留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of Golmud-Lhasa Section of Qinghai-Tibet Railway on Blown Sand Transport

XIAO Jianhua YAO Zhengyi QU Jianjun

XIAO Jianhua, YAO Zhengyi, QU Jianjun. Influence of Golmud-Lhasa Section of Qinghai-Tibet Railway on Blown Sand Transport[J]. 中国地理科学, 2015, 25(1): 39-50. doi: 10.1007/s11769-014-0722-1
引用本文: XIAO Jianhua, YAO Zhengyi, QU Jianjun. Influence of Golmud-Lhasa Section of Qinghai-Tibet Railway on Blown Sand Transport[J]. 中国地理科学, 2015, 25(1): 39-50. doi: 10.1007/s11769-014-0722-1
XIAO Jianhua, YAO Zhengyi, QU Jianjun. Influence of Golmud-Lhasa Section of Qinghai-Tibet Railway on Blown Sand Transport[J]. Chinese Geographical Science, 2015, 25(1): 39-50. doi: 10.1007/s11769-014-0722-1
Citation: XIAO Jianhua, YAO Zhengyi, QU Jianjun. Influence of Golmud-Lhasa Section of Qinghai-Tibet Railway on Blown Sand Transport[J]. Chinese Geographical Science, 2015, 25(1): 39-50. doi: 10.1007/s11769-014-0722-1

Influence of Golmud-Lhasa Section of Qinghai-Tibet Railway on Blown Sand Transport

doi: 10.1007/s11769-014-0722-1
基金项目: Under the auspices of National Natural Science Foundation of China (No. 40930741), National Basic Research Program of China (No. 2012CB026105)
详细信息
    通讯作者:

    QU Jianjun. E-mail: qujianj@lzb.ac.cn

Influence of Golmud-Lhasa Section of Qinghai-Tibet Railway on Blown Sand Transport

