[1]
|
Bala G, Caldeira K, Wickett M et al., 2007. Combined climate and carbon-cycle effects of large-scale deforestation. Proceedings of the National Academy of Sciences of the United States of America, 104(16):6550-6555. doi:10.1073/pnas. 0608998104 |
[2]
|
Betts R A, 2000. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature, 408(6809):187-190. doi: 10.1038/35041545 |
[3]
|
Cescatti A, Marcolla B, Vannan S K S et al., 2012. Intercomparison of MODIS albedo retrievals and in situ measurements across the global FLUXNET network. Remote Sensing of En-vironment, 121:323-334. doi: 10.1016/j.rse.2012.02.019 |
[4]
|
Chen W W, Wang Y Y, Zhao Z C et al., 2013. The effect of plant-ing density on carbon dioxide, methane and nitrous oxide emissions from a cold paddy field in the Sanjiang Plain, Northeast China. Agriculture, Ecosystems & Environment, 178:64-70. doi: 10.1016/j.agee.2013.05.008 |
[5]
|
Donohoe A, Battisti D S, 2011. Atmospheric and surface contri-butions to planetary albedo. Journal of Climate, 24(16):4402-4418. doi: 10.1175/2011JCLI3946.1 |
[6]
|
Essery R, 2013. Large-scale simulations of snow albedo masking by forests. Geophysical Research Letters, 40(20):5521-5525. doi: 10.1002/grl.51008 |
[7]
|
Gao F, He T, Wang Z S et al., 2014. Multiscale climatological albedo look-up maps derived from moderate resolution imaging spectroradiometer BRDF/albedo products. Journal of Applied Remote Sensing, 8(1):083532. doi: 10.1117/1.JRS.8.083532 |
[8]
|
Gelaro R, McCarty W, Suárez M J et al., 2017. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). Journal of Climate, 30(14):5419-5454. doi: 10.1175/JCLI-D-16-0758.1 |
[9]
|
Ghimire B, Williams C A, Masek J et al., 2014. Global albedo change and radiative cooling from anthropogenic land cover change, 1700 to 2005 based on MODIS, land use harmoniza-tion, radiative kernels, and reanalysis. Geophysical Research Letters, 41(24):9087-9096. doi: 10.1002/2014GL061671 |
[10]
|
He T, Liang S L, Song D X, 2014. Analysis of global land surface albedo climatology and spatial-temporal variation during 1981-2010 from multiple satellite products. Journal of Geo-physical Research:Atmospheres, 119(17):10281-10298. doi: 10.1002/2014JD021667 |
[11]
|
Hu Y H, Jia G S, Pohl C et al., 2016. Assessing surface albedo change and its induced radiation budget under rapid urbaniza-tion with Landsat and GLASS data. Theoretical and Applied Climatology, 123(3):711-722. doi: 10.1007/s00704-015-1385-2 |
[12]
|
Hu Y H, Hou M T, Zhao C L et al., 2019. Human-induced changes of surface albedo in Northern China from 1992-2012. In-ternational Journal of Applied Earth Observation and Geoin-formation, 79:184-191. doi: 10.1016/j.jag.2019.03.018 |
[13]
|
Huang X D, Deng J, Ma X F et al., 2016. Spatiotemporal dynam-ics of snow cover based on multi-source remote sensing data in China. The Cryosphere, 10(5):2453-2463. doi: 10.5194/tc-10-2453-2016 |
[14]
|
Jaagus J, 2006. Climatic changes in Estonia during the second half of the 20th century in relationship with changes in large-scale atmospheric circulation. Theoretical and Applied Climatology, 83(1-4):77-88. doi: 10.1007/s00704-005-0161-0 |
[15]
|
Jiao T, Williams C A, Ghimire B et al., 2017. Global climate forcing from albedo change caused by large-scale deforestation and reforestation:quantification and attribution of geographic variation. Climatic Change, 142(3-4):463-476. doi: 10.1007/s10584-017-1962-8 |
