留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Vegetation Mapping for Regional Ecological Research and Management: A Case of the Loess Plateau in China

LIU Yuanxin LYU Yihe BAI Yingfei ZHANG Buyun TONG Xiaolin

LIU Yuanxin, LYU Yihe, BAI Yingfei, ZHANG Buyun, TONG Xiaolin. Vegetation Mapping for Regional Ecological Research and Management: A Case of the Loess Plateau in China[J]. 中国地理科学, 2020, 30(3): 410-426. doi: 10.1007/s11769-020-1120-5
引用本文: LIU Yuanxin, LYU Yihe, BAI Yingfei, ZHANG Buyun, TONG Xiaolin. Vegetation Mapping for Regional Ecological Research and Management: A Case of the Loess Plateau in China[J]. 中国地理科学, 2020, 30(3): 410-426. doi: 10.1007/s11769-020-1120-5
LIU Yuanxin, LYU Yihe, BAI Yingfei, ZHANG Buyun, TONG Xiaolin. Vegetation Mapping for Regional Ecological Research and Management: A Case of the Loess Plateau in China[J]. Chinese Geographical Science, 2020, 30(3): 410-426. doi: 10.1007/s11769-020-1120-5
Citation: LIU Yuanxin, LYU Yihe, BAI Yingfei, ZHANG Buyun, TONG Xiaolin. Vegetation Mapping for Regional Ecological Research and Management: A Case of the Loess Plateau in China[J]. Chinese Geographical Science, 2020, 30(3): 410-426. doi: 10.1007/s11769-020-1120-5

Vegetation Mapping for Regional Ecological Research and Management: A Case of the Loess Plateau in China

doi: 10.1007/s11769-020-1120-5
基金项目: 

Under the auspices of National Key Research and Development Program of China (No. 2016YFC0501601), Key Science and Technology Project of Yan'an Municipality (No. 2016CGZH-14-03)

详细信息
    通讯作者:

    LYU Yihe.E-mail:lyh@rcees.ac.cn

Vegetation Mapping for Regional Ecological Research and Management: A Case of the Loess Plateau in China

Funds: 

Under the auspices of National Key Research and Development Program of China (No. 2016YFC0501601), Key Science and Technology Project of Yan'an Municipality (No. 2016CGZH-14-03)

