留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mapping of Regional Soil Salinities in Xinjiang and Strategies for Ame-lioration and Management

WANG Fei CHEN Xi LUO Geping HAN Qifei

WANG Fei, CHEN Xi, LUO Geping, HAN Qifei. Mapping of Regional Soil Salinities in Xinjiang and Strategies for Ame-lioration and Management[J]. 中国地理科学, 2015, 25(3): 321-336. doi: 10.1007/s11769-014-0718-x
引用本文: WANG Fei, CHEN Xi, LUO Geping, HAN Qifei. Mapping of Regional Soil Salinities in Xinjiang and Strategies for Ame-lioration and Management[J]. 中国地理科学, 2015, 25(3): 321-336. doi: 10.1007/s11769-014-0718-x
WANG Fei, CHEN Xi, LUO Geping, HAN Qifei. Mapping of Regional Soil Salinities in Xinjiang and Strategies for Ame-lioration and Management[J]. Chinese Geographical Science, 2015, 25(3): 321-336. doi: 10.1007/s11769-014-0718-x
Citation: WANG Fei, CHEN Xi, LUO Geping, HAN Qifei. Mapping of Regional Soil Salinities in Xinjiang and Strategies for Ame-lioration and Management[J]. Chinese Geographical Science, 2015, 25(3): 321-336. doi: 10.1007/s11769-014-0718-x

Mapping of Regional Soil Salinities in Xinjiang and Strategies for Ame-lioration and Management

doi: 10.1007/s11769-014-0718-x
基金项目: Under the auspices of Key Program of National Science Foundation of China (No. 41361140361)
详细信息
    通讯作者:

    CHEN Xi. E-mail:Chenxi@ms.xjb.ac.cn

Mapping of Regional Soil Salinities in Xinjiang and Strategies for Ame-lioration and Management

