留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spatio-temporal Variation of Water Heat Flux Using MODIS Land Surface Temperature Product over Hulun Lake, China During 2001-2018

ZHAO Boyu DU Jia SONG Kaishan Pierre-André JACINTHE XIANG Xiaoyun ZHOU Haohao YANG Zhichao ZHANG Liyan GUO Pingping

ZHAO Boyu, DU Jia, SONG Kaishan, Pierre-André JACINTHE, XIANG Xiaoyun, ZHOU Haohao, YANG Zhichao, ZHANG Liyan, GUO Pingping. Spatio-temporal Variation of Water Heat Flux Using MODIS Land Surface Temperature Product over Hulun Lake, China During 2001-2018[J]. 中国地理科学, 2020, 30(6): 1065-1080. doi: 10.1007/s11769-020-1166-4
引用本文: ZHAO Boyu, DU Jia, SONG Kaishan, Pierre-André JACINTHE, XIANG Xiaoyun, ZHOU Haohao, YANG Zhichao, ZHANG Liyan, GUO Pingping. Spatio-temporal Variation of Water Heat Flux Using MODIS Land Surface Temperature Product over Hulun Lake, China During 2001-2018[J]. 中国地理科学, 2020, 30(6): 1065-1080. doi: 10.1007/s11769-020-1166-4
ZHAO Boyu, DU Jia, SONG Kaishan, Pierre-André JACINTHE, XIANG Xiaoyun, ZHOU Haohao, YANG Zhichao, ZHANG Liyan, GUO Pingping. Spatio-temporal Variation of Water Heat Flux Using MODIS Land Surface Temperature Product over Hulun Lake, China During 2001-2018[J]. Chinese Geographical Science, 2020, 30(6): 1065-1080. doi: 10.1007/s11769-020-1166-4
Citation: ZHAO Boyu, DU Jia, SONG Kaishan, Pierre-André JACINTHE, XIANG Xiaoyun, ZHOU Haohao, YANG Zhichao, ZHANG Liyan, GUO Pingping. Spatio-temporal Variation of Water Heat Flux Using MODIS Land Surface Temperature Product over Hulun Lake, China During 2001-2018[J]. Chinese Geographical Science, 2020, 30(6): 1065-1080. doi: 10.1007/s11769-020-1166-4

Spatio-temporal Variation of Water Heat Flux Using MODIS Land Surface Temperature Product over Hulun Lake, China During 2001-2018

doi: 10.1007/s11769-020-1166-4
基金项目: 

Under the auspices of National Key Research and Development Program of China (No. 2016YFA0602301, 2016YFB0501502), Strategic Planning Project of the Northeast Institute of Geography and Agroecology (IGA), Chinese Academy of Sciences (No. Y6H2091001), National Forestry Science and Technology Demonstration Promotion Project (No. JLT2018-03)

详细信息
    通讯作者:

    DU Jia.E-mail:jiaqidu@iga.ac.cn

Spatio-temporal Variation of Water Heat Flux Using MODIS Land Surface Temperature Product over Hulun Lake, China During 2001-2018

Funds: 

Under the auspices of National Key Research and Development Program of China (No. 2016YFA0602301, 2016YFB0501502), Strategic Planning Project of the Northeast Institute of Geography and Agroecology (IGA), Chinese Academy of Sciences (No. Y6H2091001), National Forestry Science and Technology Demonstration Promotion Project (No. JLT2018-03)