Funds: Under the auspices of National Natural Science Foundation of China (No. 40930741), National Basic Research Program of China (No. 2012CB026105)
More Information
    Corresponding author: QU Jianjun. E-mail: qujianj@lzb.ac.cn
  • 摘要: The Qinghai-Tibet Railway (QTR) passes through 281 km of sandy land, 11.07 km of which causes serious sand damage to the railway and thus, the control of blown sand is important for the safe operation of the railway. Construction of the railway and sand prevention system greatly changed the blown sand transport of the primary surface. Effective and feasible sand-control measures include stone checkerboard barriers (SCBs), sand fences (SFs), and gravel coverings. This study simulated the embankments, SCBs and SFs of the QTR in a wind tunnel, and analyzed their respective wind profile, sand deposition, and sand-blocking rate (SBR) in conjunction with field data, aiming at studying the influence of Golmud-Lhasa section of the QTR and sand prevention system on blown sand transport. The results of wind tunnel experiments showed that wind speed increased by 67.7%-77.3% at the upwind shoulder of the embankment and decreased by 50.0%-83.3% at upwind foot of embankment. Wind speed decreased by 50.0%-100.0% after passing through the first SF, and 72.2%-100.0% after the first row of stones within the first SCB grid. In the experiment of sand deposition, the higher the wind speed, the lower the SBR of SCB and SF. From field investigation, the amount of sand blocked by the four SFs decreased exponentially and its SBR was about 50.0%. By contrast, SCB could only block lower amounts of sand, but had a higher SBR (96.7%) than SF. Although, results show that SFs and SCBs along the Golmud-Lhasa section of the QTR provide an obvious sand blocking effect, they lead to the deposition of a large amount of sand, which forms artificial dunes and becomes a new source of sand damage.
  • [1] Alghamdi A A A, Al-Kahtani N S, 2005. Sand control measures and sand drift fences. Journal of Performance of Constructed Facilities, 19(4): 295-299. doi: 10.1061/(ASCE)0887-3828 (2005)19:4(295)
    [2] Bai Huzhi, Li Dongliang, Dong Anxiang, 2005. Strong wind and wind pressure along the Qinghai-Tibet Railway. Journal of Glaciology and Geocryology, 27(1): 111-116. (in Chinese)
    [3] Bai Yang, Wang Nai'ang, Liao Kongtai et al., 2011. Geomorphological evolution revealed by aeolian sedimentary structure in Badain Jaran Desert on Alxa Plateau, Northwest China. Chinese Geographical Science, 21(3): 178-187. doi: 10.1007/ s11769-011-0468-y
    [4] Chang Zhaofeng, Zhong Shengnian, Han Fugui et al., 2000. Research of the suitable row spacing on clay barriers and straw barriers. Journal of Desert Research, 20(4): 455-457. (in Chinese)
    [5] Chen Hui, Li Shuangcheng, Zhang Yili, 2003. Impact of road construction on vegetation alongside Qinghai-Xizang highway and railway. Chinese Geographical Science, 13(4): 340-346. doi: 10.1007/ s11769-003-0040-5
    [6] Cheng G D, Sun Z Z, Niu F J, 2008. Application of the roadbed cooling approach in Qinghai-Tibet railway engineering. Cold Regions Science and Technology, 53(3): 241-258. doi:  10.1016/j.coldregions.2007.02.00
    [7] Cheng G D, Wu T H, 2007. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. Journal of Geophysical Research, 112(F2): 1-10. doi:  10.1029/2006JF000631
    [8] Dong Z B, Chen G T, He X D et al., 2004. Controlling blown sand along the highway crossing the Taklimakan Desert. Journal of Arid Environments, 57(3): 329-344. doi: 10.1016/j. jaridenv.2002.02.001
    [9] Han Q J, Qu J J, Dong Z B et al., 2013. The effect of air density on sand transport structures and the adobe abrasion profile: A field wind-tunnel experiment over a wide range of altitude. Boundary-layer Meteorology, 150(2): 299-317. doi: 10.1007/ s10546-013-9874-2
    [10] Han Zhiwen, Wang Tao, Dong Zhibao et al., 2004. Main engineering measurements and mechanism of blown sand hazard control. Progress in Geography, 23(1): 13-21. (in Chinese)
    [11] Jin H J, Wei Z, Wang S L et al., 2008. Assessment of frozen-ground conditions for engineering geology along the Qinghai-Tibet highway and railway, China. Engineering Geology, 101(3-4): 96-109. doi:  10.1016/j.enggeo.2008.04.001