Funds: Under the auspices of Key Program of National Science Foundation of China (No. 41361140361)
More Information
    Corresponding author: CHEN Xi. E-mail:Chenxi@ms.xjb.ac.cn
  • 摘要: Information on the spatial distribution of soil salinity can be used as guidance in avoiding the continued degradation of land and water resources by better informing policy makers. However, most regional soil-salinity maps are produced through a conventional direct-linking method derived from historic observations. Such maps lack spatial details and are limited in describing the evolution of soil salinization in particular instances. To overcome these limitations, we employed a method that included an integrative hierarchical-sampling strategy (IHSS) and the Soil Land Inference Model (SoLIM) to map soil salinity over a regional area. A fuzzy c-means (FCM) classifier is performed to generate three measures, comprising representative grade, representative area, and representative level (membership). IHSS employs these three measures to ascertain how many representative samples are appropriate. Through this synergetic assessment, representative samples are obtained and their soil-salinity values are measured. These samples are input to SoLIM, which is constructed based on fuzzy logic, to calculate the soil-forming environmental similarities between representative samples and other locations. Finally, a detailed soil-salinity map is produced through an averaging function that is linearly weighted, which is used to integrate the soil salinity value and soil similarity. This case study, in the Uyghur Autonomous Region of Xinjiang of China, demonstrates that the employed method can produce soil salinity map at a higher level of spatial detail and accuracy. Twenty-three representative points are determined. The results show that 1) the prediction is appropriate in Kuqa Oasis (R2=0.70, RPD=1.55, RMSE=12.86) and Keriya Oasis (R2=0.75, RPD=1.66, RMSE=10.92), that in Fubei Oasis (R2=0.77, RPD=2.01, RMSE=6.32) perform little better than in those two oases, according to the evaluation criterion. 2) Based on all validation samples from three oases, accuracy estimation show the employed method (R2=0.74, RPD=1.67, RMSE=11.18) performed better than the multiple linear regression model (R2=0.60, RPD=1.47, RMSE=14.45). 3) The statistical result show that approximately half (48.07%) of the study area has changed to salt-affected soil, mainly distributed in downstream of oases, around lakes, on both sides of rivers and more serious in the southern than the northern Xinjiang. To deal with this issue, a couple of strategies involving soil-salinity monitoring, water management, and plant diversification are proposed, to reduce soil salinization. Finally, this study concludes that the employed method can serve as an alternative model for soil-salinity mapping on a large scale.
  • [1] Beven K J, Kirkby M J, 1979. A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24(1):43-69. doi:10.1080/0262666790949 1834
    [2] Bezdek J C, Ehrlich R, Full W, 1984. FCM:the fuzzy c-means clustering algorithm. Computers & Geosciences, 10(2-3):191-203. doi: 10.1016/0098-3004(84)90020-7
    [3] Bouaziz M, Matschullat J, Gloaguen R, 2011. Improved remote sensing detection of soil salinity from a semi-arid climate in Northeast Brazil. Comptes Rendus Geoscience, 343(11-12):795-803. doi: 10.1016/j.crte.2011.09.003
    [4] Dehaan R L, Taylor G R, 2002. Field-derived spectra of salinized soils and vegetation as indicators of irrigation-induced soil salinization. Remote Sensing of Environment, 80(3):406-417. doi: 10.1016/S0034-4257(01)00321-2
    [5] Ding J L, Tiyip T, Wu M C, 2011. Study on soil salinization information in arid region using remote sensing technique. Agriculture Science in China, 10(3):404-411. doi: 10.1016/S1671-2927(11)60019-9
    [6] FAO/UNESCO (Food and Agriculture Organization/United Nations Educational, Scientific and Cultural Organization), 1990. Soil Map of The World Revised Legend. World Soils Resource Report. FAO, Rome, Iatly.
    [7] FAO (Food and Agriculture Organization), 2002. Crops and Drops, Making the Best Use of Water for Agriculture. Food and Agriculure Organization of the United Nations, Rome, Italy.
    [8] Farifteh J, Van der Meer F D, Atzberger C et al., 2007. Quantitative analysis of salt-affected soil reflectance spectra:a comparison of two adaptive methods (PLSR and ANN). Remote Sensing of Environment, 110(1):59-78. doi: 10.1016/j.rse.2007.02.005
    [9] Flury B, Riedwyl H, 1988. Multiple Linear Regression. Nether-lands:Springer, 54-74.
    [10] Ghassemi F, Jakeman A J, Nix H A, 1995. Salinisation of Land and Water Resources:Human Causes, Extent, Management and Case Studies. Canberra:University of New South Wales Press.