[16]
|
Li X J, Qu Y, 2018. Evaluation of vegetation responses to climatic factors and global vegetation trends using GLASS LAI from 1982 to 2010. Canadian Journal of Remote Sensing, 44(4):357-372. doi: 10.1080/07038992.2018.1526064 |
[17]
|
Li X J, Yan H B, Fan X L et al., 2018. Validation of global land surface satellite phase-2 surface broadband albedo product. In:IEEE International Geoscience and Remote Sensing Sympo-sium. Valencia, Spain:IEEE. doi: 10.1109/IGARSS.2018.8519449 |
[18]
|
Liang S L, Wang K C, Zhang X T et al., 2010. Review on estima-tion of land surface radiation and energy budgets from ground measurement, remote sensing and model simulations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(3):225-240. doi: 10.1109/JSTARS.2010.2048556 |
[19]
|
Liang S L, Zhao X, Liu S H et al., 2013. A Long-term Global LAnd Surface Satellite (GLASS) data-set for environmental studies. International Journal of Digital Earth, 6(S1):5-33. doi: 10.1080/17538947.2013.805262 |
[20]
|
Ling F, Zhang T J, 2003. Impact of the timing and duration of seasonal snow cover on the active layer and permafrost in the Alaskan Arctic. Permafrost and Periglacial Processes, 14(2):141-150. doi: 10.1002/ppp.445 |
[21]
|
Liu J Y, Liu M L, Deng X Z et al., 2002. The land use and land cover change database and its relative studies in China. Journal of Geographical Sciences, 12(3):275-282. doi: 10.1007/BF02837545 |
[22]
|
Liu Q, Wen J G, Qu Y et al., 2012. Broadband albedo. In:Liang S L et al. (eds). Advanced Remote Sensing:Terrestrial Infor-mation Extraction and Applications. San Diego:Academic Press. doi: 10.1016/B978-0-12-815826-5.00006-4 |
[23]
|
Liu N F, Liu Q, Wang L Z et al., 2013a. A statistics-based temporal filter algorithm to map spatiotemporally continuous shortwave albedo from MODIS data. Hydrology and Earth System Sciences, 17(6):2121-2129. doi: 10.5194/hess-17-2121-2013 |
[24]
|
Liu Q, Wang L Z, Qu Y et al., 2013b. Preliminary evaluation of the long-term GLASS albedo product. International Journal of Digital Earth, 6(S1):69-95. doi: 10.1080/17538947.2013.804601 |
[25]
|
Loranty M M, Berner L T, Goetz S J et al., 2014. Vegetation con-trols on northern high latitude snow-albedo feedback:observa-tions and CMIP 5 model simulations. Global Change Biology, 20(2):594-606. doi: 10.1111/gcb.12391 |
[26]
|
Lucht W, Schaaf C B, Strahler A H, 2000. An algorithm for the retrieval of albedo from space using semiempirical BRDF models. IEEE Transactions on Geoscience and Remote Sens-ing, 38(2):977-998. doi: 10.1109/36.841980 |
[27]
|
Mann H B, 1945. Nonparametric tests against trend. Economet-rica, 13(3):245-259. doi: 10.2307/1907187 |
[28]
|
Qu Y, Liang S L, Liu Q et al., 2015. Mapping surface broadband albedo from satellite observations:a review of literatures on algorithms and products. Remote Sensing, 7(1):990-1020. doi: 10.3390/rs70100990 |
[29]
|
Qu Y, Liang S L, Liu Q et al., 2016. Estimating Arctic sea-ice shortwave albedo from MODIS data. Remote Sensing of Envi-ronment, 186:32-46. doi: 10.1016/j.rse.2016.08.015 |
[30]
|
Qu Y, Liu Q, Liang S L et al., 2014. Direct-estimation algorithm for mapping daily land-surface broadband albedo from MODIS data. IEEE Transactions on Geoscience and Remote Sensing, 52(2):907-919. doi: 10.1109/TGRS.2013.2245670 |
[31]
|
