留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Exploring Temporal Activity Patterns of Urban Areas Using Aggregated Network-driven Mobile Phone Data: A Case Study of Wuhu, China

ZHANG Shanqi YANG Yu ZHEN Feng LOBSANG Tashi

ZHANG Shanqi, YANG Yu, ZHEN Feng, LOBSANG Tashi. Exploring Temporal Activity Patterns of Urban Areas Using Aggregated Network-driven Mobile Phone Data: A Case Study of Wuhu, China[J]. 中国地理科学, 2020, 30(4): 695-709. doi: 10.1007/s11769-020-1130-3
引用本文: ZHANG Shanqi, YANG Yu, ZHEN Feng, LOBSANG Tashi. Exploring Temporal Activity Patterns of Urban Areas Using Aggregated Network-driven Mobile Phone Data: A Case Study of Wuhu, China[J]. 中国地理科学, 2020, 30(4): 695-709. doi: 10.1007/s11769-020-1130-3
ZHANG Shanqi, YANG Yu, ZHEN Feng, LOBSANG Tashi. Exploring Temporal Activity Patterns of Urban Areas Using Aggregated Network-driven Mobile Phone Data: A Case Study of Wuhu, China[J]. Chinese Geographical Science, 2020, 30(4): 695-709. doi: 10.1007/s11769-020-1130-3
Citation: ZHANG Shanqi, YANG Yu, ZHEN Feng, LOBSANG Tashi. Exploring Temporal Activity Patterns of Urban Areas Using Aggregated Network-driven Mobile Phone Data: A Case Study of Wuhu, China[J]. Chinese Geographical Science, 2020, 30(4): 695-709. doi: 10.1007/s11769-020-1130-3

Exploring Temporal Activity Patterns of Urban Areas Using Aggregated Network-driven Mobile Phone Data: A Case Study of Wuhu, China

doi: 10.1007/s11769-020-1130-3
基金项目: 

Under the auspices of the National Natural Science Foundation of China (No. 41571146), China Postdoctoral Science Foundation (No. 2019M651784)

详细信息
    通讯作者:

    ZHEN Feng. E-mail:zhenfeng@nju.edu.cn

Exploring Temporal Activity Patterns of Urban Areas Using Aggregated Network-driven Mobile Phone Data: A Case Study of Wuhu, China

Funds: 

Under the auspices of the National Natural Science Foundation of China (No. 41571146), China Postdoctoral Science Foundation (No. 2019M651784)