    [11] Giordano R, Liersch S, Vurro M et al., 2010. Integrating local and technical knowledge to support soil salinity monitoring in the Amudarya river basin. Journal of Environmental Management, 91(8):1718-1729. doi: 10.1016/j.jenvman.2010.03.010
    [12] Goovaerts P, Journel A G, 1995. Integrating soil map information in modelling the spatial variation of continuous soil properties. European Journal of Soil Science, 46(3):397-414. doi: 10.1111/j.1365-2389.1995.tb01336.x
    [13] Grunwald S, Thompson J A, Boettinger J L, 2011. Digital soil mapping and modeling at continental scales:finding solutions for global issues. Soil Science Society of America Journal, 75(4):1201-1213. doi: 10.2136/sssaj2011.0025
    [14] Heil K, Schmidhalter U, 2012. Characterisation of soil texture variability using the apparent soil electrical conductivity at a highly variable site. Computers & Geosciences, 39:98-110. doi: 10.1016/j.cageo.2011.06.017
    [15] Hu S, Zhao R, Tian C et al., 2009. Empirical models of calculating phreatic evaporation from bare soil in Tarim river basin, Xinjiang. Environmental Earth Sciences, 59(3):663- 668. doi: 10.1007/s12665-009-0063-z
    [16] Karl J W, Maurer B A, 2010. Spatial dependence of predictions from image segmentation:a variogram-based method to determine appropriate scales for producing land-management information. Ecological Informatics, 5(3):194-202. doi:10.1016/j.ecoinf. 2010.02.004
    [17] Li Q, Chen Y, Shen Y et al., 2011. Spatial and temporal trends of climate change in Xinjiang, China. Journal of Geographical Sciences, 21(6):1007-1018. doi: 10.1007/s11442-011-0896-8
    [18] Liu D M, Abuduwaili J, Lei J Q et al., 2011. Deposition rate and chemical composition of the aeolian dust from a bare saline playa, Ebinur Lake, Xinjiang, China. Water Air and Soil Pollution, 218(1-4):175-184. doi: 10.1007/s11270-010-0633-4
    [19] Liu F, Geng X, Zhu A X et al., 2012. Soil texture mapping over low relief areas using land surface feedback dynamic patterns extracted from MODIS. Geoderma, 171-172:44-52. doi: 10.1016/j.geoderma.2011.05.007
    [20] Lobell D B, Lesch S M, Corwin D L et al., 2010. Regional-scale assessment of soil salinity in the red river valley using multi-year MODIS EVI and NDVI. Journal of Environmental Quality, 39(1):35-41. doi: 10.2134/jeq2009.0140
    [21] MacMillan R A, Moon D E, Coupé R A et al., 2010. Predictive ecosystem mapping (PEM) for 8.2 million ha of forestland, British Columbia, Canada. In:Boettinger J L (eds). Digital Soil Mapping:Bridging Research, Environmenatal Applica-tion, and Oper ation. Netherlands:Springer, 337-356.
    [22] Masoud A A, Koike K, 2006. Arid land salinization detected by remotely-sensed landcover changes:a case study in the Siwa region, NW Egypt. Journal of Arid Environments, 66(1):151-167. doi: 10.1016/j.jaridenv.2005.10.011
    [23] McBratney A B, Mendonca S M L, Minasny B, 2003. On digital soil mapping. Geoderma, 117(1-2):3-52. doi: 10.1016/S0016-7061(03)00223-4
    [24] Metternicht G I, Zinck J A, 2003. Remote sensing of soil salinity:potentials and constraints. Remote Sensing of Environment, 85(1):1-20. doi: 10.1016/S0034-4257(02)00188-8
    [25] Mulder V L, de Bruin S, Schaepman M E et al., 2011. The use of remote sensing in soil and terrain mapping-a review. Geoderma, 162(1-2):1-19. doi:10.1016/j.geoderma.2010.12. 018
    [26] Nachtergaele F, Velthuizen H Y, Verelst L et al., 2008. Harmonized World Soil Database (version 1.1). Food and Agriculture Organization of the United Nations, Rome, Italy.
    [27] Ohmaan J L, Gregory M J, 2002. Predictive mapping of forest composition and structure with direct gradient analysis and nearest neighbor imputation in coastral Oregon, USA. Canadian Journal of Forest Research, 32(4):725-741. doi: 10.1139/x02-011
    [28] Qadir M, Oster J D, 2004. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environ-mentally sustainable agriculture. Science of the Total Envi-ronment, 323(1-3):1-19. doi:10.1016/j.scitotenv.2003. 10.012
    [29] Qadir M, Tubeileh A, Akhtar J et al., 2008. Productivity enhancement of salt-affected environments through crop diversification. Land Degradation & Development, 19(4):429-453. doi: 10.1002/ldr.853
    [30] Qiao Mu, Zhou Shengbin, Lu Lei et al., 2011. Temporal and spatial changes of soil salinization and improved countermeasures of Tarim Basin Irrigation District in recent 25a. Arid Land Geography, 34(4):604-613. (in Chinese)
    [31] Qiao Mu, Zhou Shengbin, Lu Lei et al., 2012. Causes and spatial-temporal changes of soil salinization in Weigan River basin, Xinjiang. Progress in Geography, 31(7):904-910. (in Chinese)
    [32] Qin C, Zhu A X, Pei T et al., 2007. An adaptive approach to selecting a flow-partition exponent for a multiple-flow- direction algorithm. International Journal of Geographical Information Science, 21(4):443-458. doi:10.1080/136588106 01073240