  • 摘要: Heat flux is important for studying interactions between atmosphere and lake. The heat exchange between air-water interfaces is one of the important ways to govern the temperature of the water surface. Heat exchange between the air-water interfaces and the surrounding environment is completed by solar radiation, conduction, and evaporation, and all these processes mainly occur at the air-water interface. Hulun Lake was the biggest lake which is also an important link and an indispensable part of the water cycle in Northeast China. This study mapped surface energy budget to better understand spatial and temporal variations in Hulun Lake in China from 2001 to 2018. Descriptive statistics were computed to build a historical time series of mean monthly heat flux at daytime and nighttime from June to September during 2001–2018. Remote sensing estimation methods we used was suitable for Hulun Lake (R2 = 0.81). At month scale, shortwave radiation and latent heat flux were decrease from June to September. However, the maximum sensible heat flux appeared in September. Net longwave radiation was the largest in August. The effective heat budget showed that Hulun Lake gained heat in the frost-free season with highest value in June (686.31 W/m2), and then steadily decreased to September (439.76 W/m2). At annual scale, net longwave radiation, sensible heat flux and latent heat flux all show significant growth trend from 2001 to 2018 (P < 0.01). Wind speed had the well correlation on sensible heat flux and latent heat flux. Water surface temperature showed the highest coefficient in sensitivity analysis.
  • [1] Bogard M J, Finlay K, Waiser M J et al., 2017. Effects of experimental nitrogen fertilization on planktonic metabolism and CO2 flux in a hypereutrophic hardwater lake. PLoS One, 12(12):e0188652. doi: 10.1371/journal.pone.0188652
    [2] Bolsenga S J, 1975. Estimating energy budget components to determine Lake Huron evaporation. Water Resources Research, 11(5):661-666. doi: 10.1029/WR011i005p00661
    [3] Bonan G B, 1995. Sensitivity of a GCM simulation to inclusion of inland water surfaces. Journal of Climate, 8(11):2691-2704. doi: 10.1175/1520-0442(1995)008<2691:SOAGST>2.0.CO;2
    [4] Bonnet M P, Poulin M, Devaux J, 2000. Numerical modeling of thermal stratification in a lake reservoir:methodology and case study. Aquatic Sciences, 62(2):105-124. doi: 10.1007/s000270050001
    [5] Chen J Q, Li N, Liu Z L et al., 2016. Area monitoring of Namco lake in summer by high-resolution TerraSAR-X spotlight mode. Proceedings of 2016 Progress in Electromagnetic Research Symposium. Shanghai, China:IEEE, 5140-5143. doi: 10.1109/PIERS.2016.7735858
    [6] Cho E, Arhonditsis G B, Khim J et al., 2016. Modeling metal-sediment interaction processes:parameter sensitivity assessment and uncertainty analysis. Environmental Modelling & Software, 80:159-174. doi: 10.1016/j.envsoft.2016.02.026
    [7] Cole J J, Caraco N F, Kling G W et al., 1994. Carbon dioxide supersaturation in the surface waters of lakes. Science, 265(5178):1568-1570. doi: 10.1126/science.265.5178.1568
    [8] de Alcântara E H, Stech J L, Lorenzzetti J A et al., 2011. Time series analysis of water surface temperature and heat flux components in the Itumbiara Reservoir (GO), Brazil. Acta Limnologica Brasiliensia, 23(3):245-259. doi: 10.1590/S2179-975X2012005000002
    [9] Dee D P, Uppala S M, Simmons A J et al., 2011. The ERA-Interim reanalysis:configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656):553-597. doi: 10.1002/qj.828