  • 摘要: The increasing availability of data in the urban context (e.g., mobile phone, smart card and social media data) allows us to study urban dynamics at much finer temporal resolutions (e.g., diurnal urban dynamics). Mobile phone data, for instance, are found to be a useful data source for extracting diurnal human mobility patterns and for understanding urban dynamics. While previous studies often use call detail record (CDR) data, this study deploys aggregated network-driven mobile phone data that may reveal human mobility patterns more comprehensively and can mitigate some of the privacy concerns raised by mobile phone data usage. We first propose an analytical framework for characterizing and classifying urban areas based on their temporal activity patterns extracted from mobile phone data. Specifically, urban areas’ diurnal spatiotemporal signatures of human mobility patterns are obtained through longitudinal mobile phone data. Urban areas are then classified based on the obtained signatures. The classification provides insights into city planning and development. Using the proposed framework, a case study was implemented in the city of Wuhu, China to understand its urban dynamics. The empirical study suggests that human activities in the city of Wuhu are highly concentrated at the Traffic Analysis Zone (TAZ) level. This large portion of local activities suggests that development and planning strategies that are different from those used by metropolitan Chinese cities should be applied in the city of Wuhu. This article concludes with discussions on several common challenges associated with using network-driven mobile phone data, which should be addressed in future studies.
  • [1] Ahas R, Aasa A, Yuan Y et al., 2015. Everyday space-time geog-raphies:using mobile phone-based sensor data to monitor urban activity in Harbin, Paris, and Tallinn. International Journal of Geographical Information Science, 29(11):2017-2039. doi: 10.1080/13658816.2015.1063151
    [2] Alexander L, Jiang S, Murga M et al., 2015. Origin-destination trips by purpose and time of day inferred from mobile phone data. Transportation Research Part C:Emerging Technologies, 58:240-250. doi: 10.1016/j.trc.2015.02.018
    [3] Breaban M, Luchian H, 2011. A unifying criterion for unsuper-vised clustering and feature selection. Pattern Recognition, 44(4):854-865. doi: 10.1016/j.patcog.2010.10.006
    [4] Calabrese F, Colonna M, Lovisolo P et al., 2011. Real-time urban monitoring using cell phones:a case study in Rome. IEEE Transactions on Intelligent Transportation Systems, 12(1):141-151. doi: 10.1109/tits.2010.2074196
    [5] Calabrese F, Diao M, Di Lorenzo G et al., 2013. Understanding individual mobility patterns from urban sensing data:a mobile phone trace example. Transportation Research Part C:Emerging Technologies, 26:301-313. doi:10.1016/j.trc.2012. 09.009
    [6] Calabrese F, Ferrari L, Blondel V D, 2015. Urban sensing using mobile phone network data:a survey of research. ACM Com-puting Surveys, 47(2):Article No. 25. doi: 10.1145/2655691
    [7] Chen C, Ma J T, Susilo Y et al., 2016. The promises of big data and small data for travel behavior (aka human mobility) anal-ysis. Transportation Research Part C:Emerging Technologies, 68:285-299. doi: 10.1016/j.trc.2016.04.005
    [8] Deville P, Linard C, Martin S et al., 2014. Dynamic population mapping using mobile phone data. Proceedings of the National Academy of Sciences of the United States of America, 111(45):15888-15893. doi: 10.1073/pnas.1408439111
    [9] Diao M, Zhu Y, Ferreira J et al., 2016. Inferring individual daily activities from mobile phone traces:a Boston example. Envi-ronment and Planning B:Planning and Design, 43(5):920-940. doi: 10.1177/0265813515600896
    [10] Dong H H, Wu M C, Ding X Q et al., 2015. Traffic zone division based on big data from mobile phone base stations. Transpor-tation Research Part C:Emerging Technologies, 58:278-291. doi: 10.1016/j.trc.2015.06.007
    [11] Doyle J, Hung P, Farrell R et al., 2014. Population mobility dy-namics estimated from mobile telephony data. Journal of Urban Technology, 21(2):109-132. doi:10.1080/10630732. 2014.888904
    [12] Epperlein J, Legierski J, Luckner M et al., 2018. The use of pres-ence data in modelling demand for transportation. arXiv:1802.03734. Available at:http://arxiv.org/abs/1802.03734.