  • 摘要: Vegetation maps are fundamental for regional-scale ecological research. However, information is often not sufficiently up to date for such research. The Loess Plateau is a key area for vegetation restoration projects and a suitable area for regional ecological research. To carry out regional vegetation mapping based on the principles of hierarchical classification, object-oriented methods, visual interpretation, and accuracy assessment, this study integrated land cover, high-resolution remote sensing images, background environmental data, bioclimate zoning data, and field survey data from the Loess Plateau. To further clarify the implications of vegetation mapping, we compared the deviation of the 2015 vegetation map of the Loess Plateau (VMLP) and the widely used vegetation map of China (VMC) (1:1 000 000) for the expressed vegetation information and the evaluation of ecosystem services. The results indicated that 1) the vegetation of the Loess Plateau could be divided into 9 vegetation type groups and 18 vegetation types with classification accuracies of 87.76% and 83.97%, respectively; 2) the distribution of vegetation had obvious zonal regularity; 3) a deviation of 29.56×104km2 occurred when the vegetation coverage area was quantified with the VMC; 4) the vegetation classification accuracy affected the ecosystem service assessment, the total water yield of the Loess Plateau calculated by the VMC and other required parameters was overestimated by 2.2×106 mm in 2015. Because vegetation mapping is a basic and important activity, that requires greater attention, this study provides supporting data for subsequent multivariate vegetation mapping and vegetation management for conservation and restoration.
  • [1] Alamgir M, Turton S M, Macgregor C et al., 2016. Ecosystem services capacity across heterogeneous forest types:understanding the interactions and suggesting pathways for sustaining multiple ecosystem services. Science of the Total Environment, 566-567:584-595. doi:10.1016/j.scitotenv.2016. 05.107
    [2] Bonan G B, 2008. Forests and climate change:forcings, feedbacks, and the climate benefits of forests. Science, 320:1444-1449. doi: 10.1126/science.1155121
    [3] Brinkmann K, Patzelt A, Schlecht E et al., 2011. Use of environmental predictors for vegetation mapping in semi-arid mountain rangelands and the determination of conservation hotspots. Applied Vegetation Science, 14(1):17-30. doi: 10.1111/j.1654-109x.2010.01097.x
    [4] Brown de Colstoun E C, Story M H, Thompson C et al., 2003. National park vegetation mapping using multi-temporal LANDSAT 7 data and a decision tree classifier. Remote Sensing of Environment, 85(3):316-327. doi: 10.1016/S0034-4257(03)00010-5
    [5] Cai D L, Guan Y N, Guo S et al., 2014. Mapping plant functional types over broad mountainous regions:a hierarchical soft time-space classification applied to the Tibetan Plateau. Remote Sensing, 6(4):3511-3532. doi: 10.3390/rs6043511
    [6] Cawsey E M, Austin M P, Baker B L, 2002. Regional vegetation mapping in Australia:a case study in the practical use of statistical modelling. Biodiversity and Conservation, 11(12):2239-2274. doi: 10.1023/a:1021350813586
    [7] Ebrahimi M, Khosravi H, Rigi M, 2016. Short-term grazing exclusion from heavy livestock rangelands affects vegetation cover and soil properties in natural ecosystems of southeastern Iran. Ecological Engineering, 95:10-18. doi:10.1016/j. ecoleng.2016.06.069
    [8] Eppink F V, van den Bergh J C J M, Rietveld P, 2004. Modelling biodiversity and land use:urban growth, agriculture and nature in a wetland area. Ecological Economics, 51(3-4):201-216. doi: 10.1016/j.ecolecon.2004.04.011
