留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Impact of Urban 3D Morphology on Particulate Matter 2.5 (PM2.5) Concentrations: Case Study of Beijing, China

LUAN Qingzu JIANG Wei LIU Shuo GUO Hongxiang

LUAN Qingzu, JIANG Wei, LIU Shuo, GUO Hongxiang. Impact of Urban 3D Morphology on Particulate Matter 2.5 (PM2.5) Concentrations: Case Study of Beijing, China[J]. 中国地理科学, 2020, 30(2): 294-308. doi: 10.1007/s11769-020-1112-5
引用本文: LUAN Qingzu, JIANG Wei, LIU Shuo, GUO Hongxiang. Impact of Urban 3D Morphology on Particulate Matter 2.5 (PM2.5) Concentrations: Case Study of Beijing, China[J]. 中国地理科学, 2020, 30(2): 294-308. doi: 10.1007/s11769-020-1112-5
LUAN Qingzu, JIANG Wei, LIU Shuo, GUO Hongxiang. Impact of Urban 3D Morphology on Particulate Matter 2.5 (PM2.5) Concentrations: Case Study of Beijing, China[J]. Chinese Geographical Science, 2020, 30(2): 294-308. doi: 10.1007/s11769-020-1112-5
Citation: LUAN Qingzu, JIANG Wei, LIU Shuo, GUO Hongxiang. Impact of Urban 3D Morphology on Particulate Matter 2.5 (PM2.5) Concentrations: Case Study of Beijing, China[J]. Chinese Geographical Science, 2020, 30(2): 294-308. doi: 10.1007/s11769-020-1112-5

Impact of Urban 3D Morphology on Particulate Matter 2.5 (PM2.5) Concentrations: Case Study of Beijing, China

doi: 10.1007/s11769-020-1112-5
基金项目: 

Under the auspices of National Key Research and Development Program of China (No. 2016YFB0502504), Beijing Excellent Youth Talent Program (No. 2015400018760G294), National Natural Science Foundation of China (No. 41201443, 41001267)

详细信息
    通讯作者:

    JIANG Wei.E-mail:jiangwei@radi.ac.cn

Impact of Urban 3D Morphology on Particulate Matter 2.5 (PM2.5) Concentrations: Case Study of Beijing, China

Funds: 

Under the auspices of National Key Research and Development Program of China (No. 2016YFB0502504), Beijing Excellent Youth Talent Program (No. 2015400018760G294), National Natural Science Foundation of China (No. 41201443, 41001267)

  • 摘要:

    Urban particulate matter 2.5 (PM2.5) pollution and public health are closely related, and concerns regarding PM2.5 are widespread. Of the underlying factors, the urban morphology is the most manageable. Therefore, investigations of the impact of urban three-dimensional (3D) morphology on PM2.5 concentration have important scientific significance. In this paper, 39 PM2.5 monitoring sites of Beijing in China were selected with PM2.5 automatic monitoring data that were collected in 2013. This data set was used to analyze the impacts of the meteorological condition and public transportation on PM2.5 concentrations. Based on the elimination of the meteorological conditions and public transportation factors, the relationships between urban 3D morphology and PM2.5 concentrations are highlighted. Ten urban 3D morphology indices were established to explore the spatial-temporal correlations between the indices and PM2.5 concentrations and analyze the impact of urban 3D morphology on the PM2.5 concentrations. Results demonstrated that road length density (RLD), road area density (RAD), construction area density (CAD), construction height density (CHD), construction volume density (CVD), construction otherness (CO), and vegetation area density (VAD) have positive impacts on the PM2.5 concentrations, whereas water area density (WAD), water fragmentation (WF), and vegetation fragmentation (VF) (except for the 500 m buffer) have negative impacts on the PM2.5 concentrations. Moreover, the correlations between the morphology indices and PM2.5 concentrations varied with the buffer scale. The findings could lay a foundation for the high-precision spatial-temporal modelling of PM2.5 concentrations and the scientific planning of urban 3D spaces by authorities responsible for controlling PM2.5 concentrations.

