留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spatio-temporal Dynamics of Urbanization in China Using DMSP/OLS Nighttime Light Data from 1992-2013

XU Pengfei LIN Muying JIN Pingbin

XU Pengfei, LIN Muying, JIN Pingbin. Spatio-temporal Dynamics of Urbanization in China Using DMSP/OLS Nighttime Light Data from 1992-2013[J]. 中国地理科学, 2021, 31(1): 70-80. doi: 10.1007/s11769-020-1169-1
引用本文: XU Pengfei, LIN Muying, JIN Pingbin. Spatio-temporal Dynamics of Urbanization in China Using DMSP/OLS Nighttime Light Data from 1992-2013[J]. 中国地理科学, 2021, 31(1): 70-80. doi: 10.1007/s11769-020-1169-1
XU Pengfei, LIN Muying, JIN Pingbin. Spatio-temporal Dynamics of Urbanization in China Using DMSP/OLS Nighttime Light Data from 1992-2013[J]. Chinese Geographical Science, 2021, 31(1): 70-80. doi: 10.1007/s11769-020-1169-1
Citation: XU Pengfei, LIN Muying, JIN Pingbin. Spatio-temporal Dynamics of Urbanization in China Using DMSP/OLS Nighttime Light Data from 1992-2013[J]. Chinese Geographical Science, 2021, 31(1): 70-80. doi: 10.1007/s11769-020-1169-1

Spatio-temporal Dynamics of Urbanization in China Using DMSP/OLS Nighttime Light Data from 1992-2013

doi: 10.1007/s11769-020-1169-1
基金项目: 

Under the auspices of State Scholarship Fund of China Scholarship Council (No. 201706320300)

Spatio-temporal Dynamics of Urbanization in China Using DMSP/OLS Nighttime Light Data from 1992-2013

Funds: 

Under the auspices of State Scholarship Fund of China Scholarship Council (No. 201706320300)