    [9] Fang J Y, Yu G R, Liu L L et al., 2018. Climate change, human impacts, and carbon sequestration in China. Proceedings of the National Academy of Sciences of the United States of America, 115(16):4015-4020. doi: 10.1073/pnas.1700304115
    [10] Friedl M A, Sulla-Menashe D, Tan B et al., 2010. MODIS collection 5 global land cover:algorithm refinements and characterization of new datasets. Remote Sensing of Environment, 114(1):168-182. doi: 10.1016/j.rse.2009.08.016
    [11] Fu B J, Liu Y, Lü Y H et al., 2011. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecological Complexity, 8(4):284-293. doi: 10.1016/j.ecocom.2011.07.003
    [12] Gallet S, Sawtschuk J, 2014. Restoration dynamics evaluation by vegetation mapping and transition matrix modelling:analysis of 20 yr of restoration and management at the megalithic site of Carnac (Brittany, France). Applied Vegetation Science, 17(2):225. doi: 10.1111/avsc.12080
    [13] Garzón-Machado V, Otto R, del Arco Aguilar M J, 2013. Bioclimatic and vegetation mapping of a topographically complex oceanic island applying different interpolation techniques. International Journal of Biometeorology, 58(5):887-899. doi: 10.1007/s00484-013-0670-y
    [14] Graves S J, Caughlin T T, Asner G P et al., 2018. A tree-based approach to biomass estimation from remote sensing data in a tropical agricultural landscape. Remote Sensing of Environment, 218:32-43. doi: 10.1016/j.rse.2018.09.009
    [15] Hall F G, Bergen K, Blair J B et al., 2011. Characterizing 3D vegetation structure from space:mission requirements. Remote Sensing of Environment, 115(11):2753-2775. doi: 10.1016/j.rse.2011.01.024
    [16] Hao R F, Yu D Y, Wu J G, 2017. Relationship between paired ecosystem services in the grassland and agro-pastoral transitional zone of China using the constraint line method. Agriculture, Ecosystems & Environment, 240:171-181. doi: 10.1016/j.agee.2017.02.015
    [17] Hlatshwayo S T, Mutanga O, Lottering R T et al., 2019. Mapping forest aboveground biomass in the reforested Buffelsdraai landfill site using texture combinations computed from SPOT-6 pan-sharpened imagery. International Journal of Applied Earth Observation and Geoinformation, 74:65-77. doi: 10.1016/j.jag.2018.09.005
    [18] Huang H B, Liu C X, Wang X Y et al., 2017. Mapping vegetation heights in China using slope correction ICESat data, SRTM, MODIS-derived and climate data. ISPRS Journal of Photogrammetry and Remote Sensing, 129:189-199. doi: 10.1016/j.isprsjprs.2017.04.020
    [19] Jiang C, Wang F, Zhang H Y et al., 2016. Quantifying changes in multiple ecosystem services during 2000-2012 on the Loess Plateau, China, as a result of climate variability and ecological restoration. Ecological Engineering, 97:258-271. doi: 10.1016/j.ecoleng.2016.10.030
    [20] Joy S M, Reich R M, Reynolds R T, 2003. A non-parametric, supervised classification of vegetation types on the Kaibab National Forest using decision trees. International Journal of Remote Sensing, 24(9):1835-1852. doi:10.1080/01431160 210154948
    [21] Karami M, Westergaard-Nielsen A, Normand S et al., 2018. A phenology-based approach to the classification of Arctic tundra ecosystems in Greenland. ISPRS Journal of Photogrammetry and Remote Sensing, 146:518-529. doi: 10.1016/j.isprsjprs.2018.11.005
    [22] Lü Y H, Fu B J, Feng X M et al., 2012. A policy-driven large scale ecological restoration:quantifying ecosystem services changes in the Loess Plateau of China. PloS One, 7(2):e31782. doi: 10.1371/journal.pone.0031782
    [23] Lü Y H, Zhang L W, Zeng Y et al., 2017. Representation of critical natural capital in China. Conservation Biology, 31(4):894-902. doi: 10.1111/cobi.12897
    [24] Li Z, Zhou T, Zhao X et al., 2015. Assessments of drought impacts on vegetation in China with the optimal time scales of the climatic drought index. International Journal of Environmental Research and Public Health, 12(7):7615-7634. doi: 10.3390/ijerph120707615