    [12] Lei J Q, Li S Y, Fan D D et al., 2008. Classification and regionalization of the forming environment of windblown sand disasters along the Tarim Desert Highway. Chinese Science Bulletin, 53(2): 1-7. doi:  10.1007/s11434-008-6023-2
    [13] Liu Z M, Zhao W Z, 2001. Shifting sand control in central Tibet. Ambio, 30(6): 376-380
    [14] Livingstone I, Wiggs G F S, Weaver C M, 2007. Geomorphology of desert sand dunes: A review of recent progress. Earth Science Reviews, 80(3-4): 239-257. doi: 10.1016/j.ear­scirev. 2006.09.004
    [15] Ma W, Cheng G D, Wu Q B, 2009. Construction on permafrost foundations: Lessons learned from the Qinghai-Tibet railroad. Cold Regions Science and Technology, 59(1): 3-11. doi: 10. 1016/j.coldregions.2009.07.007
    [16] Mitchell D J, Fullen M A, Trueman I C et al., 1998. Sustainability of reclaimed desertified land in Ningxia, China. Journal of Arid Land, 39(2): 239-251. doi:  10.1006/jare.1998.0396
    [17] Qiu G Y, Lee I B, Shimizu H et al., 2004. Principles of sand dune fixation with straw checkerboard technology and its effects on the environment. Journal of Arid Environments, 56(3): 449-464. doi:  10.1016/S0140-1963(03)00066-1
    [18] Qu Jianjun, Lin Yuquan, Liu Xianwan et al., 2002. The effects of an A-typed nylon fence on Aeolian sand prevention. Journal of Lanzhou University (Natural Sciences), 38(2): 171-176. (in Chinese)
    [19] Sørensen M, 2004. On the rate of aeolian sand transport. Geomorphology, 59(1-4): 53-62. doi: 10.1016/j.geomorph.2003. 09.005
    [20] Wu Q B, Lu Z J, Zhang T J et al., 2008. Analysis of cooling effect of crushed rock-based embankment of the Qinghai-Xizang Railway. Cold Regions Science and Technology, 53(3): 271-282. doi:  10.1016/j.coldregions.2007.10.004
    [21] Wu Q B, Shi B, Fang H Y, 2003. Engineering geological characteristics and processes of permafrost along the Qinghai-Xizang Highway. Engineering Geology, 68(3-4): 387-396. doi:  10.1016/S0013-7952(02)00242-9
    [22] Wu Q B, Zhang T J, 2010. Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007. Journal of Geophysical Research, 115(D9): D09107. doi: 10.1029/ 2009JD012974
    [23] Xie S B, Qu J J, Zu R P et al., 2012. New discoveries on the effects of desertification on the ground temperature of permafrost and its significance to the Qinghai-Tibet Plateau. Chinese Science Bulletin, 57(8): 838-842. doi:  10.1007/s11434-011-4901-5
    [24] Xu X L, Zhang K L, Kong Y P et al., 2006. Effectiveness of erosion control measures along the Qinghai-Tibet highway, Tibetan Plateau, China. Transportation Research Part D: Transport and Environment, 11(4): 302-309. doi: 10.1016/j.trd. 2006.06.001
    [25] Yang M X, Wang S L, Yao T D, 2004. Desertification and its relationship with permafrost along the Qinghai-Tibet Plateau. Cold Regions Science and Technology, 39(1): 47-53. doi:  10.1016/j.coldregions.2004.01.002
    [26] Ying Daiying, Qu Jianjun, Han Qingjie et al., 2013. Wind-blown sand activity intensity in Cuonahu Lake section of Qinghai-Tibet Railway. Journal of Desert Research, 33(1): 9-15. (in Chinese)
    [27] Zhang C L, Zou X Y, Pan X H et al., 2007. Near-surface airflow field and aerodynamic characteristics of the railway-protection system in the Shapotou region and their significance. Journal of Arid Environments, 71(2): 169-187. doi: 10.1016/j.jaridenv. 2007.03.006
    [28] Zhang K C, Qu J J, Han Q J et al., 2012. Wind energy environments and aeolian sand characteristics along the Qinghai-Tibet Railway, China. Sedimentary Geology, 273-274: 91-96. doi:  10.1016/j.sedgeo.2012.07.003
    [29] Zhang K C, Qu J J, Liao K T et al., 2010. Damage by wind-blown sand and its control along Qinghai-Tibet Railway in China. Aeolian Research, 1(3-4): 143-146. doi: 10.1016/j.aeolia. 2009.10.001
    [30] Zhang Kecun, Qu Jianjun, Niu Qinghe et al., 2011. Protective mechanism and efficiency of sand-blocking fence along Qinghai-Tibet Railway. Journal of Desert Research, 31(1): 16-20. (in Chinese)
    [31] Zou X Y, Li S, Zhang C, 2002. Desertification and control plan in the Tibet Autonomous Region of China. Journal of Arid Environments, 51(2): 183-198. doi:  10.1006/jare.2001.0943
  • [1] Xin HE, Zhenghua CHEN, Yongqiang LU, Wei ZHANG, Kefu YU.  Spatio-temporal Variations of Sea Surface Wind in Coral Reef Regions over the South China Sea from 1988 to 2017 . Chinese Geographical Science, 2021, 31(3): 522-538. doi: 10.1007/s11769-021-1208-6