    [33] Rodríguez-Pérez J, Plant R, Lambert J J et al., 2011. Using apparent soil electrical conductivity (ECa) to characterize vineyard soils of high clay content. Precision Agriculture, 12(6):775-794. doi: 10.1007/s11119-011-9220-y
    [34] Sheng J, Ma L, Jiang P A et al., 2010. Digital soil mapping to enable classification of the salt-affected soils in desert agro-ecological zones. Agricultural Water Management, 97(12):1944-1951. doi: 10.1016/j.agwat.2009.04.011
    [35] Shi X, Franklin J, Chadwick O A et al., 2009. Integrating different types of knowledge for digital soil mapping. Soil Science Society of America, 73:1682-1692. doi: 10.2136/sssaj2007.0158
    [36] Shi Xingmin, Li Youlin, Yang Jingchun, 2008. Climatic and tectonic analysis of Manas Lake changes. Scientia Geogra-phica Sinica, 28(2):266-271. (in Chinese)
    [37] Snyder W C, Wan Z, Zhang Y et al., 1998. Classification-based emissivity for land surface temperature measurement from space. International Journal of Remote sensing, 19(14):2753-2774. doi: 10.1080/014311698214497
    [38] Soil Survey Staff of Xinjiang, 1996. Soil of Xinjiang Province. Beijing:Science Press, 52-53. (in Chinese)
    [39] Song Chuangye, Huang Chong, Liu Huiming, 2013. Predictive vegetation mapping approach based on spectral data, DEM and Generalized Additive Models. Chinese Geographical Science, 23(3):331-343. doi: 10.1007/s11769-013-0590-0
    [40] Szabolcs I, 1992. Salinization of soil and water and its relation to desertification. Desertification Control Bulletin, 21:32-37.
    [41] Wang F, Chen X, Luo G P et al., 2013. Detecting soil salinity with arid fraction integrated index and salinity index in feature space using Landsat TM imagery. Journal of Arid Land, 5(3):340-353. doi: 10.1007/s40333-013-0183-x
    [42] Wang Fangfang, Wu Shixin, Qiao Mu et al., 2009. Investigation and analysis on the salinization degree of cultivated land in Xinjiang based on 3S technology. Arid Zone Research, 26(3):366-371. (in Chinese)
    [43] Wang K, Wang P, Sparrow M et al., 2005. Estimation of surface long wave radition and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature/emissivity products. Journal of Gephysical Research, 110:D11109. doi: 10.1029/2004JD005566
    [44] Wang Q, Li P H, Chen X, 2012. Modeling salinity effects on soil reflectance under various moisture conditions and its inverse application:a laboratory experiment. Geoderma, 170:103-111. doi: 10.1016/j.geoderma.2011.10.015
    [45] Wang Y, Li Y, 2013. Land exploitation resulting in soil salinization in a desert-oasis ecotone. Catena, 100:50-56. doi: 10.1016/j.catena.2012.08.005
    [46] Wei S, Dai Y, Liu B et al., 2012. A soil particle-size distribution dataset for regional land and climate modelling in China. Geoderma, 171-172:85-91. doi:10.1016/j.geoderma. 2011.01. 013
    [47] Yang L, Zhu A X, Qi F et al., 2012. An integrative hierarchical stepwise sampling strategy for spatial sampling and its application in digital soil mapping. International Journal of Geographical Information Science, 27(1):1-23. doi: 10.1080/13658816.2012.658053
    [48] Zhang F, Tiyip T, Ding J et al., 2012. Spectral reflectance properties of major objects in desert oasis:a case study of the Weigan-Kuqa river delta oasis in Xinjiang, China. Environ-mental Monitoring and Assessment, 184(8):5105-5119. doi: 10.1007/s10661-011-2326-x
    [49] Zhang H , Wu J W, Zheng Q H et al., 2003. A preliminary study of oasis evolution in the Tarim Basin, Xinjiang, China. Journal of Arid Environments, 55(3):545-553. doi: 10.1016/S0140-1963(02)00283-5
    [50] Zhu A X, Band L E, Dutton B et al., 1996. Automated soil inference under fuzzy logic. Ecological Modelling, 90(2):123-145. doi: 10.1016/0304-3800(95)00161-1
    [51] Zhu A X, Band L, Vertessy R et al., 1997. Derivation of soil properties using a Soil Land Inference Model (SoLIM). Soil Science Society of America Journal, 61(2):523-533. doi: 10.2136/sssaj1997.03615995006100020022x
    [52] Zhu A X, Hudson B, Burt J et al., 2001. Soil mapping using GIS, expert knowledge, and fuzzy logic. Soil Science Society of America Journal, 65(5):1463-1472. doi:10.2136/sssaj2001. 6551463x
    [53] Zhu A X, Qi F, Moore A et al., 2010b. Prediction of soil properties using fuzzy membership values. Geoderma, 158(3-4):199-206. doi: 10.1016/j.geoderma.2010.05.001
    [54] Zhu A X, Yang L, Li B et al., 2008. Purposive sampling for digital soil mapping for areas with limited data. In:Hartemink A E et al. (eds). Digital Soil Mapping with Limited Data. Netherlands:Springer, 233-245.
    [55] Zhu A X, Yang L, Li B et al., 2010a. Construction of membership functions for predictive soil mapping under fuzzy logic. Geoderma, 155(3-4):164-174. doi:10.1016/j.geoderma.2009. 05.024