Riihelä A, Manninen T, Laine V et al., 2013. CLARA-SAL:a global 28 yr timeseries of Earth's black-sky surface albedo. Atmospheric Chemistry and Physics, 13(7):3743-3762. doi: 10.5194/acp-13-3743-2013 |
[32]
|
Savitzky A, Golay M, 1964. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36(8):1627-1639. doi: 10.1021/ac60214a047 |
[33]
|
Schaaf C, Gao F, Strahler A et al., 2002. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens-ing of Environment, 83(1-2):135-148. doi: 10.1016/S0034-4257(02)00091-3 |
[34]
|
Sen P K, 1968. Estimates of the regression coefficient based on Kendall's tau. Journal of the American Statistical Association, 63(324):1379-1389. doi: 10.1080/01621459.1968.10480934 |
[35]
|
Song C C, Xu X F, Sun X X et al., 2012. Large methane emission upon spring thaw from natural wetlands in the northern per-mafrost region. Environmental Reseach Letters, 7(3):034009. doi: 10.1088/1748-9326/7/3/034009 |
[36]
|
Song Kaishan, Liu Dianwei, Wang Zongming et al., 2008. Land use change in sanjiang plain and its driving forces analysis since 1954. Acta Geographica Sinica, 63(1):93-104. (in Chinese) |
[37]
|
Tan X J, Wu Z N, Mu X M et al., 2019. Spatiotemporal changes in snow cover over China during 1960-2013. Atmospheric Research, 218:183-194. doi: 10.1016/j.atmosres.2018.11.018 |
[38]
|
Tanaka H L, Tamura M, 2016. Relationship between the Arctic oscillation and surface air temperature in multi-decadal time-scale. Polar Science, 10(3):199-209. doi:10.1016/j.polar. 2016.03.002 |
[39]
|
Theil H, 1950. A rank-invariant method of linear and polynomial regression analysis. In:Raj B and Koerts J (eds). Henri Theil's Contributions to Economics and Econometrics:Econometric Theory and Methodology. Dordrecht:Springer, 345-381. doi: 10.1007/978-94-011-2546-8_20 |
[40]
|
Trenberth K E, Fasullo J T, Kiehl J, 2009. Earth's global energy budget. Bulletin of the American Meteorological Society, 90(3):311-324. doi: 10.1175/2008BAMS2634.1 |
[41]
|
Wang Z M, Zhang B, Zhang S Q et al., 2006. Changes of land use and of ecosystem service values in Sanjiang Plain, Northeast China. Environmental Monitoring and Assessment, 112(1-3):69-91. doi: 10.1007/s10661-006-0312-5 |
[42]
|
Zhai Jun, Liu Ronggao, Liu Jiyuan et al., 2014. Radiative forcing over China due to albedo change caused by land cover change during 1990-2010. Journal of Geographical Sciences, 24(5):789-801. doi: 10.1007/s11442-014-1120-4 |
[43]
|
Zhai J, Liu R G, Liu J Y, et al., 2015. Human-induced landcover changes drive a diminution of land surface albedo in the Loess Plateau (China). Remote Sensing, 7(3):2926-2941. doi: 10.3390/rs70302926 |
[44]
|
Zhang Ruonan, Zhang Renhe, Zuo Zhiyan, 2015. Winter snow cover variability over China and its relation to arctic oscillation. Chinese Journal of Atmospheric Sciences, 39(3):634-642. (in Chinese) |
[45]
|
Zhang S Q, Na X D, Kong B et al., 2009. Identifying wetland change in China's Sanjiang Plain using remote sensing. Wet-lands, 29(1):302-313. doi: 10.1672/08-04.1 |
[46]
|
Zhang Xuezhen, Wang Wei-chyung, Fang Xiuqi et al., 2012. Agriculture development-induced surface albedo changes and climatic implications across northeastern China. Chinese Ge-ographical Science, 22(3):264-277. doi: 10.1007/s11769-012-0535-z |
[47]
|
Zuo J Q, Li W J, Ren H L, 2013. Representation of the Arctic oscillation in the CMIP5 models. Advances in Climate Change Research, 4(4):242-249. doi: 10.3724/SP.J.1248.2013.242. |