    [2] WANG Jinhua, LI Zhanbin, YAO Wenyi, DONG Guotao.  Influence of Vegetation on Runoff and Sediment in Wind-water Erosion Crisscross Region in the Upper Yellow River of China . Chinese Geographical Science, 2017, 27(4): 569-576. doi: 10.1007/s11769-016-0829-7
    [3] ZHANG Shuo, ZHANG Baiping, YAO Yonghui, ZHAO Fang, QI Wenwen, HE Wenhui, WANG Jing.  Magnitude and Forming Factors of Mass Elevation Effect on Qinghai-Tibet Plateau . Chinese Geographical Science, 2016, 26(6): 745-754. doi: 10.1007/s11769-016-0834-x
    [4] JIANG Ling, XIAO Yi, ZHENG Hua, OUYANG Zhiyun.  Spatio-temporal Variation of Wind Erosion in Inner Mongolia of China Between 2001 and 2010 . Chinese Geographical Science, 2016, 26(2): 155-164. doi: 10.1007/s11769-016-0797-y
    [5] MAO Donglei, LEI Jiaqiang, ZENG Fanjiang, RAHMUTULLA Zaynulla, WANG Cui, ZHOU Jie.  Characteristics of Wind Erosion and Deposition in Oasis-desert Ecotone in Southern Margin of Tarim Basin, China . Chinese Geographical Science, 2014, 0(6): 658-673. doi: 10.1007/s11769-014-0725-y
    [6] WANG Ni, XIE Jiancang, HAN Jichang.  A Sand Control and Development Model in Sandy Land Based on Mixed Experiments of Arsenic Sandstone and Sand: A Case Study in Mu Us Sandy Land in China . Chinese Geographical Science, 2013, 23(6): 700-707. doi: 10.1007/s11769-013-0640-7
    [7] JIN Pingbin FU Zhiwei BAN Maosheng.  Industrial Arrangement of Large-scale, Non-grid-connected Wind Power Industrial Zones in Coastal Areas of China . Chinese Geographical Science, 2012, 22(1): 109-118.
    [8] NIU Qinghe, QU Jianjun, ZHANG Kecun, LIU Xianwan.  Thermodynamic Effects on Particle Movement: Wind Tunnel Simulation Results . Chinese Geographical Science, 2012, 22(2): 178-187.
    [9] JIANG Ying, LUO Yong, ZHAO Zongci, SHI Ying, XU Yinlong, ZHU Jinhong.  Projections of Wind Changes for 21st Century in China by Three Regional Climate Models . Chinese Geographical Science, 2010, 20(3): 226-235. doi: 10.1007/s11769-010-0226-6
    [10] MO Jiaqi, LIN Wantao, LIN Yihua.  Approximate Solution for Mechanism of Thermally and Wind-driven Ocean Circulation . Chinese Geographical Science, 2010, 20(5): 383-388. doi: 10.1007/s11769-010-0411-7
    [11] DONG Yuxiang, S L NAMIKAS, P A HESP, MA Jun.  Field Measurements of Influence of Sand Transport Rate on Structure of Wind-sand Flow over Coastal Transverse Ridge . Chinese Geographical Science, 2008, 18(3): 255-261. doi: 10.1007/s11769-008-0255-6
    [12] XU Weixin, LIU Xiaodong.  Response of Vegetation in the Qinghai-Tibet Plateau to Global Warming . Chinese Geographical Science, 2007, 17(2): 151-159. doi: 10.1007/s11769-007-0151-5
    [13] XIE Yuanyun, ZHANG Yan, HE Kui, ZHOU Jia, KANG Chunguo.  Features of Sand-dust Deposits in Harbin City, China . Chinese Geographical Science, 2006, 16(4): 327-333.
    [14] LIU Yi-hua, DONG Guang-rong, LI Sen, DONG Yu-xiang.  STATUS, CAUSES AND COMBATING SUGGESTIONS OF SANDY DESERTIFICATION IN QINGHAI-TIBET PLATEAU . Chinese Geographical Science, 2005, 15(4): 289-296.
    [15] HU Yuan-man, JIANG Yan, CHANG Yu, BU Ren-cang, LI Yue-hui, XU Chong-gang.  THE DYNAMIC MONITORING OF HORQIN SAND LAND USING REMOTE SENSING . Chinese Geographical Science, 2002, 12(3): 238-243.
    [16] ZHANG Qing-yang, ZHAO Xi-you, ZHANG Yuan, LI Li.  PRELIMINARY STUDY ON SAND-DUST STORM DISASTER AND COUNTERMEASURES IN CHINA . Chinese Geographical Science, 2002, 12(1): 9-13.
    [17] HU Gang, WANG Nai-ang.  THE SAND WEDGE AND MIRABILITE OF THE LAST ICE AGE AND THEIR PALEOCLIMATIC SIGNIFICANCE IN HEXI CORRIDOR . Chinese Geographical Science, 2001, 11(1): 80-86.
    [18] LI Sen, XIA Xun-cheng, XIAO Hong-lang, YANG Gen-sheng.  CHARACTERISTICS, ORIGIN AND EVOLUTION AGES OF AEOLIAN SAND IN THE SAHELIAN REGION OF MALI . Chinese Geographical Science, 2000, 10(2): 159-167.
    [19] 曾永年, 马海州, 沙占江, 李玲琴, 李珍, 曹广超.  THE RECORD OF YOUNGER DRYAS EVENT IN EOLIAN SAND DEPOSIT IN QAIDAM BASIN . Chinese Geographical Science, 1999, 9(1): 92-95.
    [20] 李崇皓, 郑萱凤.  THE IMPROVEMENT OF ALKALINE MEADOW BY ACCUMULATIVE SAND BY WIND IN THE SONGNEN PLAIN . Chinese Geographical Science, 1993, 3(2): 159-162.
  • 加载中
计量
  • 文章访问数:  231
  • HTML全文浏览量:  2
  • PDF下载量:  904
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-09
  • 修回日期:  2014-02-28
  • 刊出日期:  2014-11-27

