[1]
|
Alfieri J G, Niyogi D, Zhang H et al., 2009. Quantifying the spatial variability of surface fluxes using data from the 2002 In-ternational H2O Project. Boundary-Layer Meteorology, 133(3):323. doi: 10.1007/s10546-009-9406-2 |
[2]
|
Bhattacharya B K, Mallick K, Patel N K et al. 2010. Regional clear sky evapotranspiration over agricultural land using remote sensing data from Indian geostationary meteorological satellite. Journal of Hydrology, 387(1-2):65-80. doi: 10.1016/j.jhydrol.2010.03.030 |
[3]
|
Boudreault L-É, Bechmann A, Tarvainen L et al., 2015. A LiDAR method of canopy structure retrieval for wind modeling of heterogeneous forests. Agricultural Forest Meteorology, 201:86-97. doi: 10.1016/j.agrformet.2014.10.014 |
[4]
|
Clarke K C. 1986. Computation of the fractal dimension of topo-graphic surfaces using the triangular prism surface area method. Computers & Geosciences, 12(5):713-722. doi: 10.1016/0098-3004(86)90047-6 |
[5]
|
Cressie N, Zimmerman D L, 1992. On the stability of the geosta-tistical method. Mathematical Geology, 24(1):45-59 |
[6]
|
Chen R S, Song Y X, Kang E S et al., 2014. A cry-osphere-hydrology observation system in a small alpine wa-tershed in the Qilian Mountains of China and its meteorological gradient. Arctic Antarctic Alpine Research, 46(2):505-523. doi: 10.1657/1938-4246-46.2.505 |
[7]
|
Ding Y, Zhao K, Zheng X et al., 2014. Temporal dynamics of spatial heterogeneity over cropland quantified by time-series NDVI, near infrared and red reflectance of Landsat 8 OLI im-agery. International Journal of Applied Earth Observation Geoinformation, 30:139-145.doi: 10.1016/j.jag.2014.01.009 |
[8]
|
Gao G, Chen D, Ren G et al., 2006. Spatial and temporal variations and controlling factors of potential evapotranspiration in China:1956-2000. Journal of Geographical Sciences, 16(1):3-12. doi: 10.1007/s11442-006-0101-7 |
[9]
|
Gao J, Wu S, Dai E F et al., 2015. The progresses and prospects of research on water and heat balance at land surface in the Karst region of Southwest China. Advances in Earth Science, 30(6):647-653. doi: 10.11867/j.issn.1001-8166.2015.06.0647 |
[10]
|
Garrigues S, Allard D, Baret F et al., 2006. Quantifying spatial heterogeneity at the landscape scale using variogram models. Remote Sensing of Environment, 103(1):81-96. doi: 10.1016/j.rse.2006.03.013 |
[11]
|
Ge Y, Jin Y, Stein A et al., 2019. Principles and methods of scaling geospatial Earth science data. Earth-Science Reviews:102897. doi: 10.1016/j.earscirev.2019.102897 |
[12]
|
Giannico V, Chen J, Shao C et al., 2018. Contributions of land-scape heterogeneity within the footprint of eddy-covariance towers to flux measurements. Agricultural Forest Meteorology, 260:144-153. doi: 10.1016/j.agrformet.2018.06.004 |
[13]
|
Han D, Wang G, Liu T et al., 2018. Hydroclimatic response of evapotranspiration partitioning to prolonged droughts in semi-arid grassland. Journal of Hydrology, 563:766-777. doi: 10.1016/j.jhydrol.2018.06.048 |
[14]
|
Hu T, Liu Q, Du Y et al., 2015. Analysis of land surface tempera-ture spatial heterogeneity using variogram model. Paper pre-sented at the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). doi: 10.1109/IGARSS.2015.7325716 |
[15]
|
Jia Z, Liu S, Xu Z et al., 2012. Validation of remotely sensed evapotranspiration over the Hai River Basin, China. Journal of Geophysical Research:Atmospheres, 117(D13). doi: 10.1029/2011JD017037 |
[16]
|
Jin R, Li X, Yan B et al., 2014. A nested ecohydrological wireless sensor network for capturing the surface heterogeneity in the midstream areas of the Heihe River Basin, China. IEEE Geo-science Remote Sensing Letters, 11(11):2015-2019. doi: 10.1109/lgrs.2014.2319085 |
[17]
|
Kormann R, Meixner F X, 2001. An analytical footprint model for non-neutral stratification. Boundary:Layer Meteorology, 99(2):207-224. doi: 10.1023/a:1018991015119 |
[18]
|
