留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A MODIS Time Series Data Based Algorithm for Mapping Forest Fire Burned Area

YANG Wei ZHANG Shuwen TANG Junmei BU Kun YANG Jiuchun CHANG Liping

YANG Wei, ZHANG Shuwen, TANG Junmei, BU Kun, YANG Jiuchun, CHANG Liping. A MODIS Time Series Data Based Algorithm for Mapping Forest Fire Burned Area[J]. 中国地理科学, 2013, 23(3): 344-352. doi: 10.1007/s11769-013-0597-6
引用本文: YANG Wei, ZHANG Shuwen, TANG Junmei, BU Kun, YANG Jiuchun, CHANG Liping. A MODIS Time Series Data Based Algorithm for Mapping Forest Fire Burned Area[J]. 中国地理科学, 2013, 23(3): 344-352. doi: 10.1007/s11769-013-0597-6
YANG Wei, ZHANG Shuwen, TANG Junmei, BU Kun, YANG Jiuchun, CHANG Liping. A MODIS Time Series Data Based Algorithm for Mapping Forest Fire Burned Area[J]. Chinese Geographical Science, 2013, 23(3): 344-352. doi: 10.1007/s11769-013-0597-6
Citation: YANG Wei, ZHANG Shuwen, TANG Junmei, BU Kun, YANG Jiuchun, CHANG Liping. A MODIS Time Series Data Based Algorithm for Mapping Forest Fire Burned Area[J]. Chinese Geographical Science, 2013, 23(3): 344-352. doi: 10.1007/s11769-013-0597-6

A MODIS Time Series Data Based Algorithm for Mapping Forest Fire Burned Area

doi: 10.1007/s11769-013-0597-6
基金项目: Under the auspices of Strategic Pilot Science and Technology Projects of Chinese Academic Sciences (No. XDA05090310)
详细信息
    通讯作者:

