留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multiple Cropping Intensity in China Derived from Agro-meteorolo­gical Observations and MODIS Data

YAN Huimin XIAO Xiangming HUANG Heqing LIU Jiyuan CHEN Jingqing BAI Xuehong

YAN Huimin, XIAO Xiangming, HUANG Heqing, LIU Jiyuan, CHEN Jingqing, BAI Xuehong. Multiple Cropping Intensity in China Derived from Agro-meteorolo­gical Observations and MODIS Data[J]. 中国地理科学, 2014, (2): 205-219. doi: 10.1007/s11769-013-0637-2
引用本文: YAN Huimin, XIAO Xiangming, HUANG Heqing, LIU Jiyuan, CHEN Jingqing, BAI Xuehong. Multiple Cropping Intensity in China Derived from Agro-meteorolo­gical Observations and MODIS Data[J]. 中国地理科学, 2014, (2): 205-219. doi: 10.1007/s11769-013-0637-2
YAN Huimin, XIAO Xiangming, HUANG Heqing, LIU Jiyuan, CHEN Jingqing, BAI Xuehong. Multiple Cropping Intensity in China Derived from Agro-meteorolo­gical Observations and MODIS Data[J]. Chinese Geographical Science, 2014, (2): 205-219. doi: 10.1007/s11769-013-0637-2
Citation: YAN Huimin, XIAO Xiangming, HUANG Heqing, LIU Jiyuan, CHEN Jingqing, BAI Xuehong. Multiple Cropping Intensity in China Derived from Agro-meteorolo­gical Observations and MODIS Data[J]. Chinese Geographical Science, 2014, (2): 205-219. doi: 10.1007/s11769-013-0637-2

Multiple Cropping Intensity in China Derived from Agro-meteorolo­gical Observations and MODIS Data

doi: 10.1007/s11769-013-0637-2
基金项目: Under the auspices of Strategic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues of Chinese Academy of Sciences (No. XDA05050602), Major State Basic Research Development Program of China (No. 2010CB950904), National Natural Science Foundation of China (No. 40921140410, 41071344), Land Cover and Land Use Change Program of National Aeronautics and Space Administration, USA (No. NAG5-11160, NNG05GH80G)
详细信息
    通讯作者:

    YAN Huimin,yanhm@igsnrr.ac.cn

Multiple Cropping Intensity in China Derived from Agro-meteorolo­gical Observations and MODIS Data