Kong J, Hu Y, Yang L et al., 2019. Estimation of evapotranspira-tion for the blown-sand region in the Ordos basin based on the SEBAL model. International Journal of Remote Sensing, 40(5-6):1945-1965. doi: 10.1080/01431161.2018.1508919 |
[19]
|
Li Band Avissar R, 1994. The impact of spatial variability of land-surface characteristics on land-surface heat fluxes. Journal of Climate, 7(4):527-537. doi:10.1175/1520-0442(1994) 007<0527:tiosvo>2.0.co;2 |
[20]
|
Li Hand Reynolds J, 1995. On definition and quantification of heterogeneity. Oikos:280-284. doi: 10.2307/3545921 |
[21]
|
Li M, Zhou J, Peng Z et al., 2019. Component radiative tempera-tures over sparsely vegetated surfaces and their potential for upscaling land surface temperature. Agricultural Forest Mete-orology, 276:107600. doi: 10.1016/j.agrformet.2019.05.031 |
[22]
|
Li X, Li X, Li Z et al., 2009. Watershed allied telemetry experi-mental research. Journal of Geophysical Research:Atmos-pheres, 114(D22):2191-2196. doi: 10.1029/2008JD011590 |
[23]
|
Li X, Cheng G, Liu S et al., 2013. Heihe watershed allied telemetry experimental research (HiWATER):scientific objectives and experimental design. Bulletin of the American Meteorological Society, 94(8):1145-1160. doi: 10.1175/BAMS-D-12-00154.1 |
[24]
|
Li X, Liu S, Li H et al., 2018a. Intercomparison of six upscaling evapotranspiration methods:from site to the satellite pixel. Journal of Geophysical Research:Atmospheres, 123(13):6777-6803. doi: 10.1029/2018JD028422 |
[25]
|
Li X, Liu S, Xiao Q et al., 2017. A multiscale dataset for under-standing complex eco-hydrological processes in a heteroge-neous oasis system. Scientific Data, 4:170083. doi: 10.1038/sdata.2017.83 |
[26]
|
Li X, Xin X, Peng Z et al., 2018b. Analysis of the spatial variabil-ity of land surface variables for ET estimation:case study in HiWATER Campaign. Remote Sensing, 10(1):91. doi: 10.3390/rs12010010091 |
[27]
|
Liu R, Liu S, Yang X et al., 2018a. Wind dynamics over a highly heterogeneous oasis area:an experimental and numerical study. Journal of Geophysical Research:Atmospheres, 123(16):8418-8440. doi: 10.1029/2018JD028397 |
[28]
|
Liu S, Xu Z, Wang W et al., 2011. A comparison of ed-dy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrology Earth System Sciences, 15(4):1291-1306. doi: 10.5194/hess-15-1291-2011 |
[29]
|
Liu S, Xu Z, Song L et al., 2016. Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agricultural and Forest Meteor-ology, 230-231:97-113. doi: 10.1016/j.agrformet.2016.04.008 |
[30]
|
Liu S, Li X, Xu Z et al., 2018b. The Heihe integrated observatory network:a basin-scale land surface processes observatory in China. Vadose Zone Journal, 17(1). doi: 10.2136/vzj2018.04.0072 |
[31]
|
Ma Y, Liu S, Song L et al., 2018. Estimation of daily evapotran-spiration and irrigation water efficiency at a Landsat-like scale for an arid irrigation area using multi-source remote sensing data. Remote Sensing of Environment, 216:715-734. doi: 10.1016/j.rse.2018.07.019 |
[32]
|
Ma Y, Li X, Liu L et al., 2019. Evapotranspiration and its dominant controls along an elevation gradient in the Qinghai Lake watershed, northeast Qinghai-Tibet Plateau. Journal of Hy-drology, 575:257-268. doi: 10.1016/j.jhydrol.2019.05.019 |
[33]
|
Matheron G, 1963. Principles of geostatistics. Economic geology, 58(8):1246-1266 |
[34]
|
Meijninger W, Hartogensis O, Kohsiek W et al., 2002. Determi-nation of area-averaged sensible heat fluxes with a large aper-ture scintillometer over a heterogeneous surface-Flevoland field experiment. Boundary:Layer Meteorology, 105(1):37-62. doi: 10.1023/A:1019647732027 |
[35]
|
Nakayama T. 2013. Effect of evapotranspiration on hydrothermal changes in regional scale. In:Evapotranspiration:An Overview. doi:10.5772/52808. Available at:https://www.intechopen.com/books/evapotranspiration an overview/effect of evapotranspiration on hydrothermal changes in regional scale |
[36]
|