    [10] Edinger J E, Duttweiler D W, Geyer J C, 1968. The response of water temperatures to meteorological conditions. Water Resources Research, 4(5):1137-1143. doi: 10.1029/WR004i005p01137
    [11] Goswami B N, 2004. Interdecadal change in potential predictability of the Indian summer monsoon. Geophysical Research Letters, 31(16):L16208. doi: 10.1029/2004GL020337
    [12] Hébert I, Dunlop E S, 2020. Temperature response in the physiology and growth of lake trout strains stocked in the Laurentian Great Lakes. Journal of Great Lakes Research, 46(2):366-375. doi: 10.1016/j.jglr.2020.01.012
    [13] Henderson-Sellers B, 1986. Calculating the surface energy balance for lake and reservoir modeling:a review. Reviews of Geophysics, 24(3):625-649. doi:10.1029/RG024i003p 00625
    [14] Hodges J L, Saylor J R, Kaye N B, 2016. A functional form for the diurnal variation of lake surface temperature on lake Hartwell, northwestern south Carolina. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(8):3564-3577. doi: 10.1109/JSTARS.2016.2555798
    [15] Hu Z Z, 1997. Interdecadal variability of summer climate over East Asia and its association with 500 hPa height and global sea surface temperature. Journal of Geophysical Research, 102(D16):19403-19412. doi: 10.1029/97JD01052
    [16] Huttunen J T, Alm J, Liikanen A et al., 2003. Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions. Chemosphere, 52(3):609-621. doi: 10.1016/S0045-6535(03)00243-1
    [17] Kalnay E, Kanamitsu M, Kistler R et al., 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American meteorological Society, 77(3):437-472. doi:10.1175/1520-0477 (1996)077<0437:TNYRP>2.0.CO;2
    [18] Large W G, Danabasoglu G, Doney S C et al., 1997. Sensitivity to surface forcing and boundary layer mixing in a global ocean model:annual-mean climatology. Journal of Physical Oceanography, 27(11):2418-2447. doi:10.1175/1520-0485(1997) 027< 2418:STSFAB> 2.0.CO;2
    [19] Lerman A, Imboden D M, Gat J R, 1995. Physics and Chemistry of Lakes. 2nd ed. Berlin, Germany:Springer. doi: 10.1007/978-3-642-85132-2
    [20] Li Chong, Ma Wei, Ye Baisheng et al., 2006. Estimation of water evaporation and water balance in Ungauged Hulun Lake. Journal of China Hydrology, 26(5):41-44. (in Chinese)
    [21] Liu H P, Zhang Y, Liu S H et al., 2009. Eddy covariance measurements of surface energy budget and evaporation in a cool season over southern open water in Mississippi. Journal of Geophysical Research, 114(D4):D04110. doi: 10.1029/2008JD010891
    [22] Liu W T, Katsaros K B, Businger J A, 1979. Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. Journal of the Atmospheric Sciences, 36(9):1722-1735. doi: 10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2
    [23] Lofgren B M, Zhu Y C, 2000. Surface energy fluxes on the Great Lakes based on satellite-observed surface temperatures 1992 to 1995. Journal of Great Lakes Research, 26(2):305-314. doi: 10.1016/S0380-1330(00)70694-0
    [24] Lowe P R, 1977. An approximating polynomial for the computation of saturation vapor pressure. Journal of Applied Meteorology, 16(1):100-103. doi:10.1175/1520-0450(1977)016< 0100:AAPFTC>2.0.CO;2
    [25] Mao J H, 2017. Study on the temporal and spatial pattern of achnatherum splendens community in Hulun Lake area. Proceedings of 2017 International Conference on Society Science. Atlantis Press. doi: 10.2991/icoss-17.2017.13
    [26] McFeeters S K, 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7):1425-1432. doi: 10.1080/01431169608948714
