留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of RapidEye Imagery's Red-edge Band and Vegetation Indices on Land Cover Classification in an Arid Region

LI Xianju CHEN Gang LIU Jingyi CHEN Weitao CHENG Xinwen LIAO Yiwei

LI Xianju, CHEN Gang, LIU Jingyi, CHEN Weitao, CHENG Xinwen, LIAO Yiwei. Effects of RapidEye Imagery's Red-edge Band and Vegetation Indices on Land Cover Classification in an Arid Region[J]. 中国地理科学, 2017, 27(5): 827-835. doi: 10.1007/s11769-017-0894-6
引用本文: LI Xianju, CHEN Gang, LIU Jingyi, CHEN Weitao, CHENG Xinwen, LIAO Yiwei. Effects of RapidEye Imagery's Red-edge Band and Vegetation Indices on Land Cover Classification in an Arid Region[J]. 中国地理科学, 2017, 27(5): 827-835. doi: 10.1007/s11769-017-0894-6
LI Xianju, CHEN Gang, LIU Jingyi, CHEN Weitao, CHENG Xinwen, LIAO Yiwei. Effects of RapidEye Imagery's Red-edge Band and Vegetation Indices on Land Cover Classification in an Arid Region[J]. Chinese Geographical Science, 2017, 27(5): 827-835. doi: 10.1007/s11769-017-0894-6
Citation: LI Xianju, CHEN Gang, LIU Jingyi, CHEN Weitao, CHENG Xinwen, LIAO Yiwei. Effects of RapidEye Imagery's Red-edge Band and Vegetation Indices on Land Cover Classification in an Arid Region[J]. Chinese Geographical Science, 2017, 27(5): 827-835. doi: 10.1007/s11769-017-0894-6

Effects of RapidEye Imagery's Red-edge Band and Vegetation Indices on Land Cover Classification in an Arid Region

doi: 10.1007/s11769-017-0894-6
基金项目: Under the auspices of Fundamental Research Funds for Central Universities,China University of Geosciences (Wuhan)(No.CUGL150417),National Natural Science Foundation of China (No.41274036,41301026)
详细信息
    通讯作者:

    CHEN Gang,E-mail:ddwhcg@cug.edu.cn

Effects of RapidEye Imagery's Red-edge Band and Vegetation Indices on Land Cover Classification in an Arid Region