    [25] Liu L L, Zhang X Y, Donnelly A et al., 2016a. Interannual variations in spring phenology and their response to climate change across the Tibetan Plateau from 1982 to 2013. International Journal of Biometeorology, 60(10):1563-1575. doi: 10.1007/s00484-016-1147-6
    [26] Liu Shuangna, Zhou Tao, Wei Linyan et al., 2012. The spatial distribution of forest carbon sinks and sources in China. Chinese Science Bulletin, 57(14):1699-1707. (in Chinese)
    [27] Liu Y X, Lü Y H, Fu B J et al., 2019. Quantifying the spatio-temporal drivers of planned vegetation restoration on ecosystem services at a regional scale. Science of the Total Environment, 650(1):1029-1040. doi:10.1016/j.scitotenv.2018. 09.082
    [28] Liu Y X, Zhao W W, Zhang X et al., 2016b. Soil water storage changes within deep profiles under introduced shrubs during the growing season:evidence from semiarid Loess Plateau, China. Water, 8(10):475. doi: 10.3390/w8100475
    [29] Manies K L, Mladenoff D J, 2000. Testing methods to produce landscape-scale presettlement vegetation maps from the U.S. public land survey records. Landscape Ecology, 15(8):741-754. doi: 10.1023/a:1008115200471
    [30] Massetti A, Sequeira M M, Pupo A et al., 2016. Assessing the effectiveness of RapidEye multispectral imagery for vegetation mapping in Madeira Island (Portugal). European Journal of Remote Sensing, 49(1):643-672. doi:10.5721/eujrs 20164934
    [31] Mohamed M A, Babiker I S, Chen Z M et al., 2004. The role of climate variability in the inter-annual variation of terrestrial net primary production (NPP). Science of the Total Environment, 332(1-3):123-137. doi:10.1016/j.scitotenv.2004. 03.009
    [32] Molnár Z, Bartha S, Seregélyes T et al., 2007. A grid-based, satellite-image supported, multi-attributed vegetation mapping method (MÉTA). Folia Geobotanica, 42(3):225-247. doi: 10.1007/BF02806465
    [33] Muchoney D, Strahler A, 2002. Regional vegetation mapping and direct land surface parameterization from remotely sensed and site data. International Journal of Remote Sensing, 23(6):1125-1142. doi: 10.1080/01431160110070771
    [34] Nijland W, Reshitnyk L, Rubidge E, 2019. Satellite remote sensing of canopy-forming kelp on a complex coastline:a novel procedure using the Landsat image archive. Remote Sensing of Environment, 220:41-50. doi: 10.1016/j.rse.2018.10.032
    [35] Novo-Fernández A, Franks S, Wehenkel C et al., 2018. Landsat time series analysis for temperate forest cover change detection in the Sierra Madre Occidental, Durango, Mexico. International Journal of Applied Earth Observation & Geoinformation, 73(1):230-244. doi: 10.1016/j.jag.2018.06.015
    [36] Ouyang Zhiyuan, Zhang Lu, Wu Bingfang et al., 2015. An ecosystem classification system based on remote sensor information in China. Acta Ecologica Sinica, 35(2), 219-226. (in Chinese)
    [37] Peng J, Hu Y N, Liu Y X et al., 2018. A new approach for urban-rural fringe identification:integrating impervious surface area and spatial continuous wavelet transform. Landscape and Urban Planning, 175:72-79. doi: doi.org/10.1016/j.landurbplan.2018.03.008
    [38] Potter C S, Randerson J T, Field C B et al., 1993. Terrestrial ecosystem production:a process model based on global satellite and surface data. Global Biogeochemical Cycles, 7:811-841. doi: 10.1029/93GB02725
    [39] Qiu B W, Liu Z, Tang Z H et al., 2016. Developing indices of temporal dispersion and continuity to map natural vegetation. Ecological Indicators, 64:335-342. doi:10.1016/j.ecolind. 2016.01.006
    [40] Ren Y J, Lü Y H, Fu B J, 2016. Quantifying the impacts of grassland restoration on biodiversity and ecosystem services in China:a meta-analysis. Ecological Engineering, 95:542-550. doi: 10.1016/j.ecoleng.2016.06.082