    [56] Zhu B Q, Yang X P, Rioual P et al., 2011. Hydrogeochemistry of three watersheds (the Erlqis, Zhungarer and Yili) in northern Xinjiang, NW China. Applied Geochemistry, 26(8):1535-1548. doi:10.1016/j.apgeochem.2011.06.018on in modelling the spatial variation of continuous soil properties. European Journal of Soil Science, 46(3): 397-414. doi: 10.1111/j.1365-2389.1995.tb01336.x
    [57] Grunwald S, Thompson J A, Boettinger J L, 2011. Digital soil mapping and modeling at continental scales: Finding solutions for global issues. Soil Science Society of America Journal, 75(4): 1201-1213. doi:  10.2136/sssaj2011.0025
    [58] Heil K, Schmidhalter U, 2012. Characterisation of soil texture variability using the apparent soil electrical conductivity at a highly variable site. Computers & Geosciences, 39: 98-110. doi:  10.1016/j.cageo.2011.06.017
    [59] Hu S, Zhao R, Tian C et al., 2009. Empirical models of calculating phreatic evaporation from bare soil in Tarim river basin, Xinjiang. Environmental Earth Sciences, 59(3): 663-668. doi:  10.1007/s12665-009-0063-z
    [60] Karl J W, Maurer B A, 2010. Spatial dependence of predictions from image segmentation: A variogram-based method to determine appropriate scales for producing land-management information. Ecological Informatics, 5(3): 194-202. doi: 10.1016/j.ecoinf. 2010.02.004
    [61] Li Q, Chen Y, Shen Y et al., 2011. Spatial and temporal trends of climate change in Xinjiang, China. Journal of Geographical Sciences, 21(6): 1007-1018. doi:  10.1007/s11442-011-0896-8
    [62] Liu D M, Abuduwaili J, Lei J Q et al., 2011. Deposition rate and chemical composition of the aeolian dust from a bare saline playa, Ebinur Lake, Xinjiang, China. Water Air and Soil Pollution, 218(1-4): 175-184. doi:  10.1007/s11270-010-0633-4
    [63] Liu F, Geng X, Zhu A X et al., 2012. Soil texture mapping over low relief areas using land surface feedback dynamic patterns extracted from MODIS. Geoderma, 171-172: 44-52. doi:  10.1016/j.geoderma.2011.05.007
    [64] Lobell D B, Lesch S M, Corwin D L et al., 2010. Regional-scale assessment of soil salinity in the red river valley using multi-year MODIS EVI and NDVI. Journal of Environmental Quality, 39(1): 35-41. doi:  10.2134/jeq2009.0140
    [65] MacMillan R A, Moon D E, Coupé R A et al., 2010. Predictive ecosystem mapping (PEM) for 8.2 million ha of forestland, British Columbia, Canada. In: Boettinger J L (eds). Digital Soil Mapping: Bridging Research, Environmenatal Application, and Oper ation. Netherlands: Springer, 337-356.
    [66] Masoud A A, Koike K, 2006. Arid land salinization detected by remotely-sensed landcover changes: A case study in the Siwa region, NW Egypt. Journal of Arid Environments, 66(1): 151-167. doi:  10.1016/j.jaridenv.2005.10.011
    [67] McBratney A B, Mendonca S M L, Minasny B, 2003. On digital soil mapping. Geoderma, 117(1-2): 3-52. doi: 10.1016/ S0016-7061(03)00223-4
    [68] Metternicht G I, Zinck J A, 2003. Remote sensing of soil salinity: Potentials and constraints. Remote Sensing of Environment, 85(1): 1-20. doi:  10.1016/S0034-4257(02)00188-8
    [69] Mulder V L, de Bruin S, Schaepman M E et al., 2011. The use of remote sensing in soil and terrain mapping—A review. Geoderma, 162(1-2): 1-19. doi: 10.1016/j.geoderma.2010.12. 018
    [70] Nachtergaele F, Velthuizen H Y, Verelst L et al., 2008. Harmonized World Soil Database (version 1.1). Food and Agriculture Organization of the United Nations, Rome, Italy.
    [71] Ohmaan J L, Gregory M J, 2002. Predictive mapping of forest composition and structure with direct gradient analysis and nearest neighbor imputation in coastral Oregon, USA. Canadian Journal of Forest Research, 32(4): 725-741. doi:  10.1139/x02-011
    [72] Qadir M, Oster J D, 2004. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environ­mentally sustainable agriculture. Science of the Total Envi­ronment, 323(1-3): 1-19. doi: 10.1016/j.scitotenv.2003. 10.012
    [73] Qadir M, Tubeileh A, Akhtar J et al., 2008. Productivity enhancement of salt-affected environments through crop diversification. Land Degradation & Development, 19(4): 429-453. doi:  10.1002/ldr.853
    [74] Qiao Mu, Zhou Shengbin, Lu Lei et al., 2011. Temporal and spatial changes of soil salinization and improved countermeasures of Tarim Basin Irrigation District in recent 25a. Arid Land Geography, 34(4): 604-613. (in Chinese)
    [75] Qiao Mu, Zhou Shengbin, Lu Lei et al., 2012. Causes and spatial-temporal changes of soil salinization in Weigan River basin, Xinjiang. Progress in Geography, 31(7): 904-910. (in Chinese)
    [76] Qin C, Zhu A X, Pei T et al., 2007. An adaptive approach to selecting a flow-partition exponent for a multiple-flow- direction algorithm. International Journal of Geographical Information Science, 21(4): 443-458. doi: 10.1080/136588106 01073240
    [77] Rodríguez-Pérez J, Plant R, Lambert J J et al., 2011. Using apparent soil electrical conductivity (ECa) to characterize vineyard soils of high clay content. Precision Agriculture, 12(6): 775-794. doi:  10.1007/s11119-011-9220-y