Funds: Under the auspices of Fundamental Research Funds for Central Universities,China University of Geosciences (Wuhan)(No.CUGL150417),National Natural Science Foundation of China (No.41274036,41301026)
More Information
    Corresponding author: CHEN Gang,E-mail:ddwhcg@cug.edu.cn
  • 摘要: Land cover classification (LCC) in arid regions is of great significance to the assessment, prediction, and management of land desertification. Some studies have shown that the red-edge band of RapidEye images was effective for vegetation identification and could improve LCC accuracy. However, there has been no investigation of the effects of RapidEye images' red-edge band and vegetation indices on LCC in arid regions where there are spectrally similar land covers mixed with very high or low vegetation coverage information and bare land. This study focused on a typical inland arid desert region located in Dunhuang Basin of northwestern China. First, five feature sets including or excluding the red-edge band and vegetation indices were constructed. Then, a land cover classification system involving plant communities was developed. Finally, random forest algorithm-based models with different feature sets were utilized for LCC. The conclusions drawn were as follows:1) the red-edge band showed slight contribution to LCC accuracy; 2) vegetation indices had a significant positive effect on LCC; 3) simultaneous addition of the red-edge band and vegetation indices achieved a significant overall accuracy improvement (3.46% from 86.67%). In general, vegetation indices had larger effect than the red-edge band, and simultaneous addition of them significantly increased the accuracy of LCC in arid regions.
  • [1] Adelabu S, Mutanga O, Adam E, 2014. Evaluating the impact of red-edge band from Rapideye image for classifying insect defoliation levels. ISPRS Journal of Photogrammetry and Remote Sensing, 95: 34–41. doi:  10.1016/j.isprsjprs.2014.05.013
    [2] Alrababah M A, Alhamad M N, 2006. Land use/cover classification of arid and semi-arid Mediterranean landscapes using Landsat ETM. International Journal of Remote Sensing, 27(13): 2703–2718. doi:  10.1080/01431160500522700
    [3] Asner G P, Heidebrecht K B, 2003. Imaging spectroscopy for desertification studies: comparing AVIRIS and EO-1 Hyperion in Argentina drylands. IEEE Transactions on Geoscience and Remote Sensing, 41(6): 1283–1296. doi: 10.1109/TGRS.2003. 812903
    [4] Batterbury S, Warren A, 2001. The African Sahel 25 years after the great drought: assessing progress and moving towards new agendas and approaches. Global Environmental Change, 11(1): 1–8. doi:  10.1016/S0959-3780(00)00040-6
    [5] Belgiu M, Dr?gu? M, 2016. Random forest in remote sensing: a review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114: 24–31. doi: 10. 1016/j.isprsjprs.2016.01.011
    [6] Breiman L, 2001. Random forests. Machine Learning, 45(1):5–32. doi:  10.1023/A:1010933404324
    [7] Cerna L, Chytry M, 2005. Supervised classification of plant communities with artificial neural networks. Journal of Vegetation Science, 16(4): 407–414. doi: 10.1111/j.1654-1103. 2005.tb02380.x
    [8] Chen W, Wang Y, Li X et al., 2016. Land use/land cover change and driving effects of water environment system in Dunhuang Basin, northwestern China. Environmental Earth Science, 75:1027. doi:  10.1007/s12665-016-5809-9
    [9] Chen Weitao, Sun Ziyong, Li Xianju et al., 2014a. Natural plant communities mapping in inland arid regions: a case in Dunhuang Basin, northwestern China. Arid Land Geography, 37(6): 1257–1263. (in Chinese)
    [10] Chen Weitao, Wang Yanxin, Sun Ziyong et al., 2014b. Groundwater-dependent ecosystems in arid inland zones: A case study at the Dunhuang Basin, northwestern China. Quaternary Sciences, 34(5): 950–958. (in Chinese)
    [11] Daskalaki S, Kopanas I, Avouris N, 2006. Evaluation of classifiers for an uneven class distribution problem. Applied Artificial Intelligence, 20(5): 381–417. doi: 10.1080/0883951050031 3653
    [12] Galletti C S, Myint S W, 2014. Land-use mapping in a mixed urban-agricultural arid landscape using object-based image analysis: a case study from Maricopa, Arizona. Remote Sensing, 6(7): 6089–6110. doi:  10.3390/rs6076089
    [13] Ge X, Ni J, Li Z et al., 2013. Quantifying the synergistic effect of the precipitation and land use on sandy desertification at county level: a case study in Naiman Banner, northern China. Journal of Environmental Management, 123: 34–41. doi: 10. 1016/j.jenvman.2013.02.033
    [14] Han L, Zhang Z, Zhang Q et al., 2015. Desertification assessments in the Hexi corridor of northern China’s Gansu Province by remote sensing. Natural Hazards, 75(3): 2715–2731. doi: 10.1007/s11069-014-1457-0
    [15] Hatton T, Evans R, 1998. Dependence of Ecosystems on Groundwater and its Significance to Australia. In: Land and Water Resources Research and Development Corporation. CSIRO, Clayton, Australia.