    [27] Nordbo A, Launiainen S, Mammarella I et al., 2011. LongA, Launnergy flux measurements and energy balance over a small boreal lake using eddy covariance technique. Journal of Geophysical Research, 116(D2):D02119. doi: 10.1029/2010JD014542
    [28] Oesch D C, Jaquet J M, Hauser A et al., 2005. Lake surface water temperature retrieval using advanced very high resolution radiometer and Moderate Resolution Imaging Spectroradiometer data:validation and feasibility study. Journal of Geophysical Research, 110(C12):C12014. doi: 10.1029/2004JC002857
    [29] Oswald C J, Rouse W R, 2004. Thermal characteristics and energy balance of various-size Canadian Shield lakes in the Mackenzie River Basin. Journal of Hydrometeorology, 5(1):129-144. doi:10.1175/1525-7541(2004)005<0129:TCAEBO> 2.0.CO;2
    [30] Pour H K, Choulga M, Eerola K et al., 2017. Towards improved objective analysis of lake surface water temperature in a NWP model:preliminary assessment of statistical properties. Tellus A:Dynamic Meteorology and Oceanography, 69(1):1313025. doi: 10.1080/16000870.2017.1313025
    [31] Qiao B J, Zhu L P, Wang J B et al., 2019. Estimation of lake water storage and changes based on bathymetric data and altimetry data and the association with climate change in the central Tibetan Plateau. Journal of Hydrology, 578:124052. doi: 10.1016/j.jhydrol.2019.124052
    [32] Reed R K, 1977. On estimating insolation over the ocean. Journal of Physical Oceanography, 7(3):482-485. doi: 10.1175/1520-0485(1977)007<0482:OEIOTO>2.0.CO;2
    [33] Saltelli A, Annoni P, 2010. How to avoid a perfunctory sensitivity analysis. Environmental Modelling & Software, 25(12):1508-1517. doi: 10.1016/j.envsoft.2010.04.012
    [34] Schladow S G, Pálmarsson S Ó, Steissberg T E et al., 2004. An extraordinary upwelling event in a deep thermally stratified lake. Geophysical Research Letters, 31(15):L15504. doi: 10.1029/2004GL020392
    [35] Sentlinger G I, Hook S J, Laval B, 2008. Sub-pixel water temperature estimation from thermal-infrared imagery using vectorized lake features. Remote Sensing of Environment, 112(4):1678-1688. doi: 10.1016/j.rse.2007.08.019
    [36] Sharaf N, Fadel A, Bresciani M et al., 2019. Lake surface temperature retrieval from Landsat-8 and retrospective analysis in Karaoun Reservoir, Lebanon. Journal of Applied Remote Sensing, 13(4):044505. doi: 10.1117/1.JRS.13.044505
    [37] Sturrock A M, Winter T C, Rosenberry D O, 1992. Energy budget evaporation from Williams Lake:a closed lake in north central Minnesota. Water Resources Research, 28(6):1605-1617. doi: 10.1029/92WR00553
    [38] Steissberg T E, Hook S J, Schladow S G et al., 2005. Characterizing partial upwellings and surface circulation at Lake Tahoe, California-Nevada, USA with thermal infrared images. Remote sensing of environment, 99(1-2):2-15. doi: 10.1029/2005GL022912
    [39] Sun X Y, Newham L T H, Croke B F W et al., 2012. Three complementary methods for sensitivity analysis of a water quality model. Environmental Modelling & Software, 37:19-29. doi: 10.1016/j.envsoft.2012.04.010
    [40] Virdis S G P, Soodcharoen N, Lugliè A et al., 2020. Estimation of satellite-derived lake water surface temperatures in the western Mediterranean:integrating multi-source, multi-resolution imagery and a long-term field dataset using a time series approach. Science of the Total Environment, 707:135567. doi: 10.1016/j.scitotenv.2019.135567