  • [1] Bao F W, Gu X F, Cheng T H et al., 2016. High-spatial-resolution aerosol optical properties retrieval algorithm using Chinese high-resolution earth observation satellite I. IEEE Transactions on Geoscience and Remote Sensing, 54(9):5544-5552. doi: 10.1109/tgrs.2016.2568246
    [2] Beckett K P, Freer P H, Taylor G, 2000. Particulate pollution capture by urban trees:effect of species and windspeed. Global Change Biology, 6(8):995-1003. doi: 10.1046/j.1365-2486.2000.00376.x
    [3] Bonyadi Z, Ehrampoush M H, Ghaneian M T et al., 2016. Cardiovascular, respiratory, and total mortality attributed to PM2.5 in Mashhad, Iran. Environmental Monitoring and Assessment, 188(10):570. doi: 10.1007/s10661-0165574-y
    [4] Brauer M, Hoek G, Van V P et al., 2003. Estimating long-term average particulate air pollution concentrations:application of traffic indicators and geographic information systems. Epidemiology, 14(2):228-239. doi: 10.1097/00001648-200303000-00019
    [5] Cao C, Lee X, Liu S D et al., 2016. Urban heat islands in China enhanced by haze pollution. Nature Communications, 7:12509. doi: 10.1038/ncomms12509
    [6] Chen Tan, Deng Shulin, Gao Yu et al., 2017. Characterization of air pollution in urban areas of Yangtze River Delta, China. Chinese Geographical Science, 27(5):836-846. doi: 10.1007/s11769-017-0900-z
    [7] Chow J C, Watson J G, Mauderly J L et al., 2006. Health effects of fine particulate air pollution:lines that connect. Journal of the Air & Waste Management Association, 56(10):1368-1380. doi: 10.1080/10473289.2006.10464585
    [8] Chuersuwan N, Turpin B J, Pietarinen C, 2000. Evaluation of time-resolved PM2.5 data in urban/suburban areas of New Jersey. Journal of the Air & Waste Management Association, 50(10):1780-1789. doi: 10.1080/10473289.2000.10464214
    [9] Collier C G, 2006. The impact of urban areas on weather. Quarterly Journal of the Royal Meteorological Society, 132(614):1-25. doi: 10.1256/qj.05.199
    [10] Escobedo F J, Nowak D J, 2009. Spatial heterogeneity and air pollution removal by an urban forest. Landscape and Urban Planning, 90(3):102-110. doi: 10.1016/j.landurbplan.2008.10.021
    [11] Fan C J, Tian L, Zhou L et al., 2018. Examining the impacts of urban form on air pollutant emissions:evidence from China. Journal of Environmental Management, 212:405-414. doi:10.1016/j.jenvman. 2018.02.001
    [12] Filonchyk M, Yan H W, Yang S W et al., 2016. A study of PM2.5 and PM10 concentrations in the atmosphere of large cities in Gansu Province, China, in summer period. Journal of Earth System Science, 125(6):1175-1187. doi: 10.1007/s12040-016-0722-x
    [13] Handayanto R T, Tripathi N K, Kim S M et al., 2017. Achieving a sustainable urban form through land use optimisation:insights from Bekasi city's land use plan (2010-2030). Sustainability, 9(2):221. doi: 10.3390/su9020221
    [14] Hien P D, Bac V T, Tham H C et al., 2002. Influence of meteorological conditions on PM2.5 and PM10 concentrations during the monsoon season in Hanoi, Vietnam. Atmospheric Environment, 36(21):3473-3484. doi: 10.1016/s1352-2310(02)00295-9
    [15] Hochadel M, Heinrich J, Gehring U et al., 2006. Predicting long-term average concentrations of traffic-related air pollutants using GIS-based information. Atmospheric Environment, 40(3):542-553. doi: 10.1016/j.atmosenv.2005.09.067
    [16] Hu M G, Jia L, Wang J F et al., 2013. Spatial and temporal characteristics of particulate matter in Beijing, China using the empirical mode decomposition method. Science of the Total Environment, 458-460:70-80. doi: 10.1016/j.scitotenv.2013.04.005
    [17] Huang W, Cao J J, Tao Y B et al., 2012. Seasonal variation of chemical species associated with short-term mortality effects of PM2.5 in Xi'an, a central city in China. American Journal of Epidemiology, 175(6):556-566. doi: 10.1093/aje/kwr342
    [18] Ji D S, Li L, Wang Y S et al., 2014. The heaviest particulate air pollution episodes occurred in northern China in January, 2013:insights gained from observation. Atmospheric Environment, 92:546-556. doi: 10.1016/j.atmosenv.2014.04.048