    [13] Ewing R, Hamidi S, 2015. Compactness versus sprawl:a review of recent evidence from the United States. Journal of Planning Literature, 30(4):413-432. doi: 10.1177/0885412215595439
    [14] Gao S, 2015. Spatio-temporal analytics for exploring human mo-bility patterns and urban dynamics in the mobile age. Spatial Cognition and Computation, 15(2):86-114. doi:10.1080/1387 5868.2014.984300
    [15] González M C, Hidalgo C A, Barabási A L, 2008. Understanding individual human mobility patterns. Nature, 453(7196):779-782. doi: 10.1038/nature06958
    [16] Gordon P, Richardson H W, 1997. Are compact cities a desirable planning goal? Journal of the American Planning Association, 63(1):95-106. doi: 10.1080/01944369708975727
    [17] Iqbal M S, Choudhury C F, Wang P et al., 2014. Development of origin-destination matrices using mobile phone call data. Transportation Research Part C:Emerging Technologies, 40:63-74. doi: 10.1016/j.trc.2014.01.002
    [18] Järv O, Ahas R, Saluveer E et al., 2012. Mobile phones in a traffic flow:a geographical perspective to evening rush hour traffic analysis using call detail records. PLoS ONE, 7(11):e49171. doi: 10.1371/journal.pone.0049171
    [19] Järv O, Ahas R, Witlox F, 2014. Understanding monthly variabil-ity in human activity spaces:a twelve-month study using mobile phone call detail records. Transportation Research Part C:Emerging Technologies, 38:122-135. doi:10.1016/j.trc. 2013.11.003
    [20] Järv O, Tenkanen H, Toivonen T, 2017. Enhancing spatial accu-racy of mobile phone data using multi-temporal dasymetric interpolation. International Journal of Geographical Infor-mation Science, 31(8):1630-1651. doi:10.1080/13658816. 2017.1287369
    [21] Jiang H, Li Q, Zhou X et al., 2017. A collective human mobility analysis method based on data usage detail records. Interna-tional Journal of Geographical Information Science, 31(12):2359-2381. doi: 10.1080/13658816.2017.1370715
    [22] Kang C G, Ma X J, Tong D Q et al., 2012. Intra-urban human mobility patterns:an urban morphology perspective. Physica A:Statistical Mechanics and its Applications, 391(4):1702-1717. doi: 10.1016/j.physa.2011.11.005
    [23] Kodinariya T M, Makwana P R, 2013. Review on determining number of Cluster in K-Means Clustering. International Journal of Advance Research in Computer Science and Man-agement Studies, 1(6):90-95.
    [24] Langford M, 2006. Obtaining population estimates in non-census reporting zones:an evaluation of the 3-class dasymetric method. Computers, Environment and Urban Systems, 30(2):161-180. doi: 10.1016/j.compenvurbsys.2004.07.001
    [25] Liu X, Gong L, Gong Y X et al., 2015. Revealing travel patterns and city structure with taxi trip data. Journal of Transport Geography, 43:78-90. doi: 10.1016/j.jtrangeo.2015.01.016
    [26] Liu X, Kang C G, Gong L et al., 2016. Incorporating spatial in-teraction patterns in classifying and understanding urban land use. International Journal of Geographical Information Sci-ence, 30(2):334-350. doi: 10.1080/13658816.2015.1086923
    [27] Liu Y, Wang F H, Xiao Y et al., 2012. Urban land uses and traffic ‘source-sink areas’:evidence from GPS-enabled taxi data in Shanghai. Landscape and Urban Planning, 106(1):73-87. doi: 10.1016/j.landurbplan.2012.02.012
    [28] Long Y, 2016. Redefining Chinese city system with emerging new data. Applied Geography, 75:36-48. doi:10.1016/j. apgeog.2016.08.002
    [29] Long Y, Liu L, 2016. Transformations of urban studies and plan-ning in the big/open data era:a review. International Journal of Image and Data Fusion, 7(4):295-308. doi: 10.1080/19479832.2016.1215355
    [30] Louail T, Lenormand M, Cantu Ros O G et al., 2014. From mobile phone data to the spatial structure of cities. Scientific Reports, 4:5276. doi: 10.1038/srep05276
    [31] Ma J T, Li H, Yuan F et al., 2013. Deriving operational origin-destination matrices from large scale mobile phone data. International Journal of Transportation Science and Technology, 2(3):183-204. doi:10.1260/2046-0430.2.3. 183
    [32] MacQueen J, 1967. Some methods for classification and analysis of multivariate observations. In:Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probabil-ity. Berkeley, California:University of California Press, 281-297.
    [33] Madhulatha T S, 2012. An overview on clustering methods. IOSR Journal of Engineering, 2(4):719-725. doi: 10.9790/3021-0204719725