    [78] Sheng J, Ma L, Jiang P A et al., 2010. Digital soil mapping to enable classification of the salt-affected soils in desert agro-ecological zones. Agricultural Water Management, 97(12): 1944-1951. doi:  10.1016/j.agwat.2009.04.011
    [79] Shi X, Franklin J, Chadwick O A et al., 2009. Integrating different types of knowledge for digital soil mapping. Soil Science Society of America, 73: 1682-1692. doi: 10.2136/ sssaj2007.0158
    [80] Shi Xingmin, Li Youlin, Yang Jingchun, 2008. Climatic and tectonic analysis of Manas Lake changes. Scientia Geogra­phica Sinica, 28(2): 266-271. (in Chinese)
    [81] Snyder W C, Wan Z, Zhang Y et al., 1998. Classification-based emissivity for land surface temperature measurement from space. International Journal of Remote sensing, 19(14): 2753-2774. doi:  10.1080/014311698214497
    [82] Soil Survey Staff of Xinjiang, 1996. Soil of Xinjiang Province. Beijing: Science Press, 52-53. (in Chinese)
    [83] Song Chuangye, Huang Chong, Liu Huiming, 2013. Predictive vegetation mapping approach based on spectral data, DEM and Generalized Additive Models. Chinese Geographical Science, 23(3): 331-343. doi:  10.1007/s11769-013-0590-0
    [84] Szabolcs I, 1992. Salinization of soil and water and its relation to desertification. Desertification Control Bulletin, 21: 32-37.
    [85] Wang F, Chen X, Luo G P et al., 2013. Detecting soil salinity with arid fraction integrated index and salinity index in feature space using Landsat TM imagery. Journal of Arid Land, 5(3): 340-353. doi:  10.1007/s40333-013-0183-x
    [86] Wang Fangfang, Wu Shixin, Qiao Mu et al., 2009. Investigation and analysis on the salinization degree of cultivated land in Xinjiang based on 3S technology. Arid Zone Research, 26(3): 366-371. (in Chinese)
    [87] Wang K, Wang P, Sparrow M et al., 2005. Estimation of surface long wave radition and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature/emissivity products. Journal of Gephysical Research, 110: D11109. doi:  10.1029/2004JD005566
    [88] Wang Q, Li P H, Chen X, 2012. Modeling salinity effects on soil reflectance under various moisture conditions and its inverse application: A laboratory experiment. Geoderma, 170: 103-111. doi:  10.1016/j.geoderma.2011.10.015
    [89] Wang Y, Li Y, 2013. Land exploitation resulting in soil salinization in a desert-oasis ecotone. Catena, 100: 50-56. doi:  10.1016/j.catena.2012.08.005
    [90] Wei S, Dai Y, Liu B et al., 2012. A soil particle-size distribution dataset for regional land and climate modelling in China. Geoderma, 171-172: 85-91. doi: 10.1016/j.geoderma. 2011.01. 013
    [91] Yang L, Zhu A X, Qi F et al., 2012. An integrative hierarchical stepwise sampling strategy for spatial sampling and its application in digital soil mapping. International Journal of Geographical Information Science, 27(1): 1-23. doi:  10.1080/13658816.2012.658053
    [92] Zhang F, Tiyip T, Ding J et al., 2012. Spectral reflectance properties of major objects in desert oasis: A case study of the Weigan-Kuqa river delta oasis in Xinjiang, China. Environ­mental Monitoring and Assessment, 184(8): 5105-5119. doi:  10.1007/s10661-011-2326-x
    [93] Zhang H , Wu J W, Zheng Q H et al., 2003. A preliminary study of oasis evolution in the Tarim Basin, Xinjiang, China. Journal of Arid Environments, 55(3): 545-553. doi: 10.1016/ S0140-1963(02)00283-5
    [94] Zhu A X, Band L E, Dutton B et al., 1996. Automated soil inference under fuzzy logic. Ecological Modelling, 90(2): 123-145. doi:  10.1016/0304-3800(95)00161-1
    [95] Zhu A X, Band L, Vertessy R et al., 1997. Derivation of soil properties using a Soil Land Inference Model (SoLIM). Soil Science Society of America Journal, 61(2): 523-533. doi:  10.2136/sssaj1997.03615995006100020022x
    [96] Zhu A X, Hudson B, Burt J et al., 2001. Soil mapping using GIS, expert knowledge, and fuzzy logic. Soil Science Society of America Journal, 65(5): 1463-1472. doi: 10.2136/sssaj2001. 6551463x
    [97] Zhu A X, Qi F, Moore A et al., 2010b. Prediction of soil properties using fuzzy membership values. Geoderma, 158(3-4): 199-206. doi:  10.1016/j.geoderma.2010.05.001
    [98] Zhu A X, Yang L, Li B et al., 2008. Purposive sampling for digital soil mapping for areas with limited data. In: Hartemink A E (eds). Digital Soil Mapping with Limited Data. Netherlands: Springer, 233-245.
    [99] Zhu A X, Yang L, Li B et al., 2010a. Construction of membership functions for predictive soil mapping under fuzzy logic. Geoderma, 155(3-4): 164-174. doi: 10.1016/j.geoderma.2009. 05.024
    [100] Zhu B Q, Yang X P, Rioual P et al., 2011. Hydrogeochemistry of three watersheds (the Erlqis, Zhungarer and Yili) in northern Xinjiang, NW China. Applied Geochemistry, 26(8): 1535-1548. doi:  10.1016/j.apgeochem.2011.06.018