    [41] Sader S A, Bertrand M, Wilson E H, 2003. Satellite change detection of forest harvest patterns on an industrial forest landscape. Forest Science, 49(3):341-353. doi:10.1046/j.1439-0329. 2003.00323.x
    [42] Schlaepfer D R, Bradford J B, Lauenroth W K et al., 2017. Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nature Communications, 8:14196. doi: 10.1038/ncomms14196
    [43] Shamsoddini A, Raval S, 2018. Mapping red edge-based vegetation health indicators using Landsat TM data for Australian native vegetation cover. Earth Science Informatics, 11:1-8. doi: 10.1007/s12145-018-0347-5
    [44] Sui X H, Zhou G S, 2012. Carbon dynamics of temperate grassland ecosystems in China from 1951 to 2007:an analysis with a process-based biogeochemistry model. Environmental Earth Sciences, 68(2):521-533. doi: 10.1007/s12665-012-1756-2
    [45] Walker K J, Stevens P A, Stevens D P et al., 2004. The restoration and re-creation of species-rich lowland grassland on land formerly managed for intensive agriculture in the UK. Biological Conservation, 119(1):1-18. doi:10.1016/j.biocon.2003.10. 020
    [46] Wang S, Fu B J, Piao S L et al., 2015a. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nature Geoscience, 9(1):38-41. doi: 10.1038/ngeo2602
    [47] Wang Q F, Zheng H, Zhu X J et al., 2015b. Primary estimation of Chinese terrestrial carbon sequestration during 2001-2010. Science Bulletin, 60(6):577-590. doi: 10.1007/s11434-015-0736-9
    [48] Wu B F, Zeng Y, Qian J K et al., 2017. Land Cover Atlas of the People's Republic of China (1:1 000 000). Beijing:SinoMaps Press.
    [49] Wu Bingfang, Yuan Quanzhi, Yan Changzhen et al., 2014. Land cover changes of China from 2000 to 2010. Quaternary Sciences, 34(4):723-731. (in Chinese)
    [50] Zhang Y W, Shangguan Z P, 2016. The coupling interaction of soil water and organic carbon storage in the long vegetation restoration on the Loess Plateau. Ecological Engineering, 91(9):574-581. doi: 10.1016/j.ecoleng.2016.03.033
    [51] Zhao D S, Wu S H, 2013. Responses of vegetation distribution to climate change in China. Theoretical and Applied Climatology, 117(1-2):15-28. doi: 10.1007/s00704-013-0971-4
    [52] Zhao M Y, Peng J, Liu Y X et al., 2018. Mapping watershed-level ecosystem service bundles in the Pearl River Delta, China. Ecological Economics, 152:106-117. doi:10.1016/j.ecolecon. 2018.04.023
    [53] Zhu Wenquan, Pan Yaozhong, Zhang Jinshui, 2007. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing. Journal of Plant Ecology, 31(3):413-424. (in Chinese)
  • [1] WANG Xiaofeng, ZHANG Xinrong, FENG Xiaoming, LIU Shirong, YIN Lichang, CHEN Yongzhe.  Trade-offs and Synergies of Ecosystem Services in Karst Area of China Driven by Grain-for-Green Program . Chinese Geographical Science, 2020, 30(1): 101-114. doi: 10.1007/s11769-020-1098-z
    [2] QU Lulu, HUANG Yunxin, YANG Lingfan, LI Yurui.  Vegetation Restoration in Response to Climatic and Anthropogenic Changes in the Loess Plateau, China . Chinese Geographical Science, 2020, 30(1): 89-100. doi: 10.1007/s11769-020-1093-4
    [3] QIAO Xuning, GU Yangyang, ZOU Changxin, WANG Lei, LUO Juhua, HUANG Xianfeng.  Trade-offs and Synergies of Ecosystem Services in the Taihu Lake Basin of China . Chinese Geographical Science, 2018, 28(1): 86-99. doi: 10.1007/s11769-018-0933-y
    [4] DONG Suocheng, CHENG Hao, LI Yu, LI Fujia, WANG Zhe, CHEN Feng.  Rural Landscape Types and Recreational Value Spatial Analysis of Valley Area of Loess Plateau: A Case of Hulu Watershed, Gansu Province, China . Chinese Geographical Science, 2017, 27(2): 286-297. doi: 10.1007/s11769-017-0863-0