    [34] Ministry of Housing and Urban-Rural Development of the Peo-ple's Republic of China, 2015. City Developments Statistic Yearbook. Beijing:China Statistics Press. (In Chinese)
    [35] Monsivais D, Bhattacharya K, Ghosh A et al., 2017. Seasonal and geographical impact on human resting periods. Scientific Re-ports, 7(1):10717. doi: 10.1038/s41598-017-11125-z
    [36] Monsivais D, Ghosh A, Bhattacharya K et al., 2017. Tracking urban human activity from mobile phone calling patterns. PLoS Computational Biology, 13(11):e1005824. doi: 10.1371/journal.pcbi.1005824
    [37] Pei T, Sobolevsky S, Ratti C et al., 2014. A new insight into land use classification based on aggregated mobile phone data. In-ternational Journal of Geographical Information Science, 28(9):1988-2007. doi: 10.1080/13658816.2014.913794
    [38] Pinelli F, Di Lorenzo G, Calabrese F, 2015. Comparing urban sensing applications using event and network-driven mobile phone location data. In:Proceedings of the 16th IEEE Inter-national Conference on Mobile Data Management. Pittsburgh, PA, USA:IEEE, 219-226. doi:10.1109/MDM.2015. 33
    [39] Reades J, Calabrese F, Ratti C, 2009. Eigenplaces:analysing cities using the space-time structure of the mobile phone network. Environment and Planning B:Planning and Design, 36(5):824-836. doi: 10.1068/b34133t
    [40] Roth C, Kang S M, Batty M et al., 2011. Structure of urban movements:polycentric activity and entangled hierarchical flows. PLoS ONE, 6(1):e15923. doi:10.1371/journal.pone. 0015923
    [41] Silva T H, Vaz De Melo P O S, Almeida J M et al., 2013. Social media as a source of sensing to study city dynamics and urban social behavior:approaches, models, and opportunities. In:Lecture Notes in Computer Science. Berlin Heidelberg:Springer-Verlag, 63-87. doi: 10.1007/978-3-642-45392-2_4
    [42] Song C M, Qu Z H, Blumm N et al., 2010. Limits of predictability in human mobility. Science, 327(5968):1018-1021. doi: 10.1126/science.1177170
    [43] Soria-Lara J A, Aguilera-Benavente F, Arranz-López A, 2016. Integrating land use and transport practice through spatial metrics. Transportation Research Part A:Policy and Practice, 91:330-345. doi: 10.1016/j.tra.2016.06.023
    [44] Steenbruggen J, Tranos E, Nijkamp P, 2015. Data from mobile phone operators:a tool for smarter cities? Telecommunications Policy, 39(3-4):335-346. doi: 10.1016/j.telpol.2014.04.001
    [45] Tian Jinling, Wang De, Xie Dongcan et al., 2017. Identifying the commuting features and patterns of typical employment areas in Shanghai using cellphone signaling data:a case study in Zhangjiang, Jinqiao and Lujiazui. Geographical Research, 36(1):134-148. doi: 10.11821/dlyj201701011
    [46] Tu W, Cao J Z, Yue Y et al., 2017. Coupling mobile phone and social media data:a new approach to understanding urban functions and diurnal patterns. International Journal of Geo-graphical Information Science, 31(12):2331-2358. doi: 10.1080/13658816.2017.1356464
    [47] Wang Bo, Zhen Feng, Zhang Hao, 2015. The dynamic changes of urban space-time activity and activity zoning based on check-in data in Sina Web. Scientia Geographica Sinica, 35(2):151-160. (in Chinese)
    [48] Wang B, Zhen F, Qin X et al., 2018. GIS-based social spatial behavior studies:a case study in Nanjing University utilizing mobile data. In:Comprehensive Geographic Information Sys-tems. Oxford:Elsevier, 320-329. doi: 10.1016/B978-0-12-409548-9.09686-X
    [49] Wang M L, 2014. Understanding Activity Location Choice with Mobile Phone Data. Washington:University of Washington.
    [50] Wu C, Ye X Y, Ren F et al., 2018. Check-in behaviour and spatio-temporal vibrancy:an exploratory analysis in Shenzhen, China. Cities, 77:104-116. doi:10.1016/j.cities. 2018.01.017
    [51] Yue Y, Zhuang Y, Yeh A G O et al., 2017. Measurements of POI-based mixed use and their relationships with neighbour-hood vibrancy. International Journal of Geographical Infor-mation Science, 31(4):658-675. doi:10.1080/13658816.2016. 1220561
    [52] Zhai Y J, Wu H B, Fan H C et al., 2018. Using mobile signaling data to exam urban park service radius in Shanghai:methods and limitations. Computers, Environment and Urban Systems, 71:27-40. doi: 10.1016/j.compenvurbsys.2018.03.011