    ZHANG Shuwen. E-mail: Zhangshuwen@neigae.ac.cn

A MODIS Time Series Data Based Algorithm for Mapping Forest Fire Burned Area

Funds: Under the auspices of Strategic Pilot Science and Technology Projects of Chinese Academic Sciences (No. XDA05090310)
More Information
    Corresponding author: ZHANG Shuwen. E-mail: Zhangshuwen@neigae.ac.cn
  • 摘要: Burned area mapping is an essential step in the forest fire research to investigate the relationship between forest fire and climate change and the effect of forest fire on carbon budgets. This study proposed an algorithm to map forest fire burned area using the Moderate-Resolution Imaging Spectroradiameter (MODIS) time series data in Heilongjiang Province, China. The algorithm is divided into two steps: Firstly, the ‘core' pixels were extracted to represent the most possible burned pixels based on the comparison of the temporal change of Global Environmental Monitoring Index (GEMI), Burned Area Index (BAI) and MODIS active fire products between pre-and post-fires. Secondly, a 15-km distance was set to extract the entire burned areas near the ‘core' pixels as more relaxed conditions were used to identify the fire pixels for reducing the omission error as much as possible. The algorithm comprehensively considered the thermal characteristics and the spectral change between pre-and post-fires, which are represented by the MODIS fire products and the spectral index, respectively. Tahe, Mohe and Huma counties of Heilongjiang Province, China were chosen as the study area for burned area mapping and a time series of burned maps were produced from 2000 to 2011. The results show that the algorithm can extract burned areas more accurately with the highest accuracy of 96.61%.
  • [1] Amiro B D, Orhcansky A L, Barr A G et al., 2006. The effect of post-fire stand age on the boreal forest energy balance. Agricultural and Forest Meteorology, 140: 41-50. doi: 10.1016/j. agrformet.2006.02.014
    [2] Barbosa P M, Gregoire J M, Pereira J M C, 1999. An algorithm for extracting burned areas from time series of AVHRR GAC data applied at a continental scale. Remote Sensing of Envi-ronment, 69: 253-263.
    [3] Cai Hongyan, Zhang Shuwen, Bu Kun et al., 2011. Intergrating geographical data and phenological characteristics derived from MODIS data for improving land over mapping. Journal of Geographical Sciences, 21(4): 705-718. doi:  10.1007/s11442-011-0874-1
    [4] Carl H K, 2006. Ecological and sampling constraints on defining landscape fire severity. Fire Ecology, 2(2): 34-59.
    [5] Chuvieco E, Martin M P, Palacios A, 2002. Assessment of differ-ent spectral indices in the red-near-infrared spectral domain for burned land discrimination. International Journal of Remote Sensing, 23(23): 5103-5110. doi:  10.1080/01431160210153129
    [6] Chuvieco E, 2008. Satellite observation of biomass burning: Im-plications in global change research. In: Chuvieco (ed.). Earth Observation and Global Change. New York: Springer.
    [7] Dozier J, 1981. A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sensing of Environment, 11: 221-229.
    [8] Emilio C, Peter E, Alexander P T et al., 2008. Generation of long time series of burn area maps of the boreal forest from NOAA-AVHRR composite data. Remote Sensing of Environ-ment, 112: 2381-2396. doi:  10.1016/j.rse.2007.11.007
    [9] Flannigan M D, Logan K A, Amiro B D, 2005. Future area burned in Canada. Climatic Change, 72: 1-16. doi:  10.1006/s10584-005-5935-y
    [10] Fraser R H, Li Z, Cihlar J, 2000. Hotspot and NDVI Differencing Synergy (HANDS): A new technique for burned area mapping over boreal forest. Remote Sensing of Environment, 74: 362-376.
    [11] Giglio L, Descloitres J, Justice C O et al., 2003. An enhanced contextual fire detection algorithm for MODIS. Remote Sensing of Environment, 87: 273-282. doi: 10.1016/S0034-4257 (03)00184-6
    [12] Giglio L, Van der Werf G R, Randerson J T et al., 2005. Global estimation of burned area using MODIS active fire observations. Atmospheric Chemistry and Physics Discussion, 5: 11091-11141.
    [13] Gillet N P, Weaver A J, Zwiers F W et al., 2004. Detecting the effect of climate change on Canadian forest. Geophysical Re-search Letters, 31: L18211. doi:  18210.11029/12004GL020876
    [14] Goetz S, Fiske G, Bunn A, 2006. Using satellite time-series data sets to analyze fire disturbance and forest recovery across Canada. Remote Sensing of Environment, 92: 411-423. doi:  10.1016/j.rse.2006.01.011
    [15] IPCC (Intergovernmental Panel on Climate Change), 2007. Climate change 2007: The physical science basis. summary for policymakers. In: Change I P O C (ed.). Geneva IPCC Secre-tariat.