    [19] Jim C Y, Chen W Y, 2008. Assessing the ecosystem service of air pollutant removal by urban trees in Guangzhou (China). Journal of Environmental Management, 88(4):665-676. doi:10.1016/j.jenvman. 2007.03.035
    [20] Li Xingru, Guo Xueqing, Liu Xinran et al., 2009. Distribution and sources of solvent extractable organic compounds in PM2.5 during 2007 chinese spring festival in Beijing. Journal of Environmental Sciences, 21(2):142-149. doi: 10.1016/s1001-0742(08)62242-1
    [21] Li Y J, Xue Y, He X W et al., 2012. High-resolution aerosol remote sensing retrieval over urban areas by synergetic use of HJ-1 CCD and MODIS data. Atmospheric Environment, 46:173-180. doi:10.1016/j. atmosenv.2011.10.002
    [22] Lin C Q, Li Y, Yuan Z B et al., 2015. Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5. Remote Sensing of Environment, 156:117-128. doi: 10.1016/j.rse.2014.09.015
    [23] Liu S, Fan X T, Wen Q K et al., 2014. Simulated impacts of 3D urban morphology on urban transportation in megacities:case study in Beijing. International Journal of Digital Earth, 7(6):470-491. doi: 10.1080/17538947.2012.740079
    [24] Liu Y P, Wu J G, Yu D Y et al., 2018. The relationship between urban form and air pollution depends on seasonality and city size. Environmental Science and Pollution Research, 25(16):15554-15567. doi:10.1007/s 11356-018-1743-6
    [25] Lu H C, Fang G C, 2002. Estimating the frequency distributions of PM10 and PM2.5 by the statistics of wind speed at Sha-Lu, Taiwan. Science of the Total Environment, 298(1):119-130. doi:10.1016/s0048-9697 (02)00164-x
    [26] Ma Siqi, Chen Weiwei, Zhang Shichun et al., 2017. Characteristics and cause analysis of heavy haze in Changchun City in Northeast China. Chinese Geographical Science, 27(6):989-1002. doi: 10.1007/s11769-017-0922-6
    [27] Mansfield T J, Rodriguez D A, Huegy J et al., 2015. The effects of urban form on ambient air pollution and public health risk:a case study in Raleigh, North Carolina. Risk Analysis, 35(5):901-918. doi: 10.1111/risa.12317
    [28] Meng R, Zhao F R, Sun K et al., 2015. Analysis of the 2014 ‘APEC Blue’ in Beijing using more than one decade of satellite observations:lessons learned from radical emission control measures. Remote Sensing, 7(11):15224-15243. doi: 10.3390/rs71115224
    [29] Miller K A, Siscovick D S, Sheppard L et al., 2007. Long-term exposure to air pollution and incidence of cardiovascular events in women. New England Journal of Medicine, 356(5):447-458. doi:10.1056/NEJMoa 054409
    [30] Moore D K, Jerrett M, Mack W J et al., 2007. A land use regression model for predicting ambient fine particulate matter across Los Angeles, CA. Journal of Environmental Monitoring, 9(3):246-252. doi: 10.1039/b615795e
    [31] Seltenrich N 2016. PM2.5 exposure and intrauterine inflammation a possible mechanism for preterm and underweight birth. Environmental Health Perspectives, 124(10):A190. doi: 10.1289/ehp.124-190
    [32] Shi K F, Wang H, Yang Q Y et al., 2019. Exploring the relationships between urban forms and fine particulate (PM2.5) concentration in China:a multi-perspective study. Journal of Cleaner Production, 231:990-1004. doi: 10.1016/j.jclepro.2019.05.317
    [33] Song S J, Wu Y, Jiang J K, et al., 2012. Chemical characteristics of size-resolved PM2.5 at a roadside environment in Beijing, China. Environmental Pollution, 161:215-221. doi: 10.1016/j.envpol.2011.10.014
    [34] Tai A P K, Mickley L J, Jacob D J 2010. Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States:implications for the sensitivity of PM2.5 to climate change. Atmospheric Environment, 44(32):3976-3984. doi:10.1016/j.atmosenv. 2010.06.060
    [35] Tao M H, Chen L F, Wang Z F et al., 2014. A study of urban pollution and haze clouds over northern China during the dusty season based on satellite and surface observations. Atmospheric Environment, 82:183-192. doi: 10.1016/j.atmosenv.2013.10.010