    [101]  
  • [1] HUANG Yajie, LI Zhen, YE Huichun, ZHANG Shiwen, ZHUO Zhiqing, XING An, HUANG Yuanfang.  Mapping Soil Electrical Conductivity Using Ordinary Kriging Combined with Back-propagation Network . Chinese Geographical Science, 2019, 20(2): 270-282. doi: 10.1007/s11769-019-1027-1
    [2] LI Zhen, LI Yong, XING An, ZHUO Zhiqing, ZHANG Shiwen, ZHANG Yuanpei, HUANG Yuanfang.  Spatial Prediction of Soil Salinity in a Semiarid Oasis: Environmental Sensitive Variable Selection and Model Comparison . Chinese Geographical Science, 2019, 20(5): 784-797. doi: 10.1007/s11769-019-1071-x
    [3] ZHANG Zhongsheng, XUE Zhenshan, LYU Xianguo, TONG Shouzheng, JIANG Ming.  Scaling of Soil Carbon, Nitrogen, Phosphorus and C:N:P Ratio Patterns in Peatlands of China . Chinese Geographical Science, 2017, 27(4): 507-515. doi: 10.1007/s11769-017-0884-8
    [4] SONG Xiaodong, LIU Feng, JU Bing, ZHI Junjun, LI Decheng, ZHAO Yuguo, ZHANG Ganlin.  Mapping Soil Organic Carbon Stocks of Northeastern China Using Expert Knowledge and GIS-based Methods . Chinese Geographical Science, 2017, 27(4): 516-528. doi: 10.1007/s11769-017-0869-7
    [5] YANG Lin, HUANG Chong, LIU Gaohuan, LIU Jing, ZHU A-Xing.  Mapping Soil Salinity Using a Similarity-based Prediction Approach:A Case Study in Huanghe River Delta, China . Chinese Geographical Science, 2015, 25(3): 283-294. doi: 10.1007/s11769-015-0740-7
    [6] REN Jianhua, LI Xiaojie, ZHAO Kai.  Quantitative Analysis of Relationships Between Crack Characteristics and Properties of Soda-saline Soils in Songnen Plain, China . Chinese Geographical Science, 2015, 25(5): 591-601. doi: 10.1007/s11769-015-0779-5
    [7] SHANG Songhao, MAO Xiaomin.  A Two-parameter Exponential Recession Model for Simulating Cropland Soil Moisture Dynamics . Chinese Geographical Science, 2014, 0(5): 575-586. doi: 10.1007/s11769-014-0676-3
    [8] LI Xianghu, ZHANG Qi, YE Xuchun.  Effects of Spatial Information of Soil Physical Properties on Hydrological Modeling Based on a Distributed Hydrological Model . Chinese Geographical Science, 2013, 23(2): 182-193.
    [9] ZHOU Yuliang, JIN Juliang, LIU Li, ZHANG Libing, He Jun, WANG Zhesun.  Inference of Reference Conditions for Nutrient Concentrations of Chaohu Lake Based on Model Extrapolation . Chinese Geographical Science, 2013, 23(1): 35-48.
    [10] ZHANG Shujie, ZHU Axing, LIU Wenliang, LIU Jing, YANG Lin.  Mapping Detailed Soil Property Using Small Scale Soil Type Maps and Sparse Typical Samples . Chinese Geographical Science, 2013, 23(6): 680-691. doi: 10.1007/s11769-013-0632-7
    [11] XU Wenlai, ZHANG Jianqiang, LIU Yun.  NH3-N Degradation Dynamics and Calculating Model of Filtration Bed Height in Constructed Soil Rapid Infiltration . Chinese Geographical Science, 2011, 21(6): 637-645.
    [12] LIU Qian, WANG Mingyu, ZHAO Yingshi.  Assimilation of ASAR Data with a Hydrologic and Semi-empirical Backscattering Coupled Model to Estimate Soil Moisture . Chinese Geographical Science, 2010, 20(3): 218-225. doi: 10.1007/s11769-010-0218-6
    [13] WANG Hongrui, GAO Yuanyuan, LIU Qiong, SONG Jinxi.  Land Use Allocation Based on Interval Multi-objective Linear Programming Model: A Case Study of Pi County in Sichuan Province . Chinese Geographical Science, 2010, 20(2): 176-183. doi: 10.1007/s11769-010-0176-z
    [14] TANG Jie, WANG Chenye, LIN Nianfeng, LI Zhaoyang, LI Haiyi, MAO Zilong.  Application of Matter-element Model in Soil Nutrient Evaluation of Ecological Fragile Region . Chinese Geographical Science, 2009, 19(2): 168-176. doi: 10.1007/s11769-009-0168-z
    [15] JIA Yuanyuan, LI Zhaoliang.  Soil-Vegetation-Atmosphere Radiative Transfer Model in Microwave Region . Chinese Geographical Science, 2008, 18(2): 171-177. doi: 10.1007/s11769-008-0171-9
    [16] CAO Yun-gang, LIU Chuang.  NORMALIZED DIFFERENCE SNOW INDEX SIMULATION FOR SNOW-COVER MAPPING IN FOREST BY GEOSAIL MODEL . Chinese Geographical Science, 2006, 16(2): 171-175.
    [17] YU Ya-juan, GUO Huai-cheng, LIU Yong, WANG Shu-tong, WANG Jin-feng.  FUZZY COMPREHENSIVE EVALUATION MODEL OF ECOLOGICAL DEMONSTRATION AREA . Chinese Geographical Science, 2005, 15(4): 303-308.
    [18] FU Qiang, LU Tie-guang, FU Hong.  APPLYING PPE MODEL BASED ON RAGA TO CLASSIFY AND EVALUATE SOIL GRADE . Chinese Geographical Science, 2002, 12(2): 136-141.
    [19] GU Feng-xue, ZHANG Yuan-dong, CHU Yu, SHI Qing-dong, PAN Xiao-ling.  PRIMARY ANALYSIS ON GROUNDWATER, SOIL MOISTURE AND SALINITY IN FUKANG OASIS OF SOUTHERN JUNGGAR BASIN . Chinese Geographical Science, 2002, 12(4): 333-338.
    [20] 陈亚宁.  STUDY ON THE MODEL FOR PREDICTING SOIL EROSION AND ITS APPLICATION IN ARID AREA . Chinese Geographical Science, 1999, 9(4): 373-376.
  • 加载中
计量
  • 文章访问数:  313
  • HTML全文浏览量:  0
  • PDF下载量:  1154
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-16
  • 修回日期:  2014-04-14
  • 刊出日期:  2015-03-27