Influence of Golmud-Lhasa Section of Qinghai-Tibet Railway on Blown Sand Transport

doi: 10.1007/s11769-014-0722-1
    基金项目:  Under the auspices of National Natural Science Foundation of China (No. 40930741), National Basic Research Program of China (No. 2012CB026105)
    通讯作者: QU Jianjun. E-mail: qujianj@lzb.ac.cn

摘要: The Qinghai-Tibet Railway (QTR) passes through 281 km of sandy land, 11.07 km of which causes serious sand damage to the railway and thus, the control of blown sand is important for the safe operation of the railway. Construction of the railway and sand prevention system greatly changed the blown sand transport of the primary surface. Effective and feasible sand-control measures include stone checkerboard barriers (SCBs), sand fences (SFs), and gravel coverings. This study simulated the embankments, SCBs and SFs of the QTR in a wind tunnel, and analyzed their respective wind profile, sand deposition, and sand-blocking rate (SBR) in conjunction with field data, aiming at studying the influence of Golmud-Lhasa section of the QTR and sand prevention system on blown sand transport. The results of wind tunnel experiments showed that wind speed increased by 67.7%-77.3% at the upwind shoulder of the embankment and decreased by 50.0%-83.3% at upwind foot of embankment. Wind speed decreased by 50.0%-100.0% after passing through the first SF, and 72.2%-100.0% after the first row of stones within the first SCB grid. In the experiment of sand deposition, the higher the wind speed, the lower the SBR of SCB and SF. From field investigation, the amount of sand blocked by the four SFs decreased exponentially and its SBR was about 50.0%. By contrast, SCB could only block lower amounts of sand, but had a higher SBR (96.7%) than SF. Although, results show that SFs and SCBs along the Golmud-Lhasa section of the QTR provide an obvious sand blocking effect, they lead to the deposition of a large amount of sand, which forms artificial dunes and becomes a new source of sand damage.

English Abstract

XIAO Jianhua, YAO Zhengyi, QU Jianjun. Influence of Golmud-Lhasa Section of Qinghai-Tibet Railway on Blown Sand Transport[J]. 中国地理科学, 2015, 25(1): 39-50. doi: 10.1007/s11769-014-0722-1
引用本文: XIAO Jianhua, YAO Zhengyi, QU Jianjun. Influence of Golmud-Lhasa Section of Qinghai-Tibet Railway on Blown Sand Transport[J]. 中国地理科学, 2015, 25(1): 39-50. doi: 10.1007/s11769-014-0722-1
XIAO Jianhua, YAO Zhengyi, QU Jianjun. Influence of Golmud-Lhasa Section of Qinghai-Tibet Railway on Blown Sand Transport[J]. Chinese Geographical Science, 2015, 25(1): 39-50. doi: 10.1007/s11769-014-0722-1
Citation: XIAO Jianhua, YAO Zhengyi, QU Jianjun. Influence of Golmud-Lhasa Section of Qinghai-Tibet Railway on Blown Sand Transport[J]. Chinese Geographical Science, 2015, 25(1): 39-50. doi: 10.1007/s11769-014-0722-1
参考文献 (31)

目录

    /

    返回文章
    返回