    [36] Tian J, Chen D M, 2010. A semi-empirical model for predicting hourly ground-level fine particulate matter (PM2.5) concentration in southern Ontario from satellite remote sensing and ground-based meteorological measurements. Remote Sensing of Environment, 114(2):221-229. doi: 10.1016/j.rse.2009.09.011
    [37] Vidot J, Santer R, Ramon D, 2007. Atmospheric particulate matter (PM) estimation from SeaWiFS imagery. Remote Sensing of Environment, 111(1):1-10. doi: 10.1016/j.rse.2007.03.009
    [38] Wang Q, 2013. China's citizens must act to save their environment. Nature, 497(7448):159. doi: 10.1038/497159a
    [39] Wang Z F, Chen L F, Tao J H et al., 2010. Satellite-based estimation of regional particulate matter (PM) in Beijing using vertical-and-RH correcting method. Remote Sensing of Environment, 114(1):50-63. doi: 10.1016/j.rse.2009.08.009
    [40] Wen Xin, Zhang Pingyu, Liu Daqian, 2018. Spatiotemporal variations and influencing factors analysis of PM2.5 concentrations in Jilin Province, Northeast China. Chinese Geographical Science, 28(5):810-822. doi: 10.1007/s11769-018-0992-0
    [41] Westervelt D M, Horowitz L W, Naik V et al., 2016. Quantifying PM2.5 meteorology sensitivities in a global climate model. Atmospheric Environment, 142:43-56. doi: 10.1016/j.atmosenv.2016.07.040
    [42] Wu J S, Yao F, Li W F et al., 2016. VIIRS-based remote sensing estimation of ground-level PM2.5 concentrations in Beijing-Tianjin-Hebei:a spatiotemporal statistical model. Remote Sensing of Environment, 184:316-328. doi: 10.1016/j.rse.2016.07.015
    [43] Xian G, 2007. Analysis of impacts of urban land use and land cover on air quality in the Las Vegas region using remote sensing information and ground observations. International Journal of Remote Sensing, 28(24):5427-5445. doi: 10.1080/01431160701227653
    [44] Xin Jinyuan, Wang Yuesi, Wang Lili et al., 2012. Reductions of PM2.5 in Beijing-Tianjin-Hebei urban agglomerations during the 2008 Olympic Games. Advances in Atmospheric Sciences, 29(6):1330-1342. doi: 10.1007/s00376-012-1227-4
    [45] Xinhua News Agency, 2016. Three questions about building five urban air corridor in Beijing. Available at:http://www.xinhuanet.com//politics/2016-02/23/c_1118133617.htm. Accessed on 29 August 2016
    [46] Xu G, Jiao L M, Zhao S L et al., 2016. Examining the impacts of land use on air quality from a spatio-temporal perspective in Wuhan, China. Atmosphere, 7(5):62. doi: 10.3390/atmos7050062
    [47] Yan S M, Wu G, 2016. Network analysis of fine particulate Mmatter (PM2.5) emissions in China. Scientific Reports, 6:33227. doi: 10.1038/srep33227
    [48] Yang F M, Ye B M, He K B et al., 2005. Characterization of atmospheric mineral components of PM2.5 in Beijing and Shanghai, China. Science of the Total Environment, 343(1):221-230. doi:10.1016/j.scitotenv. 2004.10.017
    [49] Yin Qian, Wang Jingfeng, Hu Maogui et al., 2016. Estimation of daily PM2.5 concentration and its relationship with meteorological conditions in Beijing. Journal of Environmental Sciences, 48:161-168.doi: 10.1016/j.jes.2016.03.024
    [50] You W, Zang Z L, Zhang L F et al., 2016. National scale estimates of ground-level PM2.5 concentration in China using geographically weighted regression based on 3 km resolution MODIS AOD. Remote Sensing, 8(3):184. doi: 10.3390/rs8030184
    [51] Zhang Y L, Cao F, 2015. Fine particulate matter (PM2.5) in China at a city level. Scientific Reports, 5:14884. doi: 10.1038/srep14884
  • [1] Yang SONG, Yu ZHANG, Tingting WANG, Sitong QIAN, Shijun WANG.  Spatio-temporal Differentiation in the Incidence of Influenza and Its Relationship with Air Pollution in China from 2004 to 2017 . Chinese Geographical Science, 2021, 31(5): 815-828. doi: 10.1007/s11769-021-1228-2
    [2] LI Hua, TONG Helong, WU Xianhua, LU Xiaoli, MENG Shuhan.  Spatial and Temporal Evolution Characteristics of PM2.5 in China from 1998 to 2016 . Chinese Geographical Science, 2020, 30(6): 947-958. doi: 10.1007/s11769-020-1157-5
    [3] LI Xiaolan, HU Xiaoming, SHI Shuaiyi, SHEN Lidu, LUAN Lan, MA Yanjun.  Spatiotemporal Variations and Regional Transport of Air Pollutants in Two Urban Agglomerations in Northeast China Plain . Chinese Geographical Science, 2019, 29(6): 917-933. doi: 10.1007/s11769-019-1081-8