    [16] Kim H O, Yeom J M, 2014. Effect of red-edge and texture features for object-based paddy rice crop classification using RapidEye multi-spectral satellite image data. International Journal of Remote Sensing, 35(19): 7046–7068. doi: 10.1080/ 01431161.2014.965285
    [17] Langley S K, Cheshire H M, Humes K S, 2001. A comparison of single date and multitemporal satellite image classifications in a semi-arid grassland. Journal of Arid Environments, 49(2):401–411. doi:  10.1006/jare.2000.0771
    [18] Li X, Chen W, Cheng X et al., 2016. A comparison of machine learning algorithms for mapping of complex surface-mined and agricultural landscapes using ZiYuan-3 stereo satellite imagery. Remote Sensing, 8(6): 514. doi:  10.3390/rs8060514
    [19] Li X, Chen W, Cheng X et al., 2017. Comparison and integration of feature reduction methods for land cover classification with RapidEye imagery. Multimedia Tools and Applications. doi: 10.1007/s11042-016-4311-4
    [20] Li X, Shao G, 2014. Object-based land-cover mapping with high resolution aerial photography at a county scale in Midwestern USA. Remote Sensing, 6(11): 11372–11390. doi: 10.3390/ rs61111372
    [21] Liaw A, Wiener M, 2002. Classification and regression by randomforest. R News, 2(3): 18–22.
    [22] Liu C, Frazier P, Kumar K, 2007. Comparative assessment of the measures of thematic classification accuracy. Remote Sensing of Environment, 107(4): 606–616. doi: 10.1016/j.rse.2006.10. 010
    [23] Liu S, Wang T, Kang W et al., 2015. Several challenges in monitoring and assessing desertification. Environmental Earth Sci-ences, 73(11): 7561–7570. doi:  10.1007/s12665-014-3926-x
    [24] Manandhar R, Odeh I O A, Ancev T, 2009. Improving the accuracy of land use and land cover classification of Landsat data using post-classification enhancement. Remote Sensing, 1(3):330–344. doi:  10.3390/rs1030330
    [25] Meyer D, Dimitriadou E, Hornik K et al., 2015. e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. Available at: https://cran.r-project.org/web/packages/e1071/index.html
    [26] Namdar M, Adamowski J, Saadat H et al., 2014. Land-use and land-cover classification in semi-arid regions using independent component analysis (ICA) and expert classification. International Journal of Remote Sensing, 35(24): 8057–8073. doi: 10.1080/01431161.2014.978035
    [27] Nordberg M L, Evertson J, 2003. Vegetation index differencing and linear regression for change detection in a Swedish mountain range using Landsat TM and ETM+ imagery. Land Degradation & Development, 16(2): 139–149. doi:  10.1002/ldr.660
    [28] Petropoulos G P, Kalaitzidis C, Vadrevu K P, 2012. Support vector machines and object-based classification for obtaining land-use/cover cartography from Hyperion hyperspectral imagery. Computers & Geosciences, 41: 99–107. doi: 10.1016/j. cageo.2011.08.019
    [29] Qin Xuwen, Chen Weitao, Li Xianju et al., 2014. Effects of water environmental system on desertification in an inland region of northwestern China: a case study in Dunhuang Basin. Safety and Environmental Engineering, 21(5), 39–45. (in Chinese)
    [30] R Development Core Team, 2015. R: A language and environment for statistical computing and graphics. Available at:https://cran.r-project.org/src/base/R-3/
    [31] Rozenstein O, Karnieli A, 2011. Comparison of methods for land-use classification incorporating remote sensing and GIS inputs. Applied Geography, 31(2): 533–544. doi: 10.1016/j. apgeog.2010.11.006
    [32] Schuster C, Förster M, Kleinschmit B, 2012. Testing the red edge channel for improving land-use classifications based on high-resolution multi-spectral satellite data. International Journal of Remote Sensing, 33(17): 5583–5599. doi: 10.1080/ 01431161.2012.666812
    [33] Stefanov W L, Ramsey M S, Christensen P R, 2001. Monitoring urban land cover change: an expert system approach to land cover classification of semiarid to arid urban centers. Remote Sensing of Environment, 77(2): 173–185. doi:  10.1016/S0034-4257(01)00204-8
    [34] Tigges J, Lakes T, Hostert P, 2013. Urban vegetation classification: benefits of multitemporal RapidEye satellite data. Remote Sensing of Environment, 136: 66–75. doi: 10.1016/j.rse.2013. 05.001
    [35] Wang X, Chen F, Dong Z, 2006. The relative role of climatic and human factors in desertification in semiarid China. Global Environmental Change, 16(1): 48–57. doi: 10.1016/j.gloenvcha. 2005.06.006
    [36] Wu Xiuqin, Liu Hongmeng, Huang Xiulan et al., 2011. Human driving forces: analysis of rocky desertification in karst region in Guanling County, Guizhou Province. Chinese Geographical Science, 21(5): 600–608. doi:  10.1007/s11769-011-0496-7
    [37] Xie Y, Sha Z, Yu M, 2008. Remote sensing imagery in vegetation mapping: a review. Journal of Plant Ecology, 1(1): 9–23. doi: 10.1093/jpe/rtm005
    [38] Zhang Panpan, Hu Yuanman, Xiao Duning et al., 2010. Rocky desertification risk zone delineation in karst plateau area: a case study in Puding County, Guizhou Province. Chinese Geographical Science, 20(1): 84–90. doi:  10.1007/s11769-010-0084-2