  • 摘要: Double- and triple-cropping in a year have played a very important role in meeting the rising need for food in China. However, the intensified agricultural practices have significantly altered biogeochemical cycles and soil quality. Understanding and mapping cropping intensity in China′s agricultural systems are therefore necessary to better estimate carbon, nitrogen and water fluxes within agro-ecosystems on the national scale. In this study, we investigated the spatial pattern of crop calendar and multiple cropping rotations in China using phenological records from 394 agro-meteorological stations (AMSs) across China. The results from the analysis of in situ field observations were used to develop a new algorithm that identifies the spatial distribution of multiple cropping in China from moderate resolution imaging spectroradiometer (MODIS) time series data with a 500 m spatial resolution and an 8-day temporal resolution. According to the MODIS-derived multiple cropping distribution in 2002, the proportion of cropland cultivated with multiple crops reached 34% in China. Double-cropping accounted for approximately 94.6% and triple-cropping for 5.4%. The results demonstrat that MODIS EVI (Enhanced Vegetation Index) time series data have the capability and potential to delineate the dynamics of double- and triple-cropping practices. The resultant multiple cropping map could be used to evaluate the impacts of agricultural intensification on biogeochemical cycles.
  • [1] Biradar C M, Xiao X M, 2011. Quantifying the area and spatial distribution of double- and triple-cropping croplands in India with multi-temporal MODIS imagery in 2005. International Journal of Remote Sensing, 32(2): 367-386. doi: 10.1080/ 01431160903464179
    [2] Cao M K, Prince S D, Shugart H H, 2002. Increasing terrestrial carbon uptake from the 1980s to the 1990s with changes in climate and atmospheric CO2. Global Biogeochemical Cycles, 16(4): 1069. doi:  10.1029/2001GB001553
    [3] Defries R S, Field C B, Fung I et al., 1999. Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity. Global Biogeochemical Cycles, 13(3): 803-815. doi:  10.1029/1999GB900037
    [4] Defries R S, Hansen M C, Townshend J R G, 2000. Global continuous fields of vegetation characteristics: A linear mixture model applied to multi-year 8 km AVHRR data. International Journal of Remote Sensing, 21(6-7): 1389-1414. doi: 10.1080/ 014311600210236
    [5] Dogliotti S, Rossing W A H, Ittersum M K, 2004. Systematic design and evaluation of crop rotations enhancing soil conservation, soil fertility and farm income: A case study for vegetable farms in South Uruguay. Agricultural Systems, 80(3): 277-302. doi: 10.1016/j. agsy.2003.08.001
    [6] Eickhout B, Bouwman A F, Van Z H, 2006. The role of nitrogen in world food production and environmental sustainability. Agriculture, Ecosystems & Environment, 116(1-2): 4-14. doi:  10.1016/j.agee.2006.03.009
    [7] Foley J A, DeFries R, Asner G P et al., 2005. Global consequences of land use. Science, 309(5734): 570-574. doi: 10.1126/ science.111 1772
    [8] Friedl M A, McIver D K, Hodges J C F et al., 2002. Global land cover mapping from MODIS: Algorithms and early results. Remote Sensing of Environment, 83(1-2): 287-302. doi:  10.1016/S0034-4257(02)00078-0
    [9] Frolking S, Qiu J J, Boles S et al., 2002. Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China. Global Biogeochemical Cycles, 16(4): 1091. doi:  10.1029/2001GB001425
    [10] Frolking S, Xiao X M, Zhuang Y H et al., 1999. Agricultural land-use in China: A comparison of area estimates from ground-based census and satellite-borne remote sensing. Global Ecology and Biogeography, 8(5): 407-416. doi: 10.1046/j.1365-2699.199 9.00157.x
    [11] Huete A, Didan K, Miura T et al., 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2): 195-213. doi:  10.1016/S0034-4257(02)00096-2
    [12] Hurtt G C, Rosentrater L, Frolking S et al., 2001. Linking remote-sensing estimates of land cover and census statistics on land use to produce maps of land use of the conterminous United States. Global Biogeochemical Cycles, 15(3): 673-685. doi: 10.1029/2000GB 001299
    [13] Li C S, Zhuang Y H, Frolking S et al., 2003. Modeling soil organic carbon change in croplands of China. Ecological Applications, 13(2): 327-336. doi: 10.1890/1051-0761(2003) 013
    [14] Liu J Y, Liu M L, Deng X Z et al., 2002. The land use and land cover change database and its relative studies in China. Journal of Geographical Sciences, 12(3): 275-282. doi: 10.1007/ BF02837545
    [15] Liu J Y, Liu M L, Tian H Q et al., 2005. Spatial and temporal patterns of China′s cropland during 1990-2000: An analysis based on Landsat TM data. Remote Sensing of Environment, 98(4): 442-456. doi:  10.1016/j.rse.2005.08.012
    [16] Liu J Y, Liu M L, Zhuang D F et al., 2003a. Study on spatial pattern of land-use change in China during 1995-2000. Science in China Series D: Earth Sciences, 46(4): 373-384. doi: 10.1360/ 03yd9033
    [17] Liu J Y, Zhuang D F, Luo D et al., 2003b. Land-cover classification of China: Integrated analysis of AVHRR imagery and geophysical data. International Journal of Remote Sensing, 24(12): 2485-2500. doi:  10.1080/01431160110115582
