman A J, Ciais P et al., 2011. Drought and ecosystem carbon cycling. Agricultural and Forest Mete-orology, 151(7):765-773. doi:10.1016/j.agrformet.2011.01. 018
[48] Vicente-Serrano S M, 2007. Evaluating the impact of drought using remote sensing in a Mediterranean, semi-arid region. Natural Hazards, 40(1):173-208. doi: 10.1007/s11069-006-0009-7
[49] Wehner M, Easterling D R, Lawrimore J H et al., 2011. Projections of future drought in the continental united states and mexico. Journal of Hydrometeorology, 12(6):1359-1377. doi: 10.1175/2011JHM1351.1
[50] Williams I N, Torn M S, Riley W J et al., 2014. Impacts of climate extremes on gross primary production under global warming. Environmental Research Letters, 9(9):101002. doi: 10.1088/1748-9326/9/9/094011
[51] Wolf S, Eugster W, Ammann C et al., 2013. Contrasting response of grassland versus forest carbon and water fluxes to spring drought in Switzerland. Environmental Research Letters, 8(3):089501. doi: 10.1088/1748-9326/8/3/035007
[52] Wuebbles D, Meehl G, Hayhoe K et al., 2014. CMIP5 climate model analyses:climate extremes in the United States. Bulletin of the American Meteorological Society, 95(4):571-583. doi: 10.1175/BAMS-D-12-00172.1
[53] Xiao X M, Hollinger D, Aber J et al., 2004a. Satellite-based mod-eling of gross primary production in an evergreen needleleaf forest. Remote Sensing of Environment, 89(4):519-534. doi: 10.1016/j.rse.2003.11.008
[54] Xiao X M, Zhang Q Y, Braswell B et al., 2004b. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sensing of En-vironment, 91(2):256-270. doi: 10.1016/j.rse.2004.03.010
[55] Xin Q C, Broich M, Suyker A E et al., 2015. Multi-scale evaluation of light use efficiency in MODIS gross primary productivity for croplands in the midwestern United States. Agricultural and Forest Meteorology, 201:111-119. doi: 10.1016/j.agrformet.2014.11.004
[56] Zeng N, Zhao F, Collatz G J et al., 2014. Agricultural green revo-lution as a driver of increasing atmospheric CO2 seasonal am-plitude. Nature, 515(7527):394-397. doi:10.1038/nature 13893
[57] Zhang L, Xiao J F, Li J et al., 2012. The 2010 spring drought reduced primary productivity in southwestern China. Envi-ronmental Research Letters, 7(4):045706. doi: 10.1088/1748-9326/7/4/045706
[58] Zhang Y G, Guanter L, Berry J A et al., 2014. Estimation of vege-tation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models. Global Change Biology, 20(12):3727-3742. doi:10.1111/gcb. 12664
[59] Zhang Y, Xiao X M, Jin C et al., 2016. Consistency between sun-induced chlorophyll fluorescence and gross primary pro-duction of vegetation in North America. Remote Sensing of Environment, 183:154-169. doi: 10.1016/j.rse.2016.05.015
[60] Zhang Y Q, Yu Q, Jiang J et al., 2008. Calibration of Terra/MODIS gross primary production over an irrigated cropland on the North China Plain and an alpine meadow on the Tibetan Plateau. Global Change Biology, 14(4):757-767. doi:10. 1111/j.1365-2486.2008.01538.x
[61] Zhao M S, Running S W, 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329(5994):940-943. doi:10.1126/science. 1192666
[62] Zscheischler J, Mahecha M D, von Buttlar J et al., 2014. A few extreme events dominate global interannual variability in gross primary production. Environmental Research Letters, 9(3):035001. doi: 10.1088/1748-9326/9/3/035001