    [4] BAO Le, MA Keming, XU Xiaowu, YU Xinxiao.  Foliar Particulate Matter Distribution in Urban Road System of Beijing, China . Chinese Geographical Science, 2019, 20(4): 591-600. doi: 10.1007/s11769-019-1057-8
    [5] WEN Xin, ZHANG Pingyu, LIU Daqian.  Spatiotemporal Variations and Influencing Factors Analysis of PM2.5 Concentrations in Jilin Province, Northeast China . Chinese Geographical Science, 2018, 28(5): 810-822. doi: 10.1007/s11769-018-0992-0
    [6] ZHU Jiang, YU Yanna, ZHOU Shenglu, WANG Xiang, LV Ligang.  Simulating Sustainable Urban Development by Incorporating So-cial-ecological Risks into a Constrained CA Model . Chinese Geographical Science, 2018, 28(4): 600-611. doi: 10.1007/s11769-018-0977-z
    [7] SERASINGHE PATHIRANAGE Inoka Sandamali, Lakshmi N. KANTAKUMAR, SUNDARAMOORTHY Sivanantharajah.  Remote Sensing Data and SLEUTH Urban Growth Model: As Decision Support Tools for Urban Planning . Chinese Geographical Science, 2018, 28(2): 274-286. doi: 10.1007/s11769-018-0946-6
    [8] CHEN Tan, DENG Shulin, GAO Yu, QU Lean, LI Manchun, CHEN Dong.  Characterization of Air Pollution in Urban Areas of Yangtze River Delta, China . Chinese Geographical Science, 2017, 27(5): 836-846. doi: 10.1007/s11769-017-0900-z
    [9] PENG Jian, LIU Yanxu, SHEN Hong, XIE Pan, HU Xiaoxu, WANG Yanglin.  Using Impervious Surfaces to Detect Urban Expansion in Beijing of China in 2000s . Chinese Geographical Science, 2016, 26(2): 229-243. doi: 10.1007/s11769-016-0802-5
    [10] QIN Jing, FANG Chuanglin, WANG Yang, LI Guangdong, WANG Shaojian.  Evaluation of Three-dimensional Urban Expansion: A Case Study of Yangzhou City, Jiangsu Province, China . Chinese Geographical Science, 2015, 25(2): 224-236. doi: 10.1007/s11769-014-0728-8
    [11] LUO Shanghua, MAO Qizheng, MA Keming.  Comparison on Soil Carbon Stocks Between Urban and Suburban Topsoil in Beijing, China . Chinese Geographical Science, 2014, 0(5): 551-561. doi: 10.1007/s11769-014-0709-y
    [12] YANG Zhenshan, LIANG Jinshe, CAI Jianming.  Urban Economic Cluster Template and Its Dynamics of Beijing, China . Chinese Geographical Science, 2014, 0(6): 740-750. doi: 10.1007/s11769-014-0686-1
    [13] XUE Desheng, HUANG Gengzhi, GUAN Jingwen, LIN Jiarong.  Changing Concepts of City and Urban Planning Practices in Guangzhou (1949-2010):An Approach to Sustainable Urban Development . Chinese Geographical Science, 2014, 0(5): 607-619. doi: 10.1007/s11769-014-0711-4
    [14] DU Xile, LU Changhe, WANG Hairong, MA Jianhua.  Trends of Urban Air Pollution in Zhengzhou City in 1996–2008 . Chinese Geographical Science, 2012, 22(4): 402-413.
    [15] KUANG Wenhui.  Spatio-temporal Patterns of Intra-urban Land Use Change in Beijing, China Between 1984 and 2008 . Chinese Geographical Science, 2012, 22(2): 210-220.
    [16] ZHOU Yuan, SHI Tiemao, HU Yuanman, et al..  Urban Green Space Planning Based on Computational Fluid Dynamics Model and Landscape Ecology Principle: A Case Study ofLiaoyang City, Northeast China . Chinese Geographical Science, 2011, 21(4): 465-475.
    [17] XIU Chunliang, CHENG Lin, SONG Wei, WU Wei.  Vulnerability of Large City and Its Implication in Urban Planning: A Perspective of Intra-urban Structure . Chinese Geographical Science, 2011, 21(2): 204-210.
    [18] SHI Longyu, SHAO Guofan, CUI Shenghui, LI Xuanqi, LIN Tao, YIN Kai, ZHAO Jingzhu.  Urban Three-dimensional Expansion and Its Driving Forces——A Case Study of Shanghai, China . Chinese Geographical Science, 2009, 19(4): 391-398. doi: 10.1007/s11769-009-0291-x
    [19] Elnazir RAMADAN, FENG Xue-zhi.  URBAN PLANNING:A TOOL FOR URBAN POVERTY ALLEVIATION IN SUDAN . Chinese Geographical Science, 2004, 14(2): 110-116.
    [20] ZHANG Jing-xiang, WU Qi-yan, RUI Fu-hong.  EVOLUTION OF URBAN SYSTEM IN NEW ECONOMIC CIRCUMSTANCES AND PLANNING COUNTERMEASURES . Chinese Geographical Science, 2001, 11(2): 129-136.
  • 加载中
计量
  • 文章访问数:  88
  • HTML全文浏览量:  0
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-14