    [18] Qiu J J, Tang H J, Frolking S et al., 2003. Mapping single-, double-, and triple-crop agriculture in China at 0.5° × 0.5° by combining county-scale census data with a remote sensing-derived land cover map. Geocarto International, 18(2): 3-13. doi: 10.1080/101060403 08542268
    [19] Ren W, Tian H Q, Xu X F et al., 2011. Spatial and temporal patterns of CO2 and CH4 fluxes in China′ s croplands in response to multifactor environmental changes. Tellus B, 63(2): 222-240. doi:  10.1111/j.1600-0889.2010.00522.x
    [20] Roerink G J, Menenti M, Verhoef W, 2000. Reconstructing cloudfree NDVI composites using Fourier analysis of time series. International Journal of Remote Sensing, 21(9): 1911-1917. doi:  10.1080/014311600209814
    [21] Sakamoto T, Van Nguyen N, Ohno H et al., 2006. Spatio-tempo­ral distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow of the Mekong and Bassac rivers. Remote Sensing of Environment, 100(1): 1-16. doi:  10.1016/j.rse.2005.09.007
    [22] Sakamoto T, Yokozawa M, Toritani H et al., 2005. A crop phenology detection method using time-series MODIS data. Remote Sensing of Environment, 96(3-4): 366-374. doi:  10.1016/j.rse.2005.03.008
    [23] Stoate C, Boatman N D, Borralho R J et al., 2001. Ecological impacts of arable intensification in Europe. Journal of Environ­mental Management, 63(4): 337-365. doi: 10.1006/jema. 2001.0473
    [24] Stockholm, 2005. Global land project (GLP): Science plan and implementation strategy. IGBP (International Geosphere- Biosphere Program) Report No.53/IHDP (International Human Dimensions Programme) Report No.19. Available at: www. igbp.net.
    [25] Tilman D, Balzer C, Hill J et al., 2011. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108(50): 20260-20264. doi: 10.1073/pnas.11164 37108
    [26] Verhoef W, Menenti M, Azzali S, 1996. A color composite of NOAA-AVHRR-NDVI based on time series analysis (1981- 1992). International Journal of Remote Sensing, 17(2): 231- 235. doi:  10.1080/01431169608949001
    [27] Vitousek P M, Aber J D, Howarth R W et al., 1997. Human alteration of the global nitrogen cycle: Sources and consequences. Ecological Applications, 7(3): 737-750. doi: 10.1890/ 1051-0761(1997)007
    [28] Wu H B, Guo Z, Peng C, 2003. Land use induced changes of organic carbon storage in soils of China. Global Change Biology, 9(3): 305-315. doi:  10.1046/j.1365-2486.2003.00590.x
    [29] Xiao X M, Boles S, Frolking S et al., 2006. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sensing of Environment, 100(1): 95-113. doi:  10.1016/j.rse.2005.10.004
    [30] Xiao X M, Boles S, Liu J Y et al., 2005a. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sensing of Environment, 95(4): 480-492. doi:  10.1016/j.rse.2004.12.009
    [31] Xiao X M, Zhang Q Y, Saleska S et al., 2005b. Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest. Remote Sensing of Environment, 94(1): 105-122. doi:  10.1016/j.rse.2004.08.015
    [32] Xiao X, Boles S, Frolking S et al., 2002a. Landscape-scale characterization of cropland in China using vegetation and Landsat TM images. International Journal of Remote Sensing, 23(18): 3579-3594. doi:  10.1080/01431160110106069
    [33] Xiao X, Boles S, Frolking S et al., 2002b. Observation of flooding and rice transplanting of paddy rice fields at the site to landscape scales in China using VEGETATION sensor data. International Journal of Remote Sensing, 23(15): 3009-3022. doi:  10.1080/01431160110107734
    [34] Xie Binggeng, Li Xiaoqing, 2001. Preliminary research of rural land use condition and countermeasure in Hunan province. Economic Geography, 21(6): 723-726. (in Chinese)
    [35] Yan H M, Cao M K, Liu J Y et al., 2007. Potential and sustainability for carbon sequestration with improved soil management in agricultural soils of China. Agriculture, Ecosystems and Environment, 121(4): 325-335. doi: 10.1016/j.agee.2006. 11.008
    [36] Yan H M, Fu Y L, Xiao X M et al., 2009. Modeling Gross Primary Productivity for winter wheat-maize double cropping system using MODIS time series and CO2 eddy flux tower data. Agriculture, Ecosystems and Environment, 129(4): 391- 400. doi: 10.1016/j.agee. 2008.10.017
    [37] Yan Huimin, Huang Heqing, Xiao Xiangming et al., 2008. Spatio-temporal distribution of multiple cropping systems in the Poyang Lake region. Acta Ecologica Sinica, 28(9): 4517-4523. (in Chinese)
    [38] Yan Huimin, Xiao Xiangming, Huang Heqing, 2010. Satellite observed spatio-temporal characteristics of multiple cropping and crop calendar in Huang-Huai-Hai plain. Acta Ecologica Sinica, 30(9): 2416-2423. (in Chinese)
    [39] Yang H, Li X, 2000. Cultivated land and food supply in China. Land Use Policy, 17(2): 73-88. doi: 10.1016/S0264-8377(00) 00008-9
    [40] Zhang X Y, Friedl M A, Schaaf C B et al., 2003. Monitoring vegetation phenology using MODIS. Remote Sensing of Environment, 84(3): 471-475. doi:  10.1016/S0034-4257(02)00135-9