    [16] Jose A, Moreno R, David R et al., 2012. Burned area mapping time series in Canada (1984-1999) from NOAA-AVHRR LTDR: A comparison with other remote sensing products and fire perimeters. Remote Sensing of Environment, 117: 407-414. doi:  10.1016/j.rse.2011.10.017
    [17] Kashian D M, Romme W H, Tinker D B et al., 2006. Carbon storage on landscapes with stand-replacing fires. BioScience, 56(7): 598-606. doi:  org/10.1641/0006-3568(2006)56
    [18] [598: CSOLWS]2.0.CO;2
    [19] Kasischke E S, Hewson J H, Stock B et al., 2003. The use of ASTR active fire counts for estimating relative patterns of biomass burning-A study from the boreal forest region. Geo-physical Research Letters, 30(18): 1969-1972. doi:  10.1029/2003GL017859
    [20] Kasischke E S, Tanase M A, Bourgeau-Chavez L L et al., 2011. Soil moisture limitations on monitoring boreal forest regrowth using spaceborne L-band SAR data. Remote Sensing of Envi-ronment, 115: 227-232. doi:  10.1016/j.rse.2010.08.022
    [21] Kasischke E S and Turetsky M R, 2006. Recent changes in the fire regime across the North American boreal region—Spatial and temporal patterns of burning across Canada and Alaska. Geophysical Research Letters, 33: 1-5. doi: 10. 1029/2006GL 025677
    [22] Kucera J, Yasuoka Y, Dye D G, 2005. Creating a forest fire data-base for the Far East Asia using NOAA/AVHRR observation. International Journal of Remote Sensing, 26(11), 2423-2439. doi:  10.1080/01431160410001735085
    [23] Lhermitte S, Verbesselt J, Verstraeten W et al., 2010. A pixel based regeneration index using time series similarity and spatial context. Photogrammetric Engineering and Remote Sensing, 76(6): 673-682.
    [24] Louis G, Tatiana L, David P et al., 2009. An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sensing of Environment, 113: 408-420. doi: 10.1016/j.rse. 2008.10.006
    [25] Martín M P, 1998. Cartografía e inventario de incendios forestales en la Península Ibérica a partir de imágenes NOAA-AVHRR. Departmento de Geografía. Alcalá de Henares, Universidad de Alcalá.
    [26] Martín M P, Chuvieco E, 1995. Mapping and evaluation of burned land from multitemporal analysis of AVHRR NDVI images. EARSeL Advances in Remote Sensing, 4(3): 7-13.
    [27] Maxim D, Peter P, Anna L et al., 2010. Reconstructing long time series of burned areas in arid grasslands of southern Russia by satellite remote sensing. Remote Sensing of Environment, 114: 1638-1648. doi:  10.1016/j.rse.2010.02.010
    [28] Monaghati S, Samadzadegan F, Azizi A, 2009. An agent-based approach for regional forest fire detection using MODIS data. Journal of Applied Sciences, 9(20): 3672-3681.
    [29] Pereira J M C, 1999. A comparative evaluation of NOAA/AVHRR vegetation indexes for burned surface detection and mapping. IEEE Transactions on Geoscience and Remote Sensing, 37: 217-226.
    [30] Pinty B, Verstraete M M, 1992. GEMI: A non-linear index to monitor global vegetation from satellites. Vegetatio, 101: 15-20.
    [31] Pu R L, Li Z Q, Gong P et al., 2007. Development and analysis of a 12-year daily 1-km forest fire dataset across North America form NOAA/AVHRR data. Remote Sensing of Environment, 108: 198-208. doi:  10.1016/j.rse.2006.02.027
    [32] Ramsey E, Nelson G, Sapkota S et al., 1999. Using mul-tiple-polarization L-band radar to monitor marsh burn recovery. IEEE Transactions on Geoscience and Remote Sensing, 37: 635-639.
    [33] Roy D P, Boschetti L, Justice C O et al., 2008. The collection 5 MODIS burned area product―Global evaluation by compari-son with the MODIS active fire product. Remote Sensing of Environment, 112: 3690-3707. doi:  10.1016/j.rse.2008.05.013
    [34] Roy D P, Lewis P E, Justice C O, 2002. Burned area mapping using multi-temporal moderate spatial resolution data—A bi-directional reflectance model-based expectation approach. Remote Sensing of Environment, 83: 263-286.
    [35] Sukhinin A I, French N H, Kasischke E S et al., 2004. AVHRR-based mapping of fires in Russia: New products for fire management and carbon cycle studies. Remote Sensing of Environment, 93: 546-564. doi:  10.1016/j.rse.2004.08.011
    [36] Vafeidis N A, Drake N A, Wainwrighe J, 2007. A proposed methon for modelling the hydrologic response fo cathments to burning with the use of remote sensing and GIS. Catena, 70(3): 396-409.
    [37] Vander Werf G R, Randerson J T, Giglio L et al., 2006. Interannual variability in global biomass burning emission from 1997 to 2004. Atmospheric Chemistry and Physics, 6: 3175-3226.
    [38] Wang Caiyun, Zha Xidunzhu, Chen Tao, 2010. Application of EOS/MODIS data on the forest fire in Tibet. Plateau and Mountain Meteorology Research, 30(3): 65-69. (in Chinese)
    [39] Zhang X Y, Shobha K, Brad Q, 2011. Estimation of biomass burned areas using multiple-satellite-observed active fires. IEEE Transactions on Geoscience and Remote Sensing, 49(11): 4469-4482.