    [41] Wan Z M, 2008. New refinements and validation of the MODIS land-surface temperature/emissivity products. Remote Sensing of Environment, 112(1):59-74. doi: 10.1016/j.rse.2006.06.026
    [42] Wang Y L, Wang L, Cheng J L et al., 2019. Recognizing crucial aquatic factors influencing greenhouse gas emissions in the eutrophication zone of Taihu Lake, China. Sustainability, 11(19):5160. doi: 10.3390/su11195160
    [43] Wang Yajuan, Mi Wenbao, Wang Li et al., 2010. Study on sustainable utilization of Ningxia Xinghai Lake wetland based on assessment of water environment pollution. Journal of Agricultural Sciences, 31(4):46-49. (in Chinese)
    [44] Webb E K, Pearman G I, Leuning R, 1980. Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society, 106(447):85-100. doi: 10.1002/qj.49710644707
    [45] Winter T C, Buso D C, Rosenberry D O et al., 2003. Evaporation determined by the energy-budget method for Mirror Lake, New Hampshire. Limnology and Oceanography, 48(3):995-1009. doi: 10.4319/lo.2003.48.3.0995
    [46] Woolway R I, Jones I D, Maberly S C et al., 2016. Diel surface temperature range scales with lake size. PLoS One, 11(3), e0152466. doi: 10.1371/journal.pone.0152466
    [47] Xu L Y, Zhang P A, Fang X J et al., 2009. Multi-range fusion technique using multi-channel monitoring SST. Proceedings of the 2009 5th International Conference on Semantics, Knowledge and Grid. Zhuhai, China:IEEE, 49-53. doi: 10.1109/SKG.2009.35
    [48] Yang Kun, He Jie, 2018. China meteorological forcing dataset (1979-2018). National Tibetan Plateau Data Center, doi: 10.11888/AtmosphericPhysics.tpe.249369.file
    [49] Yang K, Yu Z Y, Luo Y et al., 2019. SpatialK, Yu Z Y, Luo Y et al., 2019. Spogical forcing dataseand its driving factors in Yunnan-Guizhou Plateau. Water Resources Research, 55(6):4688es Re. doi: 10.1029/2019WR025316
    [50] Zhang G Q, Xie H J, Gao Y, 2011. Seasonal snow cover variations in the Nam Co basin of Tibetan Plateau using MODIS data. In:Proceedings of the 2011 19th International Conference on Geoinformatics. Shanghai, China:IEEE, 1-4. doi: 10.1109/GeoInformatics.2011.5980902
    [51] Zhang Z B, 1998. Annals of the Lake (Sequel 1). Hohhot:Inner Mongolia Cultural Publishing House.
  • [1] GAO Wenwen, ZENG Yuan, ZHAO Dan, WU Bingfang, REN Zhiyuan.  Land Cover Changes and Drivers in the Water Source Area of the Middle Route of the South-to-North Water Diversion Project in China from 2000 to 2015 . Chinese Geographical Science, 2020, 30(1): 115-126. doi: 10.1007/s11769-020-1099-y
    [2] WANG Xuecheng, YANG Fei, GAO Xing, WANG Wei, ZHA Xinjie.  Evaluation of Forest Damaged Area and Severity Caused by Ice-snow Frozen Disasters over Southern China with Remote Sensing . Chinese Geographical Science, 2019, 20(3): 405-416. doi: 10.1007/s11769-019-1041-3
    [3] WANG Kuifeng.  Evolution of Yellow River Delta Coastline Based on Remote Sensing from 1976 to 2014, China . Chinese Geographical Science, 2019, 20(2): 181-191. doi: 10.1007/s11769-019-1023-5
    [4] YUAN Shuai, LIU Chengyu, LIU Xueqin.  Practical Model of Sea Ice Thickness of Bohai Sea Based on MODIS Data . Chinese Geographical Science, 2018, 28(5): 863-872. doi: 10.1007/s11769-018-0986-y
    [5] ZHU Shanyou, LIU Yi, HUA Junwei, ZHANG Guixin, ZHOU Yang, XIANG Jiamin.  Monitoring Spatio-temporal Variance of an Extreme Heat Event Using Multiple-source Remote Sensing Data . Chinese Geographical Science, 2018, 28(5): 744-757. doi: 10.1007/s11769-018-0989-8