    [41] Zhang X Y, Friedl M A, Schaaf C B, 2006. Global vegetation phenology from moderate resolution imaging spectroradiometer (MODIS): Evaluation of global patterns and comparison with in situ measurements. Journal of Geophysical Research, 111(G4): G04017. doi: 10.1029/2006JG000217Zhang Y Q, Yu Q, Jiang J et al., 2008. Calibration of Terra/ MODIS gross primary production over an irrigated cropland on the North China Plain and an alpine meadow on the Tibetan Plateau. Global Change Biology, 14(4): 757-767. doi: 10.1111/ j.1365-248 6.2008.01538.x
  • [1] Shandong NIU, Xiao LYU, Guozheng GU, Xiaoping ZHOU, Wenlong PENG.  Sustainable Intensification of Cultivated Land Use and Its Influencing Factors at the Farming Household Scale: A Case Study of Shandong Province, China . Chinese Geographical Science, 2021, 31(1): 109-125. doi: 10.1007/s11769-021-1178-8
    [2] Majid AHMADI-MOLAVERDI, Iraj JABBARI, Amanollah FATHNIA.  Relationship Between Land Use Changes and the Production of Dust Sources in Kermanshah Province, Iran . Chinese Geographical Science, 2021, 31(6): 1057-1069. doi: 10.1007/s11769-021-1235-3
    [3] LI Ruimin, CHEN Weiwei, ZHAO Hongmei, WU Xuewei, ZHANG Mengduo, TONG Daniel Q, XIU Aijun.  Inventory of Atmospheric Pollutant Emissions from Burning of Crop Residues in China Based on Satellite-retrieved Farmland Data . Chinese Geographical Science, 2020, 30(2): 266-278. doi: 10.1007/s11769-020-1110-7
    [4] ZHAO Boyu, DU Jia, SONG Kaishan, Pierre-André JACINTHE, XIANG Xiaoyun, ZHOU Haohao, YANG Zhichao, ZHANG Liyan, GUO Pingping.  Spatio-temporal Variation of Water Heat Flux Using MODIS Land Surface Temperature Product over Hulun Lake, China During 2001-2018 . Chinese Geographical Science, 2020, 30(6): 1065-1080. doi: 10.1007/s11769-020-1166-4
    [5] Juliana USEYA, CHEN Shengbo.  Exploring the Potential of Mapping Cropping Patterns on Smallholder Scale Croplands Using Sentinel-1 SAR Data . Chinese Geographical Science, 2019, 20(4): 626-639. doi: 10.1007/s11769-019-1060-0
    [6] WANG Renjing, LI Xiubin, TAN Minghong, XIN Liangjie, WANG Xue, WANG Yahui, JIANG Min.  Inter-provincial Differences in Rice Multi-cropping Changes in Main Double-cropping Rice Area in China: Evidence from Provinces and Households . Chinese Geographical Science, 2019, 20(1): 127-138. doi: 10.1007/s11769-018-0972-4
    [7] YUAN Shuai, LIU Chengyu, LIU Xueqin.  Practical Model of Sea Ice Thickness of Bohai Sea Based on MODIS Data . Chinese Geographical Science, 2018, 28(5): 863-872. doi: 10.1007/s11769-018-0986-y
    [8] Khodakaram HATAMI BAHMANBEIGLOU, Saeed MOVAHEDI.  Identifying Sky Conditions in Iran from MODIS Terra and Aqua Cloud Products . Chinese Geographical Science, 2017, 27(5): 800-809. doi: 10.1007/s11769-017-0908-4
    [9] LIN Sen, LIU Ronggao.  A Simple Method to Extract Tropical Monsoon Forests Using NDVI Based on MODIS Data:A Case Study in South Asia and Peninsula Southeast Asia . Chinese Geographical Science, 2016, 26(1): 22-34. doi: 10.1007/s11769-015-0789-3
    [10] ZHU Xiaohua, ZHAO Yingshi, FENG Xiaoming.  A Methodology for Estimating Leaf Area Index by Assimilating Remote Sensing Data into Crop Model Based on Temporal and Spatial Knowledge . Chinese Geographical Science, 2013, 23(5): 550-561. doi: 10.1007/s11769-013-0621-x
    [11] ZHENG Wei, SHAO Jiali, WANG Meng, HUANG Dapeng.  A Thin Cloud Removal Method from Remote Sensing Image for Water Body Identification . Chinese Geographical Science, 2013, 23(4): 460-469. doi: 10.1007/s11769-013-0601-1
    [12] ZHANG Shengwei, LEI Yuping, WANG Liping, et al..  Crop Classification Using MODIS NDVI Data Denoised by Wavelet: A Case Study in Hebei Plain, China . Chinese Geographical Science, 2011, 21(3): 322-333.
    [13] LIANG Liqiao, LI Lijuan, ZHANG Li, LI Jiuyi, LI Bin.  Sensitivity of Penman-Monteith Reference Crop Evapotranspiration in Tao'er River Basin of Northeastern China . Chinese Geographical Science, 2008, 18(4): 340-347. doi: 10.1007/s11769-008-0340-x
    [14] PENG Guangxiong, LI Jing, CHEN Yunhao, Abdul Patah NORIZAN, Liphong TAY.  High-resolution Surface Relative Humidity Computation Using MODIS Image in Peninsular Malaysia . Chinese Geographical Science, 2006, 16(3): 260-264.
    [15] LI Xiu-jun, CUI Xiang-hao, LI Qu-sheng.  IMPROVEMENT OF SANDY SOIL WITH WATER-CONSERVING MEMBRANE AND ITS EFFECT ON CROP GROWTH . Chinese Geographical Science, 2005, 15(1): 64-69.
    [16] LI Lin-yi, LIU Zhao-li, LI Chun-lin, WAN En-pu.  SPATIAL CORRELATION ANALYSIS OF CROP YIELD IN THE MIDDLE AND WEST OF JILIN PROVINCE . Chinese Geographical Science, 2002, 12(2): 182-185.
    [17] 龚子同, 黄标, 欧阳洮.  PEDOGEOCHEMISTRY OF CHINA AND ITS SIGNIFICANCE IN AGRICULTURAL PRODUCTION . Chinese Geographical Science, 1998, 8(4): 299-308.
    [18] 千怀遂.  REGIONALIZATION FOR LARGE AREA CROP ESTIMATES BY REMOTE SENSING ——A Case Study of Chinese Wheat . Chinese Geographical Science, 1998, 8(3): 204-211.
    [19] 曹永生, 张贤珍, 白建军, 龚高法.  DISTRIBUTION OF THE MAIN CROP GERMPLASM RESOURCES IN CHINA . Chinese Geographical Science, 1997, 7(4): 310-316.
    [20] 陶战.  AGRICULTURAL ENVIRONMENT PROBLEMS AND COUNTERMEASURES IN CHINA . Chinese Geographical Science, 1992, 2(2): 159-163.
  • 加载中
计量
  • 文章访问数:  252
  • HTML全文浏览量:  6
  • PDF下载量:  1242
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-12
  • 修回日期:  2012-12-17
  • 刊出日期:  2014-01-27