  • 摘要: Understanding the dynamics of urbanization is essential to the sustainable development of cities. Meanwhile the analysis of urban development can also provide scientifically and effective information for decision-making. With the long-term Defense Meteorological Satellite Program’s Operational Linescan System (DMSP/OLS) nighttime light images, a pixel level assessment of urbanization of China from 1992 to 2013 was conducted in this study, and the spatio-temporal dynamics and future trends of urban development were fully detected. The results showed that the urbanization and urban dynamics of China experienced drastic fluctuations from 1992 to 2013, especially for those in the coastal and metropolitan areas. From a regional perspective, it was found that the urban dynamics and increasing trends in North Coast China, East Coast China and South Coast China were much more stable and significant than that in other regions. Moreover, with the sustainability estimating of nighttime light dynamics, the regional agglomeration trends of urban regions were also detected. The light intensity in nearly 50% of lighted pixels may continuously decrease in the future, indicating a severe situation of urbanization within these regions. In this study, The results revealed in this study can provided a new insight in long time urbanization detecting and is thus beneficial to the better understanding of trends and dynamics of urban development.
  • [1] Archila Bustos M F, Hall O, Anderson M, 2015. Nighttime lights and population changes in Europe 1992–2012. Ambio, 44(7):653–665. doi:  10.1007/s13280-015-0646-8
    [2] Bennett M M, Smith L C, 2017. Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics. Remote Sensing of Environment, 192: 176–197. doi:  10.1016/j.rse.2017.01.005
    [3] Cao X, Wang J M, Chen J et al., 2014. Spatialization of electricity consumption of China using saturation-corrected DMSP-OLS data. International Journal of Applied Earth Observation and Geoinformation, 28: 193–200. doi:  10.1016/j.jag.2013.12.004
    [4] Ceola S, Laio F, Montanari A, 2015. Human-impacted waters:new perspectives from global high-resolution monitoring. Water Resources Research, 51(9): 7064–7079. doi: 10.1002/ 2015WR017482
    [5] Chen M X, Liu W D, Tao X L, 2013. Evolution and assessment on China’s urbanization 1960–2010: under-urbanization or over-urbanization? Habitat International, 38: 25–33. doi: 10.1016/j.habitatint.2012.09.007
    [6] Croft T A, 1978. Nighttime images of the earth from space. Scientific American, 239(1): 86–101. doi:  10.1038/scientificamerican0778-86
    [7] Elvidge C, Ziskin D, Baugh K et al., 2009. A fifteen year record of global natural gas flaring derived from satellite data. Energies, 2(3): 595–622. doi:  10.3390/en20300595
    [8] Fan P L, Qi J G, 2010. Assessing the sustainability of major cities in China. Sustainability Science, 5(1): 51–68. doi:  10.1007/s11625-009-0096-y
    [9] Fensholt R, Langanke T, Rasmussen K et al., 2012. Greenness in semi-arid areas across the globe 1981–2007: an Earth Observing Satellite based analysis of trends and drivers. Remote Sensing of Environment, 121: 144–158. doi: 10.1016/j.rse. 2012.01.017
    [10] Granero M A S, Segovia J E T, Pérez J G, 2008. Some comments on Hurst exponent and the long memory processes on capital markets. Physica A: Statistical Mechanics and its Applications, 387(22): 5543–5551. doi: 10.1016/j.physa.2008.05. 053
    [11] Gu Y Y, Qiao X N, Xu M J et al., 2019. Assessing the impacts of urban expansion on bundles of ecosystem services by Dmsp-Ols nighttime light data. Sustainability, 11(21): 5888.doi:  10.3390/su11215888
    [12] Hamed K H, Rao A R, 1998. A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology, 204(1–4):182–196. doi:  10.1016/S0022-1694(97)00125-X
    [13] Hsu F C, Baugh K E, Ghosh T et al., 2015. DMSP-OLS radiance calibrated nighttime lights time series with intercalibration.Remote Sensing, 7(2): 1855–1876. doi:  10.3390/rs70201855
    [14] Hu Y N, Peng J, Liu Y X et al., 2017. Mapping development pattern in Beijing-Tianjin-Hebei urban agglomeration using DMSP/OLS nighttime light data. Remote Sensing, 9(7): 760.doi:  10.3390/rs9070760