  • [1] Wei WEI, Congying LIU, Libang MA, Xueyuan ZHANG, Binbin XIE.  Ecological Land Suitability for Arid Region at River Basin Scale: Framework and Application Based on Minmum Cumulative Resistance (MCR) Model . Chinese Geographical Science, 2022, (): 1-12. doi: 10.1007/s11769-022-1261-9
    [2] Yulin DONG, Zhibin REN, Yao FU, Ran YANG, Hongchao SUN, Xingyuan HE.  Land Use/Cover Change and Its Policy Implications in Typical Agriculture-forest Ecotone of Central Jilin Province, China . Chinese Geographical Science, 2021, 31(2): 261-275. doi: 10.1007/s11769-021-1189-5
    [3] Bo CAO, Xiaole KONG, Yixuan WANG, Hang LIU, Hongwei PEI, Yan-Jun SHEN.  Response of Vegetation Cover Change to Drought at Different Time-scales in the Beijing-Tianjin Sandstorm Source Region, China . Chinese Geographical Science, 2021, 31(3): 491-505. doi: 10.1007/s11769-021-1206-8
    [4] Yao ZHANG, Jiafu LIU, Zhuyun WEN.  Predicting Surface Urban Heat Island in Meihekou City, China: A Combination Method of Monte Carlo and Random Forest . Chinese Geographical Science, 2021, 31(4): 659-670. doi: 10.1007/s11769-021-1215-7
    [5] Jiali XIE, Zhixiang LU, Shengchun XIAO, Changzhen YAN.  Driving Force and Ecosystem Service Values Estimation in the Extreme Arid Region from 1975 to 2015: A Case Study of Alxa League, China . Chinese Geographical Science, 2021, 31(6): 1097-1107. doi: 10.1007/s11769-021-1244-2
    [6] ZENG Hongwei, WU Bingfang, WANG Shuai, MUSAKWA Walter, TIAN Fuyou, MASHIMBYE Zama Eric, POONA Nitesh, SYNDEY Mavengahama.  A Synthesizing Land-cover Classification Method Based on Google Earth Engine: A Case Study in Nzhelele and Levhuvu Catchments, South Africa . Chinese Geographical Science, 2020, 30(3): 397-409. doi: 10.1007/s11769-020-1119-y
    [7] LIU Qiuyu, ZHANG Tinglong, LI Yizhe, LI Ying, BU Chongfeng, ZHANG Qingfeng.  Comparative Analysis of Fractional Vegetation Cover Estimation Based on Multi-sensor Data in a Semi-arid Sandy Area . Chinese Geographical Science, 2019, 20(1): 166-180. doi: 10.1007/s11769-018-1010-2
    [8] XIANG Hengxing, JIA Mingming, WANG Zongming, LI Lin, MAO Dehua, ZHANG Da, CUI Guishan, ZHU Weihong.  Impacts of Land Cover Changes on Ecosystem Carbon Stocks Over the Transboundary Tumen River Basin in Northeast Asia . Chinese Geographical Science, 2018, 28(6): 973-985. doi: 10.1007/s11769-018-1006-y
    [9] ZHOU Lei, WANG Shaoqiang, CHI Yonggang, WANG Junbang.  Drought Impacts on Vegetation Indices and Productivity of Terrestrial Ecosystems in Southwestern China During 2001-2012 . Chinese Geographical Science, 2018, 28(5): 784-796. doi: 10.1007/s11769-018-0967-1
    [10] SONG Xiaodong, LIU Feng, JU Bing, ZHI Junjun, LI Decheng, ZHAO Yuguo, ZHANG Ganlin.  Mapping Soil Organic Carbon Stocks of Northeastern China Using Expert Knowledge and GIS-based Methods . Chinese Geographical Science, 2017, 27(4): 516-528. doi: 10.1007/s11769-017-0869-7
    [11] WANG Huaijun, CHEN Yaning, LI Weihong, DENG Haijun.  Runoff Responses to Climate Change in Arid Region of Northwestern China During 1960-2010 . Chinese Geographical Science, 2013, 23(3): 286-300. doi: 10.1007/s11769-013-0605-x
    [12] DU Peijun, YUAN Linshan, XIA Junshi, et al..  Fusion and Classification of Beijing-1 Small Satellite Remote Sensing Image for Land Cover Monitoring in Mining Area . Chinese Geographical Science, 2011, 21(6): 656-665.
    [13] LI Huapeng, ZHANG Shuqing, SUN Yan, GAO Jing.  Land Cover Classification with Multi-source Data Using Evidential Reasoning Approach . Chinese Geographical Science, 2011, 21(3): 312-321.
    [14] NA Xiaodong, ZHANG Shuqing, ZHANG Huaiqing, LI Xiaofeng, YU Huan, LIU Chunyue.  Integrating TM and Ancillary Geographical Data with Classification Trees for Land Cover Classification of Marsh Area . Chinese Geographical Science, 2009, 19(2): 177-185. doi: 10.1007/s11769-009-0177-y
    [15] HAO Chengyuan, WU Shaohong, XU Chuanyang.  Comparison of Some Vegetation Indices in Seasonal Information . Chinese Geographical Science, 2008, 18(3): 242-248. doi: 10.1007/s11769-008-0242-y
    [16] WAN Rongrong, YANG Guishan.  Influence of Land Use/Cover Change on Storm Runoff—A Case Study of Xitiaoxi River Basin in Upstream of Taihu Lake Watershed . Chinese Geographical Science, 2007, 17(4): 349-356. doi: 10.1007/s11769-007-0349-6
    [17] LI Xin.  PRESSURE OF WATER SHORTAGE ON AGRICULTURE IN ARID REGION OF CHINA . Chinese Geographical Science, 2003, 13(2): 124-129.
    [18] CHEN Fu, PENG Bu-zhuo.  THE EFFECT OF LAND USE CHANGES ON SOIL CONDITIONS IN ARID REGION . Chinese Geographical Science, 2000, 10(3): 226-230.
    [19] LI Xin, SONG Yu-dong, NIAN Fu-hua.  CHARACTERISTICS OF WATER TRANSFORMATION AND ITS EFFECTS ON ENVIRONMENT IN THE ARID REGION —A case study in Alar irrigation region of Xinjiang, China . Chinese Geographical Science, 2000, 10(1): 52-60.
    [20] 张柏.  THE STRUCTURE AND DYNAMICS OF THE LAND RESOURCES SYSTEM IN THE FARMLAND SHELTER FOREST REGION IN THE NORTHEAST PLAIN . Chinese Geographical Science, 1994, 4(4): 322-332.
  • 加载中
计量
  • 文章访问数:  197
  • HTML全文浏览量:  2
  • PDF下载量:  444
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-13
  • 修回日期:  2016-09-08
  • 刊出日期:  2017-10-27