Multiple Cropping Intensity in China Derived from Agro-meteorolo­gical Observations and MODIS Data

doi: 10.1007/s11769-013-0637-2
    基金项目:  Under the auspices of Strategic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues of Chinese Academy of Sciences (No. XDA05050602), Major State Basic Research Development Program of China (No. 2010CB950904), National Natural Science Foundation of China (No. 40921140410, 41071344), Land Cover and Land Use Change Program of National Aeronautics and Space Administration, USA (No. NAG5-11160, NNG05GH80G)
    通讯作者: YAN Huimin,yanhm@igsnrr.ac.cn

摘要: Double- and triple-cropping in a year have played a very important role in meeting the rising need for food in China. However, the intensified agricultural practices have significantly altered biogeochemical cycles and soil quality. Understanding and mapping cropping intensity in China′s agricultural systems are therefore necessary to better estimate carbon, nitrogen and water fluxes within agro-ecosystems on the national scale. In this study, we investigated the spatial pattern of crop calendar and multiple cropping rotations in China using phenological records from 394 agro-meteorological stations (AMSs) across China. The results from the analysis of in situ field observations were used to develop a new algorithm that identifies the spatial distribution of multiple cropping in China from moderate resolution imaging spectroradiometer (MODIS) time series data with a 500 m spatial resolution and an 8-day temporal resolution. According to the MODIS-derived multiple cropping distribution in 2002, the proportion of cropland cultivated with multiple crops reached 34% in China. Double-cropping accounted for approximately 94.6% and triple-cropping for 5.4%. The results demonstrat that MODIS EVI (Enhanced Vegetation Index) time series data have the capability and potential to delineate the dynamics of double- and triple-cropping practices. The resultant multiple cropping map could be used to evaluate the impacts of agricultural intensification on biogeochemical cycles.