    [15] Hurst H E, 1951. Long-term storage capacity of reservoirs.Transactions of the American Society of Civil Engineers, 116:770–799.
    [16] Imhoff M L, Lawrence W T, Stutzer D C et al., 1997. A technique for using composite DMSP/OLS ‘city light’ satellite data to map urban area. Remote Sensing of Environment, 61(3):361–370. doi:  10.1016/S0034-4257(97)00046-1
    [17] Jasiński T, 2019. Modeling electricity consumption using nighttime light images and artificial neural networks. Energy, 179:831–842. doi:  10.1016/j.energy.2019.04.221
    [18] Jia T, Chen K, Wang J Y, 2017. Characterizing the growth patterns of 45 major metropolitans in Mainland China using DMSP/OLS data. Remote Sensing, 9(6): 571. doi:  10.3390/rs9060571
    [19] Jiang W G, Yuan L H, Wang W J et al., 2015. Spatio-temporal analysis of vegetation variation in the Yellow River Basin.Ecological Indicators, 51: 117–126. doi: 10.1016/j.ecolind. 2014.07.031
    [20] Jiapaer G, Liang S L, Yi Q X et al., 2015. Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator. Ecological Indicators, 58: 64–76.doi:  10.1016/j.ecolind.2015.05.036
    [21] Karmeshu N, 2012. Trend Detection in Annual Temperature and Precipitation Using the Mann-Kendall Test: A Case Study to Assess Climate Change on Select States in the Northeastern United States. Philadelphia, PA: University of Pennsylvania.
    [22] Kendall M G, 1975. Rank Correlation Methods (4th ed). London:Charles Griffin.
    [23] Li Q T, Lu L L, Weng Q H et al., 2016. Monitoring urban dynamics in the southeast U.S.A. using time-series DMSP/OLS nightlight imagery. Remote Sensing, 8(7): 578. doi:  10.3390/rs8070578
    [24] Li X, Li D R, 2014. Can night-time light images play a role in evaluating the Syrian Crisis?. International Journal of Remote Sensing, 35(18): 6648–6661. doi: 10.1080/01431161. 2014.971469
    [25] Li X, Ma R Q, Zhang Q L et al., 2019. Anisotropic characteristic of artificial light at night: systematic investigation with VIIRS DNB multi-temporal observations. Remote Sensing of Environment, 233: 111357. doi:  10.1016/j.rse.2019.111357
    [26] Li X C, Gong P, 2016. Urban growth models: progress and perspective. Science Bulletin, 61(21): 1637–1650. doi:  10.1007/s11434-016-1111-1
    [27] Li X C, Zhou Y Y, 2017. Urban mapping using DMSP/OLS stable night-time light: a review. International Journal of Remote Sensing, 38(21): 6030–6046. doi: 10.1080/01431161.2016. 1274451
    [28] Liang W, Yang M, 2019. Urbanization, economic growth and environmental pollution: evidence from China. Sustainable Computing: Informatics and Systems, 21: 1–9. doi:  10.1016/j.suscom.2018.11.007
    [29] Lin G C S, 2007. Reproducing spaces of Chinese urbanisation:new city-based and land-centred urban transformation. Urban Studies, 44(9): 1827–1855. doi: 10.1080%2F00420980 701426673
    [30] Liu L, Leung Y, 2015. A study of urban expansion of prefectural-level cities in South China using night-time light images.International Journal of Remote Sensing, 36(22): 5557–5575.doi:  10.1080/01431161.2015.1101650
    [31] Ma Q, He C Y, Wu J G et al., 2014. Quantifying spatiotemporal patterns of urban impervious surfaces in China: an improved assessment using nighttime light data. Landscape and Urban Planning, 130: 36–49. doi:  10.1016/j.landurbplan.2014.06.009
    [32] Ma T, Zhou C H, Pei T et al., 2012. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: a comparative case study from China’s cities.Remote Sensing of Environment, 124: 99–107. doi: 10.1016/j.rse.2012.04.018
    [33] Mandelbrot B B, Wallis J R, 1969. Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence. Water Resources Research, 5(5): 967–988. doi: 10.1029/WR005i005p00967
    [34] Mann H B, 1945. Nonparametric tests against trend. Econometrica, 13(3): 245–259. doi:  10.2307/1907187
    [35] Milich L, Weiss E, 2000. GAC NDVI interannual coefficient of variation (CoV) images: ground truth sampling of the Sahel along north-south transects. International Journal of Remote Sensing, 21(2): 235–260. doi: 10.1080/014311600 210812