  • [1] WEI Zongcai, ZHEN Feng, MO Haitong, WEI Shuqing, PENG Danli, ZHANG Yuling.  Travel Behaviours of Sharing Bicycles in the Central Urban Area Based on Geographically Weighted Regression: The Case of Guangzhou, China . Chinese Geographical Science, 2021, 31(1): 54-69. doi: 10.1007/s11769-020-1159-3
    [2] Becky P Y LOO, Feiyang ZHANG, Janet H HSIAO, Antoni B CHAN, Hui LAN.  Applying the Hidden Markov Model to Analyze Urban Mobility Patterns: An Interdisciplinary Approach . Chinese Geographical Science, 2021, 31(1): 1-13. doi: 10.1007/s11769-021-1173-0
    [3] Juliana USEYA, CHEN Shengbo.  Exploring the Potential of Mapping Cropping Patterns on Smallholder Scale Croplands Using Sentinel-1 SAR Data . Chinese Geographical Science, 2019, 20(4): 626-639. doi: 10.1007/s11769-019-1060-0
    [4] SERASINGHE PATHIRANAGE Inoka Sandamali, Lakshmi N. KANTAKUMAR, SUNDARAMOORTHY Sivanantharajah.  Remote Sensing Data and SLEUTH Urban Growth Model: As Decision Support Tools for Urban Planning . Chinese Geographical Science, 2018, 28(2): 274-286. doi: 10.1007/s11769-018-0946-6
    [5] SONG Tao, CAI Jianming, YANG Zhenshan, CHEN Mingxing, LIN Jing.  Urban Metabolic Efficiencies and Elasticities of Chinese Cities . Chinese Geographical Science, 2016, 26(6): 715-730. doi: 10.1007/s11769-016-0830-1
    [6] LI Shujuan.  Rank-size Distributions of Chinese Cities: Macro and Micro Patterns . Chinese Geographical Science, 2016, 26(5): 577-588. doi: 10.1007/s11769-015-0792-8
    [7] ZHU Jishuai, TIAN Shufang, TAN Kun, DU Peijun.  Human Settlement Analysis Based on Multi-temporal Remote Sensing Data: A Case Study of Xuzhou City, China . Chinese Geographical Science, 2016, 26(3): 389-400. doi: 10.1007/s11769-016-0815-0
    [8] ZHENG Defeng, ZHANG Yu, ZANG Zheng, SUN Caizhi.  Empirical Research on Carrying Capacity of Human Settlement System in Dalian City, Liaoning Province, China . Chinese Geographical Science, 2015, 25(2): 237-249. doi: 10.1007/s11769-014-0732-z
    [9] LIU Qinping, YANG Yongchun, TIAN Hongzhen, ZHANG Bo, GU Lei.  Assessment of Human Impacts on Vegetation in Built-up Areas in China Based on AVHRR, MODIS and DMSP_OLS Nighttime Light Data, 1992-2010 . Chinese Geographical Science, 2014, 0(2): 231-244. doi: 10.1007/s11769-013-0645-2
    [10] WANG Kaiyong, DENG Yu, SUN Daowei, SONG Tao.  Evolution and Spatial Patterns of Spheres of Urban Influence in China . Chinese Geographical Science, 2014, 0(1): 126-136. doi: 10.1007/s11769-013-0635-4
    [11] HUANG Yue, FANG Yangang, ZHANG Ye, LIU Jisheng.  A Study of Resource Curse Effect of Chinese Provinces Based on Human Developing Index . Chinese Geographical Science, 2014, 0(6): 732-739. doi: 10.1007/s11769-014-0727-9
    [12] HUANG Yixiong, YIN Xiuqin, YIN Xiuqin et al..  Spatio-temporal Variation of Landscape Heterogeneity under Influence of Human Activities in Xiamen City of China in Recent Decade . Chinese Geographical Science, 2013, 23(2): 227-236.
    [13] LI Hongsheng, WANG Yingjie, HAN Jiafu.  Origin Distribution Patterns and Floating Population Modeling: Yiwu City as a Destination . Chinese Geographical Science, 2012, 22(3): 367-380.
    [14] SHEN Zehao, LI Peng, SUN Hongkai, PANG Lihua.  Geographical Patterns of Chinese Ethnic Minority Population Composition and Ethnic Diversity . Chinese Geographical Science, 2011, 21(4): 454-464.
    [15] CAO Xiaoshu, CHEN Hemei, LI Linna, ZHEN Feng.  Private Car Travel Characteristics and Influencing Factors in Chinese Cities——A Case Study of Guangzhou in Guangdong, China . Chinese Geographical Science, 2009, 19(4): 325-332. doi: 10.1007/s11769-009-0325-4
    [16] ZHU Zhen-guo, YAO Shi-mou.  NEW PATTERNS OF URBAN DEVELOPMENT IN CHINA . Chinese Geographical Science, 2000, 10(1): 20-29.
    [17] 李诚固, 黄岩君, 王祁春.  COMPARATIVE STUDY ON CHINESE URBAN AGGLOMERATION DISTRICTS . Chinese Geographical Science, 1998, 8(2): 136-143.
    [18] 孟晓晨.  RURAL-URBAN LABORERS'MOBILITY AND URBANIZATION IN CHINA . Chinese Geographical Science, 1994, 4(4): 333-344.
    [19] 王菱, 王勤学, 张如一.  HUMAN IMPACTS ON THE ECOLOGICAL ENVIRONMENT AND MODERN URBAN CLIMATE CHANGE IN THE LOESS PLATEAU . Chinese Geographical Science, 1993, 3(4): 365-375.
    [20] 鲜肖威, 张林源, 艾南山, Wihelm Wohlke.  ON THE RELATION BETWEEN THE EVOLUTION OF NATURAL ENVIRONMENT AND HUMAN FACTORS AND THE DEVELOPMENT OF URBAN SETTLEMENT——Take the Lanzhou Valley Basin as An Examples . Chinese Geographical Science, 1991, 1(1): 42-53.
  • 加载中
计量
  • 文章访问数:  103
  • HTML全文浏览量:  1
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-02