    [6] ZHANG Zengxiang, LIU Fang, ZHAO Xiaoli, WANG Xiao, SHI Lifeng, XU Jinyong, YU Sisi, WEN Qingke, ZUO Lijun, YI Ling, HU Shunguang, LIU Bin.  Urban Expansion in China Based on Remote Sensing Technology: A Review . Chinese Geographical Science, 2018, 28(5): 727-743. doi: 10.1007/s11769-018-0988-9
    [7] Khodakaram HATAMI BAHMANBEIGLOU, Saeed MOVAHEDI.  Identifying Sky Conditions in Iran from MODIS Terra and Aqua Cloud Products . Chinese Geographical Science, 2017, 27(5): 800-809. doi: 10.1007/s11769-017-0908-4
    [8] YAN Fengqin, LIU Xingtu, CHEN Jing, YU Lingxue, YANG Chaobin, CHANG Liping, YANG Jiuchun, ZHANG Shuwen.  China's Wetland Databases Based on Remote Sensing Technology . Chinese Geographical Science, 2017, 27(3): 374-388. doi: 10.1007/s11769-017-0872-z
    [9] LIN Sen, LIU Ronggao.  A Simple Method to Extract Tropical Monsoon Forests Using NDVI Based on MODIS Data:A Case Study in South Asia and Peninsula Southeast Asia . Chinese Geographical Science, 2016, 26(1): 22-34. doi: 10.1007/s11769-015-0789-3
    [10] ZHANG Shuwen, LI Fei, LI Tianqi, YANG Jiuchun, BU Kun, CHANG Liping, WANG Wenjuan, YAN Yechao.  Remote Sensing Monitoring of Gullies on a Regional Scale: A Case Study of Kebai Region in Heilongjiang Province, China . Chinese Geographical Science, 2015, 25(5): 602-611. doi: 10.1007/s11769-015-0780-z
    [11] YAN Huimin, XIAO Xiangming, HUANG Heqing, LIU Jiyuan, CHEN Jingqing, BAI Xuehong.  Multiple Cropping Intensity in China Derived from Agro-meteorolo­gical Observations and MODIS Data . Chinese Geographical Science, 2014, 0(2): 205-219. doi: 10.1007/s11769-013-0637-2
    [12] ZHENG Wei, SHAO Jiali, WANG Meng, HUANG Dapeng.  A Thin Cloud Removal Method from Remote Sensing Image for Water Body Identification . Chinese Geographical Science, 2013, 23(4): 460-469. doi: 10.1007/s11769-013-0601-1
    [13] ZHANG Shengwei, LEI Yuping, WANG Liping, et al..  Crop Classification Using MODIS NDVI Data Denoised by Wavelet: A Case Study in Hebei Plain, China . Chinese Geographical Science, 2011, 21(3): 322-333.
    [14] JIANG Guangjia, LIU Dianwei, SONG Kaishan, WANG Zongming, ZHANG Bai, WANG Yuandong.  Application of Multivariate Model Based on Three Simulated Sensors for Water Quality Variables Estimation in Shitoukoumen Reservoir, Jilin Province, China . Chinese Geographical Science, 2010, 20(4): 337-344. doi: 10.1007/s11769-010-0406-4
    [15] PENG Guangxiong, DENG Lei, CUI Weihong, MING Tao, SHEN Wei.  Remote Sensing Monitoring of Tobacco Field Based on Phenological Characteristics and Time Series Image―A Case Study of Chengjiang County, Yunnan Province, China . Chinese Geographical Science, 2009, 19(2): 186-193. doi: 10.1007/s11769-009-0186-x
    [16] XU Han-qiu.  AN ASSESSMENT OF LAND USE CHANGES IN FUQING COUNTY OF CHINA USING REMOTE SENSING TECHNOLOGY . Chinese Geographical Science, 2002, 12(2): 126-135.
    [17] GAO Zhi-qiang, DENG Xiang-zheng.  ANALYSIS ON SPATIAL FEATURES OF LUCC BASED ON REMOTE SENSING AND GIS IN CHINA . Chinese Geographical Science, 2002, 12(2): 107-113.
    [18] LIU Ming-liang, ZHUANG Da-fang, LIU Ji-yuan.  FARMLAND AND URBAN AREA DYNAMICS MONITORING IN CHINA USING REMOTE SENSING AND SPATIAL STATISTICS METHODOLOGY . Chinese Geographical Science, 2001, 11(1): 42-49.
    [19] 刘红辉, 杨小唤, 王乃斌.  REMOTE SENSING BASED ESTIMATION SYSTEM FOR WINTER WHEAT YIELD IN NORTH CHINA PLAIN . Chinese Geographical Science, 1999, 9(1): 40-48.
    [20] 黄铁青, 刘兆礼, 潘瑜春, 张养贞.  LAND COVER SURVEY IN NORTHEAST CHINA USING REMOTE SENSING AND GIS . Chinese Geographical Science, 1998, 8(3): 264-270.
  • 加载中
计量
  • 文章访问数:  75
  • HTML全文浏览量:  4
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-09