    [36] Propastin P, Kappas M, 2012. Assessing satellite-observed nighttime lights for monitoring socioeconomic parameters in the Republic of Kazakhstan. GIScience & Remote Sensing, 49(4):538–557. doi:  10.2747/1548-1603.49.4.538
    [37] Qian B, Rasheed K, 2004. Hurst exponent and financial market predictability. In: Proceedings of the 2nd IASTED International Conference on Financial Engineering and Applications.Cambridge, MA, USA: MIT, 203–209.
    [38] Román M O, Wang Z S, Sun Q S et al., 2018. NASA’s Black Marble nighttime lights product suite. Remote Sensing of Environment, 210: 113–143. doi:  10.1016/j.rse.2018.03.017
    [39] Sen P K, 1968. Estimates of the regression coefficient based on Kendall’s Tau. Journal of the American Statistical Association, 63(324): 1379–1389. doi: 10.1080/01621459.1968. 10480934
    [40] Theil H, 1992. A rank-invariant method of linear and polynomial regression analysis. In: Advanced Studies in Theoretical and Applied Econometrics. (Vol. 23). Dordrecht: Springer, 345–381. doi:  10.1007/978-94-011-2546-8_20
    [41] Tripathy B R, Tiwari V, Pandey V et al., 2017. Estimation of urban population dynamics using DMSP-OLS night-time lights time series sensors data. IEEE Sensors Journal, 17(4):1013–1020. doi:  10.1109/JSEN.2016.2640181
    [42] Wei Y D, Ye X Y, 2014. Urbanization, urban land expansion and environmental change in China. Stochastic Environmental Research and Risk Assessment, 28(4): 757–765. doi: 10.1007/s00477-013-0840-9
    [43] Xin X, Liu B, Di K C et al., 2017. Monitoring urban expansion using time series of night-time light data: a case study in Wuhan, China. International Journal of Remote Sensing, 38(21):6110–6128. doi:  10.1080/01431161.2017.1312623
    [44] Xu P F, Wang Q, Jin J et al., 2019. An increase in nighttime light detected for protected areas in mainland China based on VIIRS DNB data. Ecological Indicators, 107: 105615. doi: 10.1016/j.ecolind.2019.105615
    [45] Xu P F, Jin P B, Cheng Q, 2020. Monitoring regional urban dynamics using DMSP/OLS nighttime light data in Zhejiang province. Mathematical Problems in Engineering, 2020:9652808. doi:  10.1155/2020/9652808
    [46] Yang P, Xia J, Zhang Y Y et al., 2017. Temporal and spatial variations of precipitation in Northwest China during 1960–2013.Atmospheric Research, 183: 283–295. doi:  10.1016/j.atmosres.2016.09.014
    [47] Yi K P, Tani H, Li Q et al., 2014. Mapping and evaluating the urbanization process in northeast China using DMSP/OLS nighttime light data. Sensors, 14(2): 3207–3226. doi:  10.3390/s140203207
    [48] Yi K P, Zeng Y, Wu B F, 2016. Mapping and evaluation the process, pattern and potential of urban growth in China. Applied Geography, 71: 44–55. doi:  10.1016/j.apgeog.2016.04.011
    [49] Yin Z M, Li X, Tong F et al., 2020. Mapping urban expansion using night-time light images from Luojia1-01 and International Space Station. International Journal of Remote Sensing, 41(7): 2603–2623. doi: 10.1080/01431161.2019. 1693661
    [50] Zhang Q, Seto K C, 2013. Can night-time light data identify typologies of urbanization? A global assessment of successes and failures. Remote Sensing, 5(7): 3476–3494. doi:  10.3390/rs5073476
    [51] Zhang Q W, Su S L, 2016. Determinants of urban expansion and their relative importance: a comparative analysis of 30 major metropolitans in China. Habitat International, 58: 89–107.doi:  10.1016/j.habitatint.2016.10.003
    [52] Zhao N, Jiao Y M, Ma T et al., 2019. Estimating the effect of urbanization on extreme climate events in the Beijing-TianjinHebei region, China. Science of the Total Environment, 688:1005–1015. doi: 10.1016/j.scitotenv.2019.06. 374
    [53] Zheng Q M, Zeng Y, Deng J S et al., 2017. ‘Ghost cities’ identification using multi-source remote sensing datasets: A case study in Yangtze River Delta. Applied Geography, 80:112–121. Doi:  10.1016/j.apgeog.2017.02.004
  • [1] YANG Zhen, ZHANG Xiaolei, LEI Jun, DUAN Zuliang, LI Jiangang.  Spatio-temporal Pattern Characteristics of Relationship Between Ur-banization and Economic Development at County Level in China . Chinese Geographical Science, 2019, 20(4): 553-567. doi: 10.1007/s11769-019-1053-z