    [5] RAO Enming, XIAO Yi, OUYANG Zhiyun, ZHENG Hua.  Changes in Ecosystem Service of Soil Conservation Between 2000 and 2010 and Its Driving Factors in Southwestern China . Chinese Geographical Science, 2016, 26(2): 165-173. doi: 10.1007/s11769-015-0759-9
    [6] LIU Yansui, GUO Yanjun, LI Yurui, LI Yuheng.  GIS-based Effect Assessment of Soil Erosion Before and After Gully Land Consolidation: A Case Study of Wangjiagou Project Region, Loess Plateau . Chinese Geographical Science, 2015, 25(2): 137-146. doi: 10.1007/s11769-015-0742-5
    [7] HU Chanjuan, LIU Guohua, FU Bojie, CHEN Liding, LYU Yihe, GUO Lei.  Soil Carbon Stock and Flux in Plantation Forest and Grassland Ecosystems in Loess Plateau, China . Chinese Geographical Science, 2014, 0(4): 423-435. doi: 10.1007/s11769-014-0700-7
    [8] ZHU Hongchun, TANG Guoan, QIAN Kejian, LIU Haiying.  Extraction and Analysis of Gully Head of Loess Plateau in China Based on Digital Elevation Model . Chinese Geographical Science, 2014, 0(3): 328-338. doi: 10.1007/s11769-014-0663-8
    [9] LI Taijun, LIU Guobin.  Age-related Changes of Carbon Accumulation and Allocation in Plants and Soil of Black Locust Forest on Loess Plateau in Ansai County, Shaanxi Province of China . Chinese Geographical Science, 2014, 0(4): 414-422. doi: 10.1007/s11769-014-0704-3
    [10] JIN Tiantian, LIU Guohua, FU Bojie, DING Xiaohui, YANG Lei.  Assessing Adaptability of Planted Trees Using Leaf Traits: A Case Study with Robinia pseudoacacia L. in the Loess Plateau, China . Chinese Geographical Science, 2011, 21(3): 290-303.
    [11] HU Liangjun, YANG Haijun, YANG Qinke, LI Rui.  A GIS-based Modeling Approach for Fast Assessment of Soil Erosion by Water at Regional Scale, Loess Plateau of China . Chinese Geographical Science, 2010, 20(5): 423-433. doi: 10.1007/s11769-010-0416-2
    [12] FENG Xiaoming, FU Bojie, YANG Xiaojun, LÜ Yihe.  Remote Sensing of Ecosystem Services:An Opportunity for Spatially Explicit Assessment . Chinese Geographical Science, 2010, 20(6): 522-535. doi: 10.1007/s11769-010-0428-y
    [13] XIE Gaodi, LI Wenhua, XIAO Yu, ZHANG Biao, LU Chunxia, AN Kai, WANG Jixing, XU Kang, WANG Jinzeng.  Forest Ecosystem Services and Their Values in Beijing . Chinese Geographical Science, 2010, 20(1): 51-58. doi: 10.1007/s11769-010-0051-y
    [14] LIU Xianzhao, LI Jiazhu.  Application of SCS Model in Estimation of Runoff from Small Watershed in Loess Plateau of China . Chinese Geographical Science, 2008, 18(3): 235-241. doi: 10.1007/s11769-008-0235-x
    [15] QUAN Bin, M J M RÖMKENS, TAO Jianjun, LI Bichen, LI Chaokui, YU Guanghui, CHEN Qichun.  Spatial-temporal Pattern and Population Driving Force of Land Use Change in Liupan Mountains Region, Southern Ningxia, China . Chinese Geographical Science, 2008, 18(4): 323-330. doi: 10.1007/s11769-008-0323-y
    [16] WANG Bo, GUO Qinghai, Dou Sen.  Urbanization of Jilin Province and Its Spatial Pattern . Chinese Geographical Science, 2006, 16(4): 359-364.
    [17] ZHAO Bin, LI Bo, ZHONG Yang, NAKAGOSHI Nobukazu, CHEN Jia-kuan.  ESTIMATION OF ECOLOGICAL SERVICE VALUES OF WETLANDS IN SHANGHAI, CHINA . Chinese Geographical Science, 2005, 15(2): 151-156.
    [18] JIAO Ju-ying, WANG Wan-zhong.  PREDICTION OF SEDIMENT REDUCING BENEFIT UNDER DIFFERENT RAINFALL COND ITIONS AND CONTROL DEGREES ON THE LOESS PLATEAU . Chinese Geographical Science, 2003, 13(2): 149-156.
    [19] QIAN Ya-dong, LU Guo-nian, CHEN Zhong-ming.  AUTOMATIC EXTRACTION OF VALLEY BOUNDARY FROM DEMS IN THE HILLY LOESS PLATEAU . Chinese Geographical Science, 2000, 10(3): 238-244.
    [20] 朱志诚.  BASIC FEATURES OF FOREST STEPPE IN THE LOESS PLATEAU OF CHINA . Chinese Geographical Science, 1995, 5(2): 170-174.
  • 加载中
计量
  • 文章访问数:  76
  • HTML全文浏览量:  1
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-17
  • 修回日期:  2019-10-11