Mapping of Regional Soil Salinities in Xinjiang and Strategies for Ame-lioration and Management

doi: 10.1007/s11769-014-0718-x
    基金项目:  Under the auspices of Key Program of National Science Foundation of China (No. 41361140361)
    通讯作者: CHEN Xi. E-mail:Chenxi@ms.xjb.ac.cn

摘要: Information on the spatial distribution of soil salinity can be used as guidance in avoiding the continued degradation of land and water resources by better informing policy makers. However, most regional soil-salinity maps are produced through a conventional direct-linking method derived from historic observations. Such maps lack spatial details and are limited in describing the evolution of soil salinization in particular instances. To overcome these limitations, we employed a method that included an integrative hierarchical-sampling strategy (IHSS) and the Soil Land Inference Model (SoLIM) to map soil salinity over a regional area. A fuzzy c-means (FCM) classifier is performed to generate three measures, comprising representative grade, representative area, and representative level (membership). IHSS employs these three measures to ascertain how many representative samples are appropriate. Through this synergetic assessment, representative samples are obtained and their soil-salinity values are measured. These samples are input to SoLIM, which is constructed based on fuzzy logic, to calculate the soil-forming environmental similarities between representative samples and other locations. Finally, a detailed soil-salinity map is produced through an averaging function that is linearly weighted, which is used to integrate the soil salinity value and soil similarity. This case study, in the Uyghur Autonomous Region of Xinjiang of China, demonstrates that the employed method can produce soil salinity map at a higher level of spatial detail and accuracy. Twenty-three representative points are determined. The results show that 1) the prediction is appropriate in Kuqa Oasis (R2=0.70, RPD=1.55, RMSE=12.86) and Keriya Oasis (R2=0.75, RPD=1.66, RMSE=10.92), that in Fubei Oasis (R2=0.77, RPD=2.01, RMSE=6.32) perform little better than in those two oases, according to the evaluation criterion. 2) Based on all validation samples from three oases, accuracy estimation show the employed method (R2=0.74, RPD=1.67, RMSE=11.18) performed better than the multiple linear regression model (R2=0.60, RPD=1.47, RMSE=14.45). 3) The statistical result show that approximately half (48.07%) of the study area has changed to salt-affected soil, mainly distributed in downstream of oases, around lakes, on both sides of rivers and more serious in the southern than the northern Xinjiang. To deal with this issue, a couple of strategies involving soil-salinity monitoring, water management, and plant diversification are proposed, to reduce soil salinization. Finally, this study concludes that the employed method can serve as an alternative model for soil-salinity mapping on a large scale.

English Abstract

WANG Fei, CHEN Xi, LUO Geping, HAN Qifei. Mapping of Regional Soil Salinities in Xinjiang and Strategies for Ame-lioration and Management[J]. 中国地理科学, 2015, 25(3): 321-336. doi: 10.1007/s11769-014-0718-x
引用本文: WANG Fei, CHEN Xi, LUO Geping, HAN Qifei. Mapping of Regional Soil Salinities in Xinjiang and Strategies for Ame-lioration and Management[J]. 中国地理科学, 2015, 25(3): 321-336. doi: 10.1007/s11769-014-0718-x
WANG Fei, CHEN Xi, LUO Geping, HAN Qifei. Mapping of Regional Soil Salinities in Xinjiang and Strategies for Ame-lioration and Management[J]. Chinese Geographical Science, 2015, 25(3): 321-336. doi: 10.1007/s11769-014-0718-x
Citation: WANG Fei, CHEN Xi, LUO Geping, HAN Qifei. Mapping of Regional Soil Salinities in Xinjiang and Strategies for Ame-lioration and Management[J]. Chinese Geographical Science, 2015, 25(3): 321-336. doi: 10.1007/s11769-014-0718-x
参考文献 (101)

目录

    /

    返回文章
    返回