Spatio-temporal Variation of Water Heat Flux Using MODIS Land Surface Temperature Product over Hulun Lake, China During 2001-2018

doi: 10.1007/s11769-020-1166-4
    基金项目:

    Under the auspices of National Key Research and Development Program of China (No. 2016YFA0602301, 2016YFB0501502), Strategic Planning Project of the Northeast Institute of Geography and Agroecology (IGA), Chinese Academy of Sciences (No. Y6H2091001), National Forestry Science and Technology Demonstration Promotion Project (No. JLT2018-03)

    通讯作者: DU Jia.E-mail:jiaqidu@iga.ac.cn

摘要: Heat flux is important for studying interactions between atmosphere and lake. The heat exchange between air-water interfaces is one of the important ways to govern the temperature of the water surface. Heat exchange between the air-water interfaces and the surrounding environment is completed by solar radiation, conduction, and evaporation, and all these processes mainly occur at the air-water interface. Hulun Lake was the biggest lake which is also an important link and an indispensable part of the water cycle in Northeast China. This study mapped surface energy budget to better understand spatial and temporal variations in Hulun Lake in China from 2001 to 2018. Descriptive statistics were computed to build a historical time series of mean monthly heat flux at daytime and nighttime from June to September during 2001–2018. Remote sensing estimation methods we used was suitable for Hulun Lake (R2 = 0.81). At month scale, shortwave radiation and latent heat flux were decrease from June to September. However, the maximum sensible heat flux appeared in September. Net longwave radiation was the largest in August. The effective heat budget showed that Hulun Lake gained heat in the frost-free season with highest value in June (686.31 W/m2), and then steadily decreased to September (439.76 W/m2). At annual scale, net longwave radiation, sensible heat flux and latent heat flux all show significant growth trend from 2001 to 2018 (P < 0.01). Wind speed had the well correlation on sensible heat flux and latent heat flux. Water surface temperature showed the highest coefficient in sensitivity analysis.

English Abstract

ZHAO Boyu, DU Jia, SONG Kaishan, Pierre-André JACINTHE, XIANG Xiaoyun, ZHOU Haohao, YANG Zhichao, ZHANG Liyan, GUO Pingping. Spatio-temporal Variation of Water Heat Flux Using MODIS Land Surface Temperature Product over Hulun Lake, China During 2001-2018[J]. 中国地理科学, 2020, 30(6): 1065-1080. doi: 10.1007/s11769-020-1166-4
引用本文: ZHAO Boyu, DU Jia, SONG Kaishan, Pierre-André JACINTHE, XIANG Xiaoyun, ZHOU Haohao, YANG Zhichao, ZHANG Liyan, GUO Pingping. Spatio-temporal Variation of Water Heat Flux Using MODIS Land Surface Temperature Product over Hulun Lake, China During 2001-2018[J]. 中国地理科学, 2020, 30(6): 1065-1080. doi: 10.1007/s11769-020-1166-4
ZHAO Boyu, DU Jia, SONG Kaishan, Pierre-André JACINTHE, XIANG Xiaoyun, ZHOU Haohao, YANG Zhichao, ZHANG Liyan, GUO Pingping. Spatio-temporal Variation of Water Heat Flux Using MODIS Land Surface Temperature Product over Hulun Lake, China During 2001-2018[J]. Chinese Geographical Science, 2020, 30(6): 1065-1080. doi: 10.1007/s11769-020-1166-4
Citation: ZHAO Boyu, DU Jia, SONG Kaishan, Pierre-André JACINTHE, XIANG Xiaoyun, ZHOU Haohao, YANG Zhichao, ZHANG Liyan, GUO Pingping. Spatio-temporal Variation of Water Heat Flux Using MODIS Land Surface Temperature Product over Hulun Lake, China During 2001-2018[J]. Chinese Geographical Science, 2020, 30(6): 1065-1080. doi: 10.1007/s11769-020-1166-4
参考文献 (51)

目录

    /

    返回文章
    返回