    [2] TIAN Li, LI Yongfu, SHAO Lei, ZHANG Yue.  Measuring Spatio-temporal Characteristics of City Expansion and Its Driving Forces in Shanghai from 1990 to 2015 . Chinese Geographical Science, 2017, 27(6): 875-890. doi: 10.1007/s11769-017-0883-9
    [3] GU Chaolin, HU Lingqian, Ian G. COOK.  China's Urbanization in 1949-2015:Processes and Driving Forces . Chinese Geographical Science, 2017, 27(6): 847-859. doi: 10.1007/s11769-017-0911-9
    [4] WEN Qingke, ZHANG Zengxiang, SHI Lifeng, ZHAO Xiaoli, LIU Fang, XU Jinyong, YI Ling, LIU Bin, WANG Xiao, ZUO Lijun, HU Shunguang, LI Na, LI Minmin.  Extraction of Basic Trends of Urban Expansion in China over Past 40 Years from Satellite Images . Chinese Geographical Science, 2016, 26(2): 129-142. doi: 10.1007/s11769-016-0796-z
    [5] WANG Fenglong, LIU Yungang.  How Unique is ‘China Model’: A Review of Theoretical Perspectives on China's Urbanization in Anglophone Literature . Chinese Geographical Science, 2015, 25(1): 98-112. doi: 10.1007/s11769-014-0713-2
    [6] LIU Qinping, YANG Yongchun, TIAN Hongzhen, ZHANG Bo, GU Lei.  Assessment of Human Impacts on Vegetation in Built-up Areas in China Based on AVHRR, MODIS and DMSP_OLS Nighttime Light Data, 1992-2010 . Chinese Geographical Science, 2014, 0(2): 231-244. doi: 10.1007/s11769-013-0645-2
    [7] CHANG Qing1, LI Shuangcheng2, WANG Yanglin2, WU Jiansheng3, XIE Miaomiao4.  Spatial Process of Green Infrastructure Changes Associated with Rapid Urbanization in Shenzhen, China . Chinese Geographical Science, 2013, 23(1): 113-128.
    [8] XIE Miaomiao, WANG Yanglin, FU Meichen, ZHANG Dingxuan.  Pattern Dynamics of Thermal-environment Effect During Urbanization: A Case Study in Shenzhen City, China . Chinese Geographical Science, 2013, 23(1): 101-112.
    [9] TAN Minghong, Guy M ROBINSON, LI Xiubin, XIN Liangjie.  Spatial and Temporal Variability of Farm Size in China in Context of Rapid Urbanization . Chinese Geographical Science, 2013, 23(5): 607-619. doi: 10.1007/s11769-013-0610-0
    [10] YANG Shangguang, Mark Yaolin WANG, WANG Chunlan.  Revisiting and Rethinking Regional Urbanization in Changjiang River Delta, China . Chinese Geographical Science, 2012, 22(5): 617-625.
    [11] FAN Jie, WANG Hongyuan, CHEN Dong, ZHANG Wenzhong, WANG Chuansheng.  Discussion on Sustainable Urbanization in Tibet . Chinese Geographical Science, 2010, 20(3): 258-268. doi: 10.1007/s11769-010-0258-y
    [12] XIANG Wei, WANG Yu, LI Ning, ZHU Qingwei.  Grey-relation Analysis of Traffic System and Urbanization in Jilin Province of China . Chinese Geographical Science, 2007, 17(3): 216-221. doi: 10.1007/s11769-007-0216-5
    [13] WANG Bo, GUO Qinghai, Dou Sen.  Urbanization of Jilin Province and Its Spatial Pattern . Chinese Geographical Science, 2006, 16(4): 359-364.
    [14] YUAN Wen, Philip JAMES, YANG Kai.  IMPACT OF URBANIZATION ON STRUCTURE AND FUNCTION OF RIVER SYSTEM—Case Study of Shanghai, China . Chinese Geographical Science, 2006, 16(2): 102-108.
    [15] LIU Yao-bin, LI Ren-dong, LI Chun-hua.  SCENARIOS SIMULATION OF COUPLING SYSTEM BETWEEN URBANIZATION AND ECO-ENVIRONMENT IN JIANGSU PROVINCE BASED ON SYSTEM DYNAMICS MODEL . Chinese Geographical Science, 2005, 15(3): 219-226.
    [16] CHE Xiu-zhen, SHANG Jin-cheng.  STRATEGIC ENVIRONMENTAL ASSESSMENT FOR SUSTAINABLE DEVELOPMENT IN URBANIZATION PROCESS IN CHINA . Chinese Geographical Science, 2004, 14(2): 148-152.
    [17] ZHANG Jing-xiang.  RECONSIDERATION OF THE URBANIZATION RESEARCH IN CHINA . Chinese Geographical Science, 2000, 10(2): 119-124.
    [18] CHEN Shu-peng, ZENG Shan, ZHONG Er-shun.  THE STEPS FORWARD OF GIS IN CHINA . Chinese Geographical Science, 2000, 10(1): 1-6.
    [19] 孟晓晨.  RURAL-URBAN LABORERS'MOBILITY AND URBANIZATION IN CHINA . Chinese Geographical Science, 1994, 4(4): 333-344.
    [20] 李若建.  ON SPATIAL AND TEMPORAL CHANGES OF PRESENT URBAN POPULATION IN CHINA . Chinese Geographical Science, 1993, 3(4): 326-333.
  • 加载中
计量
  • 文章访问数:  52
  • HTML全文浏览量:  14
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-09