  • [1] Fengjiao SONG, Shijie WANG, Xiaoyong BAI, Luhua WU, Jinfeng WANG, Chaojun LI, Huan CHEN, Xuling LUO, Huipeng XI, Sirui ZHANG, Guofeng LUO, Mengqi YAN, Qingqing ZHEN.  A New Indicator for Global Food Security Assessment: Harvested Area Rather Than Cropland Area . Chinese Geographical Science, 2022, (): 1-14. doi: 10.1007/s11769-022-1264-6
    [2] LI Bo, SHI Zhaoyuan, TIAN Chuang.  Spatio-temporal Difference and Influencing Factors of Environmental Adaptability Measurement of Human-sea Economic System in Liaoning Coastal Area . Chinese Geographical Science, 2018, 28(2): 313-324. doi: 10.1007/s11769-018-0948-4
    [3] ZHU Guofeng, QIN Dahe, TONG Huali, LIU Yuanfeng, LI Jiafang, CHEN Dongdong, WANG Kai, HU Pengfei.  Variation of Thornthwaite Moisture Index in Hengduan Mountains, China . Chinese Geographical Science, 2016, 26(5): 687-702. doi: 10.1007/s11769-016-0820-3
    [4] DU Huishi, JIANG Hailing, ZHANG Lifu, MAO Dehua, WANG Zongming.  Evaluation of Spectral Scale Effects in Estimation of Vegetation Leaf Area Index Using Spectral Indices Methods . Chinese Geographical Science, 2016, 26(6): 731-744. doi: 10.1007/s11769-016-0833-y
    [5] HUANG Yue, FANG Yangang, ZHANG Ye, LIU Jisheng.  A Study of Resource Curse Effect of Chinese Provinces Based on Human Developing Index . Chinese Geographical Science, 2014, 0(6): 732-739. doi: 10.1007/s11769-014-0727-9
    [6] ZHU Xiaohua, ZHAO Yingshi, FENG Xiaoming.  A Methodology for Estimating Leaf Area Index by Assimilating Remote Sensing Data into Crop Model Based on Temporal and Spatial Knowledge . Chinese Geographical Science, 2013, 23(5): 550-561. doi: 10.1007/s11769-013-0621-x
    [7] WEN Zhaofei, ZHANG Ce, ZHANG Shuqing, et al.  Effects of Normalized Difference Vegetation Index and Related wavebands′ Characteristics on Detecting Spatial Heterogeneity Using Variogram-based Analysis . Chinese Geographical Science, 2012, 22(2): 188-195.
    [8] DU Peijun, YUAN Linshan, XIA Junshi, et al..  Fusion and Classification of Beijing-1 Small Satellite Remote Sensing Image for Land Cover Monitoring in Mining Area . Chinese Geographical Science, 2011, 21(6): 656-665.
    [9] CHEN Liding, TIAN Huiying, FU Bojie, ZHAO Xinfeng.  Development of a New Index for Integrating Landscape Patterns with Ecological Processes at Watershed Scale . Chinese Geographical Science, 2009, 19(1): 37-45. doi: 10.1007/s11769-009-0037-9
    [10] DAI Guangquan, BAO Jigang.  Spatial Distribution of Integrated Impact Index of Mega-event——A Case Study of Expo '99 Kunming . Chinese Geographical Science, 2008, 18(3): 214-223. doi: 10.1007/s11769-008-0214-2
    [11] CAO Yun-gang, LIU Chuang.  NORMALIZED DIFFERENCE SNOW INDEX SIMULATION FOR SNOW-COVER MAPPING IN FOREST BY GEOSAIL MODEL . Chinese Geographical Science, 2006, 16(2): 171-175.
    [12] ZHANG Xiu-ying, FENG Xue-zhi, DENG Hui.  LAND-COVER DENSITY-BASED APPROACH TO URBAN LAND USE MAPPING USING HIGH-RESOLUTION IMAGERY . Chinese Geographical Science, 2005, 15(2): 162-167.
    [13] YOU Fei, LI Yu, DONG Suo-cheng.  ENVIRONMENTAL SUSTAINABILITY AND SCENARIOS OF URBANIZATION IN ARID AREA——A Case Study in Wuwei City of Gansu Province . Chinese Geographical Science, 2005, 15(2): 120-130.
    [14] Hamadoun BOKAR, TANG Jie, LIN Nian-feng.  GROUNDWATER QUALITY AND CONTAMINATION INDEX MAPPING IN CHANGCHUN CITY,CHINA . Chinese Geographical Science, 2004, 14(1): 63-70.
    [15] WANG Ling, LI Xiu-zhen, HU Yuan-man, GUO Du-fa.  ANALYSIS OF HABITAT PATTERN CHANGE OF RED-CROWNED CRANES IN THE LIAO HE DELTA USING SPATIAL DIVERSITY INDEX . Chinese Geographical Science, 2003, 13(2): 164-170.
    [16] ZHOU Qi, LI Jing-yi, ZHAO Jing-bo.  STUDY ON INDEX SYSTEM OF ASSESSMENT OF PUBLIC DISASTER PERCEPTION IN THE WESTERN CHINA . Chinese Geographical Science, 2003, 13(3): 284-288.
    [17] YIN Yong, FANG Nian-qiao, HU Chao-yong, NIE Hao-gang, QING Zun-li.  RELATIVE BRIGHTNESS INDEX AND IT'S CLIMATIC SIGNIFICANCE FROM LACUSTRINE SEDIM ENT OF NAPAHAI LAKE,NORTHWESTERN YUNNAN PLATEAU,CHINA . Chinese Geographical Science, 2002, 12(3): 249-253.
    [18] LIU Ming-liang, ZHUANG Da-fang, LIU Ji-yuan.  FARMLAND AND URBAN AREA DYNAMICS MONITORING IN CHINA USING REMOTE SENSING AND SPATIAL STATISTICS METHODOLOGY . Chinese Geographical Science, 2001, 11(1): 42-49.
    [19] 朱颜明, 杨爱玲, 霍文毅.  PEAT GEOCHEMICAL MONITORING FOR ENVIRONMENTAL CHANGES . Chinese Geographical Science, 1999, 9(1): 83-86.
    [20] 王协康, 方铎, 曹叔尤.  A NEW INDEX OF QUANTITATIVE STUDY ON THE DRAINAGE GEOMORPHY SYSTEM . Chinese Geographical Science, 1999, 9(3): 279-283.
  • 加载中
计量
  • 文章访问数:  611
  • HTML全文浏览量:  2
  • PDF下载量:  1089
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-11
  • 修回日期:  2012-10-08
  • 刊出日期:  2013-05-29