Vegetation Mapping for Regional Ecological Research and Management: A Case of the Loess Plateau in China

doi: 10.1007/s11769-020-1120-5
    基金项目:

    Under the auspices of National Key Research and Development Program of China (No. 2016YFC0501601), Key Science and Technology Project of Yan'an Municipality (No. 2016CGZH-14-03)

    通讯作者: LYU Yihe.E-mail:lyh@rcees.ac.cn

摘要: Vegetation maps are fundamental for regional-scale ecological research. However, information is often not sufficiently up to date for such research. The Loess Plateau is a key area for vegetation restoration projects and a suitable area for regional ecological research. To carry out regional vegetation mapping based on the principles of hierarchical classification, object-oriented methods, visual interpretation, and accuracy assessment, this study integrated land cover, high-resolution remote sensing images, background environmental data, bioclimate zoning data, and field survey data from the Loess Plateau. To further clarify the implications of vegetation mapping, we compared the deviation of the 2015 vegetation map of the Loess Plateau (VMLP) and the widely used vegetation map of China (VMC) (1:1 000 000) for the expressed vegetation information and the evaluation of ecosystem services. The results indicated that 1) the vegetation of the Loess Plateau could be divided into 9 vegetation type groups and 18 vegetation types with classification accuracies of 87.76% and 83.97%, respectively; 2) the distribution of vegetation had obvious zonal regularity; 3) a deviation of 29.56×104km2 occurred when the vegetation coverage area was quantified with the VMC; 4) the vegetation classification accuracy affected the ecosystem service assessment, the total water yield of the Loess Plateau calculated by the VMC and other required parameters was overestimated by 2.2×106 mm in 2015. Because vegetation mapping is a basic and important activity, that requires greater attention, this study provides supporting data for subsequent multivariate vegetation mapping and vegetation management for conservation and restoration.

English Abstract

LIU Yuanxin, LYU Yihe, BAI Yingfei, ZHANG Buyun, TONG Xiaolin. Vegetation Mapping for Regional Ecological Research and Management: A Case of the Loess Plateau in China[J]. 中国地理科学, 2020, 30(3): 410-426. doi: 10.1007/s11769-020-1120-5
引用本文: LIU Yuanxin, LYU Yihe, BAI Yingfei, ZHANG Buyun, TONG Xiaolin. Vegetation Mapping for Regional Ecological Research and Management: A Case of the Loess Plateau in China[J]. 中国地理科学, 2020, 30(3): 410-426. doi: 10.1007/s11769-020-1120-5
LIU Yuanxin, LYU Yihe, BAI Yingfei, ZHANG Buyun, TONG Xiaolin. Vegetation Mapping for Regional Ecological Research and Management: A Case of the Loess Plateau in China[J]. Chinese Geographical Science, 2020, 30(3): 410-426. doi: 10.1007/s11769-020-1120-5
Citation: LIU Yuanxin, LYU Yihe, BAI Yingfei, ZHANG Buyun, TONG Xiaolin. Vegetation Mapping for Regional Ecological Research and Management: A Case of the Loess Plateau in China[J]. Chinese Geographical Science, 2020, 30(3): 410-426. doi: 10.1007/s11769-020-1120-5
参考文献 (53)

目录

    /

    返回文章
    返回