Effects of RapidEye Imagery's Red-edge Band and Vegetation Indices on Land Cover Classification in an Arid Region

doi: 10.1007/s11769-017-0894-6
    基金项目:  Under the auspices of Fundamental Research Funds for Central Universities,China University of Geosciences (Wuhan)(No.CUGL150417),National Natural Science Foundation of China (No.41274036,41301026)
    通讯作者: CHEN Gang,E-mail:ddwhcg@cug.edu.cn

摘要: Land cover classification (LCC) in arid regions is of great significance to the assessment, prediction, and management of land desertification. Some studies have shown that the red-edge band of RapidEye images was effective for vegetation identification and could improve LCC accuracy. However, there has been no investigation of the effects of RapidEye images' red-edge band and vegetation indices on LCC in arid regions where there are spectrally similar land covers mixed with very high or low vegetation coverage information and bare land. This study focused on a typical inland arid desert region located in Dunhuang Basin of northwestern China. First, five feature sets including or excluding the red-edge band and vegetation indices were constructed. Then, a land cover classification system involving plant communities was developed. Finally, random forest algorithm-based models with different feature sets were utilized for LCC. The conclusions drawn were as follows:1) the red-edge band showed slight contribution to LCC accuracy; 2) vegetation indices had a significant positive effect on LCC; 3) simultaneous addition of the red-edge band and vegetation indices achieved a significant overall accuracy improvement (3.46% from 86.67%). In general, vegetation indices had larger effect than the red-edge band, and simultaneous addition of them significantly increased the accuracy of LCC in arid regions.

English Abstract

LI Xianju, CHEN Gang, LIU Jingyi, CHEN Weitao, CHENG Xinwen, LIAO Yiwei. Effects of RapidEye Imagery's Red-edge Band and Vegetation Indices on Land Cover Classification in an Arid Region[J]. 中国地理科学, 2017, 27(5): 827-835. doi: 10.1007/s11769-017-0894-6
引用本文: LI Xianju, CHEN Gang, LIU Jingyi, CHEN Weitao, CHENG Xinwen, LIAO Yiwei. Effects of RapidEye Imagery's Red-edge Band and Vegetation Indices on Land Cover Classification in an Arid Region[J]. 中国地理科学, 2017, 27(5): 827-835. doi: 10.1007/s11769-017-0894-6
LI Xianju, CHEN Gang, LIU Jingyi, CHEN Weitao, CHENG Xinwen, LIAO Yiwei. Effects of RapidEye Imagery's Red-edge Band and Vegetation Indices on Land Cover Classification in an Arid Region[J]. Chinese Geographical Science, 2017, 27(5): 827-835. doi: 10.1007/s11769-017-0894-6
Citation: LI Xianju, CHEN Gang, LIU Jingyi, CHEN Weitao, CHENG Xinwen, LIAO Yiwei. Effects of RapidEye Imagery's Red-edge Band and Vegetation Indices on Land Cover Classification in an Arid Region[J]. Chinese Geographical Science, 2017, 27(5): 827-835. doi: 10.1007/s11769-017-0894-6
参考文献 (38)

目录

    /

    返回文章
    返回