Spatio-temporal Dynamics of Urbanization in China Using DMSP/OLS Nighttime Light Data from 1992-2013

doi: 10.1007/s11769-020-1169-1
    基金项目:

    Under the auspices of State Scholarship Fund of China Scholarship Council (No. 201706320300)

摘要: Understanding the dynamics of urbanization is essential to the sustainable development of cities. Meanwhile the analysis of urban development can also provide scientifically and effective information for decision-making. With the long-term Defense Meteorological Satellite Program’s Operational Linescan System (DMSP/OLS) nighttime light images, a pixel level assessment of urbanization of China from 1992 to 2013 was conducted in this study, and the spatio-temporal dynamics and future trends of urban development were fully detected. The results showed that the urbanization and urban dynamics of China experienced drastic fluctuations from 1992 to 2013, especially for those in the coastal and metropolitan areas. From a regional perspective, it was found that the urban dynamics and increasing trends in North Coast China, East Coast China and South Coast China were much more stable and significant than that in other regions. Moreover, with the sustainability estimating of nighttime light dynamics, the regional agglomeration trends of urban regions were also detected. The light intensity in nearly 50% of lighted pixels may continuously decrease in the future, indicating a severe situation of urbanization within these regions. In this study, The results revealed in this study can provided a new insight in long time urbanization detecting and is thus beneficial to the better understanding of trends and dynamics of urban development.

English Abstract

XU Pengfei, LIN Muying, JIN Pingbin. Spatio-temporal Dynamics of Urbanization in China Using DMSP/OLS Nighttime Light Data from 1992-2013[J]. 中国地理科学, 2021, 31(1): 70-80. doi: 10.1007/s11769-020-1169-1
引用本文: XU Pengfei, LIN Muying, JIN Pingbin. Spatio-temporal Dynamics of Urbanization in China Using DMSP/OLS Nighttime Light Data from 1992-2013[J]. 中国地理科学, 2021, 31(1): 70-80. doi: 10.1007/s11769-020-1169-1
XU Pengfei, LIN Muying, JIN Pingbin. Spatio-temporal Dynamics of Urbanization in China Using DMSP/OLS Nighttime Light Data from 1992-2013[J]. Chinese Geographical Science, 2021, 31(1): 70-80. doi: 10.1007/s11769-020-1169-1
Citation: XU Pengfei, LIN Muying, JIN Pingbin. Spatio-temporal Dynamics of Urbanization in China Using DMSP/OLS Nighttime Light Data from 1992-2013[J]. Chinese Geographical Science, 2021, 31(1): 70-80. doi: 10.1007/s11769-020-1169-1
参考文献 (53)

目录

    /

    返回文章
    返回