Odongo V, Hamm Nand Milton E, 2014. Spatio-temporal assess-ment of Tuz Gölü, Turkey as a potential radiometric vicarious calibration site. Remote Sensing, 6(3):2494-2513. doi: 10.3390/rs6032494 |
[37]
|
Qu Y, Zhu Y, Han W et al., 2013. Crop leaf area index observa-tions with a wireless sensor network and its potential for vali-dating remote sensing products. IEEE Journal of Selected Topics in Applied Earth Observations Remote Sensing, 7(2):431-444. doi: 10.1109/JSTARS.2013.2289931 |
[38]
|
Shannon C E, 1948. A mathematical theory of communication. Bell System Technical Journal, 27(3):379-423. doi: 10.1002/j.1538-7305.1948.tb01338.x |
[39]
|
Sun W, Xu G, Gong P et al., 2006. Fractal analysis of remotely sensed images:a review of methods and applications. Interna-tional Journal of Remote Sensing, 27(22):4963-4990. doi: 10.1080/01431160600676695 |
[40]
|
Twine T E, Kustas W, Norman J et al., 2000. Correcting ed-dy-covariance flux underestimates over a grassland. Agricul-tural Forest Meteorology, 103(3):279-300. doi: 10.1016/S0168-1923(00)00123-4 |
[41]
|
Wang J, Ge Y, Heuvelink G B et al., 2013. Spatial sampling design for estimating regional GPP with spatial heterogeneities. IEEE Geoscience Remote Sensing Letters, 11(2):539-543. doi: 10.1109/LGRS.2013.2274453 |
[42]
|
Wang J, Zhang Tand Fu B,2016. A measure of spatial stratified heterogeneity. Ecological Indicators, 67:250-256. doi: 10.1016/j.ecolind.2016.02.052 |
[43]
|
Wang Z, Wu Q, Fan B, et al. 2019. Effects of mulching biode-gradable films under drip irrigation on soil hydrothermal con-ditions and cotton (Gossypium hirsutum L.) yield. Agricultural water management, 213:477-485. doi: 10.1016/j.agwat.2018.10.036 |
[44]
|
Wu X, Xiao Q, Wen J, et al., 2019. Advances in quantitative re-mote sensing product validation:overview and current status. Earth-Science Reviews, 102875. doi: 10.1016/j.earscirev.2019.102875 |
[45]
|
Xiao Q, Wen J, 2013. HiWATER:Wide-angle infrared dual-mode line/area array scanner, WIDAS (3th, August, 2012). Heihe Plan Science Data Center, Heihe, China. Datasets available at:http://westdc.westgis.ac.cn |
[46]
|
Xu B, Li J, Liu Q et al., 2016. Evaluating spatial representativeness of station observations for remotely sensed leaf area index products. IEEE Journal of Selected Topics in Applied Earth Observations Remote Sensing, 9(7):3267-3282. doi: 10.1109/JSTARS.2016.2560878 |
[47]
|
Xu T, Guo Z, Liu S et al., 2018. Evaluating different machine learning methods for upscaling evapotranspiration from flux towers to the regional scale. Journal of Geophysical Research:Atmospheres, 123(16):8674-8690. doi:10.1029/2018JD 028447 |
[48]
|
Xu T, He X, Bateni S M et al., 2019. Mapping regional turbulent heat fluxes via variational assimilation of land surface tem-perature data from polar orbiting satellites. Remote Sensing of Environment, 221:444-461. doi: 10.1016/j.rse.2018.11.023 |
[49]
|
Xu Z, Liu S, Li X et al., 2013. Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE. Journal of Geophysical Research:Atmospheres, 118(23):13,140-113,157. doi:10.1002/2013JD 020260 |
[50]
|
Zhang K, Kimball J S, and Running S W. 2016. A review of remote sensing based actual evapotranspiration estimation. Wiley Interdisciplinary Reviews:Water, 3(6):834-853. doi: 10.1002/wat2.1168 |
[51]
|
Zhang X, Zhou J, Göttsche F M et al., 2019. A method based on temporal component decomposition for estimating 1-km all-weather land surface temperature by merging satellite thermal infrared and passive microwave observations. IEEE Transactions on Geoscience Remote Sensing, 57(7):4670-4691. doi: 10.1109/TGRS.2019.2892417 |
[52]
|
Zhu X, Chen J, Gao F et al., 2010. An enhanced spatial and tem-poral adaptive reflectance fusion model for complex hetero-geneous regions. Remote Sensing of Environment, 114(11):2610-2623. doi: 10.1016/j.rse.2010.05.032 |
[53]
|
Zhong B, Ma P, Nie A H et al., 2014. Land cover mapping using time series HJ-1/CCD data. Science China Earth Sciences, 57(8):1790-1799. doi: 10.1007/s11430-014-4877-5 |