English Abstract

YAN Huimin, XIAO Xiangming, HUANG Heqing, LIU Jiyuan, CHEN Jingqing, BAI Xuehong. Multiple Cropping Intensity in China Derived from Agro-meteorolo­gical Observations and MODIS Data[J]. 中国地理科学, 2014, (2): 205-219. doi: 10.1007/s11769-013-0637-2
引用本文: YAN Huimin, XIAO Xiangming, HUANG Heqing, LIU Jiyuan, CHEN Jingqing, BAI Xuehong. Multiple Cropping Intensity in China Derived from Agro-meteorolo­gical Observations and MODIS Data[J]. 中国地理科学, 2014, (2): 205-219. doi: 10.1007/s11769-013-0637-2
YAN Huimin, XIAO Xiangming, HUANG Heqing, LIU Jiyuan, CHEN Jingqing, BAI Xuehong. Multiple Cropping Intensity in China Derived from Agro-meteorolo­gical Observations and MODIS Data[J]. Chinese Geographical Science, 2014, (2): 205-219. doi: 10.1007/s11769-013-0637-2
Citation: YAN Huimin, XIAO Xiangming, HUANG Heqing, LIU Jiyuan, CHEN Jingqing, BAI Xuehong. Multiple Cropping Intensity in China Derived from Agro-meteorolo­gical Observations and MODIS Data[J]. Chinese Geographical Science, 2014, (2): 205-219. doi: 10.1007/s11769-013-0637-2
参考文献 (41)

目录

    /

    返回文章
    返回