Exploring Temporal Activity Patterns of Urban Areas Using Aggregated Network-driven Mobile Phone Data: A Case Study of Wuhu, China

doi: 10.1007/s11769-020-1130-3
    基金项目:

    Under the auspices of the National Natural Science Foundation of China (No. 41571146), China Postdoctoral Science Foundation (No. 2019M651784)

    通讯作者: ZHEN Feng. E-mail:zhenfeng@nju.edu.cn

摘要: The increasing availability of data in the urban context (e.g., mobile phone, smart card and social media data) allows us to study urban dynamics at much finer temporal resolutions (e.g., diurnal urban dynamics). Mobile phone data, for instance, are found to be a useful data source for extracting diurnal human mobility patterns and for understanding urban dynamics. While previous studies often use call detail record (CDR) data, this study deploys aggregated network-driven mobile phone data that may reveal human mobility patterns more comprehensively and can mitigate some of the privacy concerns raised by mobile phone data usage. We first propose an analytical framework for characterizing and classifying urban areas based on their temporal activity patterns extracted from mobile phone data. Specifically, urban areas’ diurnal spatiotemporal signatures of human mobility patterns are obtained through longitudinal mobile phone data. Urban areas are then classified based on the obtained signatures. The classification provides insights into city planning and development. Using the proposed framework, a case study was implemented in the city of Wuhu, China to understand its urban dynamics. The empirical study suggests that human activities in the city of Wuhu are highly concentrated at the Traffic Analysis Zone (TAZ) level. This large portion of local activities suggests that development and planning strategies that are different from those used by metropolitan Chinese cities should be applied in the city of Wuhu. This article concludes with discussions on several common challenges associated with using network-driven mobile phone data, which should be addressed in future studies.

English Abstract

ZHANG Shanqi, YANG Yu, ZHEN Feng, LOBSANG Tashi. Exploring Temporal Activity Patterns of Urban Areas Using Aggregated Network-driven Mobile Phone Data: A Case Study of Wuhu, China[J]. 中国地理科学, 2020, 30(4): 695-709. doi: 10.1007/s11769-020-1130-3
引用本文: ZHANG Shanqi, YANG Yu, ZHEN Feng, LOBSANG Tashi. Exploring Temporal Activity Patterns of Urban Areas Using Aggregated Network-driven Mobile Phone Data: A Case Study of Wuhu, China[J]. 中国地理科学, 2020, 30(4): 695-709. doi: 10.1007/s11769-020-1130-3
ZHANG Shanqi, YANG Yu, ZHEN Feng, LOBSANG Tashi. Exploring Temporal Activity Patterns of Urban Areas Using Aggregated Network-driven Mobile Phone Data: A Case Study of Wuhu, China[J]. Chinese Geographical Science, 2020, 30(4): 695-709. doi: 10.1007/s11769-020-1130-3
Citation: ZHANG Shanqi, YANG Yu, ZHEN Feng, LOBSANG Tashi. Exploring Temporal Activity Patterns of Urban Areas Using Aggregated Network-driven Mobile Phone Data: A Case Study of Wuhu, China[J]. Chinese Geographical Science, 2020, 30(4): 695-709. doi: 10.1007/s11769-020-1130-3
参考文献 (52)

目录

    /

    返回文章
    返回