A MODIS Time Series Data Based Algorithm for Mapping Forest Fire Burned Area

doi: 10.1007/s11769-013-0597-6
    基金项目:  Under the auspices of Strategic Pilot Science and Technology Projects of Chinese Academic Sciences (No. XDA05090310)
    通讯作者: ZHANG Shuwen. E-mail: Zhangshuwen@neigae.ac.cn

摘要: Burned area mapping is an essential step in the forest fire research to investigate the relationship between forest fire and climate change and the effect of forest fire on carbon budgets. This study proposed an algorithm to map forest fire burned area using the Moderate-Resolution Imaging Spectroradiameter (MODIS) time series data in Heilongjiang Province, China. The algorithm is divided into two steps: Firstly, the ‘core' pixels were extracted to represent the most possible burned pixels based on the comparison of the temporal change of Global Environmental Monitoring Index (GEMI), Burned Area Index (BAI) and MODIS active fire products between pre-and post-fires. Secondly, a 15-km distance was set to extract the entire burned areas near the ‘core' pixels as more relaxed conditions were used to identify the fire pixels for reducing the omission error as much as possible. The algorithm comprehensively considered the thermal characteristics and the spectral change between pre-and post-fires, which are represented by the MODIS fire products and the spectral index, respectively. Tahe, Mohe and Huma counties of Heilongjiang Province, China were chosen as the study area for burned area mapping and a time series of burned maps were produced from 2000 to 2011. The results show that the algorithm can extract burned areas more accurately with the highest accuracy of 96.61%.

English Abstract

YANG Wei, ZHANG Shuwen, TANG Junmei, BU Kun, YANG Jiuchun, CHANG Liping. A MODIS Time Series Data Based Algorithm for Mapping Forest Fire Burned Area[J]. 中国地理科学, 2013, 23(3): 344-352. doi: 10.1007/s11769-013-0597-6
引用本文: YANG Wei, ZHANG Shuwen, TANG Junmei, BU Kun, YANG Jiuchun, CHANG Liping. A MODIS Time Series Data Based Algorithm for Mapping Forest Fire Burned Area[J]. 中国地理科学, 2013, 23(3): 344-352. doi: 10.1007/s11769-013-0597-6
YANG Wei, ZHANG Shuwen, TANG Junmei, BU Kun, YANG Jiuchun, CHANG Liping. A MODIS Time Series Data Based Algorithm for Mapping Forest Fire Burned Area[J]. Chinese Geographical Science, 2013, 23(3): 344-352. doi: 10.1007/s11769-013-0597-6
Citation: YANG Wei, ZHANG Shuwen, TANG Junmei, BU Kun, YANG Jiuchun, CHANG Liping. A MODIS Time Series Data Based Algorithm for Mapping Forest Fire Burned Area[J]. Chinese Geographical Science, 2013, 23(3): 344-352. doi: 10.1007/s11769-013-0597-6
参考文献 (39)

目录

    /

    返回文章
    返回