Impact of Urban 3D Morphology on Particulate Matter 2.5 (PM2.5) Concentrations: Case Study of Beijing, China

doi: 10.1007/s11769-020-1112-5
    基金项目:

    Under the auspices of National Key Research and Development Program of China (No. 2016YFB0502504), Beijing Excellent Youth Talent Program (No. 2015400018760G294), National Natural Science Foundation of China (No. 41201443, 41001267)

    通讯作者: JIANG Wei.E-mail:jiangwei@radi.ac.cn

摘要: 

Urban particulate matter 2.5 (PM2.5) pollution and public health are closely related, and concerns regarding PM2.5 are widespread. Of the underlying factors, the urban morphology is the most manageable. Therefore, investigations of the impact of urban three-dimensional (3D) morphology on PM2.5 concentration have important scientific significance. In this paper, 39 PM2.5 monitoring sites of Beijing in China were selected with PM2.5 automatic monitoring data that were collected in 2013. This data set was used to analyze the impacts of the meteorological condition and public transportation on PM2.5 concentrations. Based on the elimination of the meteorological conditions and public transportation factors, the relationships between urban 3D morphology and PM2.5 concentrations are highlighted. Ten urban 3D morphology indices were established to explore the spatial-temporal correlations between the indices and PM2.5 concentrations and analyze the impact of urban 3D morphology on the PM2.5 concentrations. Results demonstrated that road length density (RLD), road area density (RAD), construction area density (CAD), construction height density (CHD), construction volume density (CVD), construction otherness (CO), and vegetation area density (VAD) have positive impacts on the PM2.5 concentrations, whereas water area density (WAD), water fragmentation (WF), and vegetation fragmentation (VF) (except for the 500 m buffer) have negative impacts on the PM2.5 concentrations. Moreover, the correlations between the morphology indices and PM2.5 concentrations varied with the buffer scale. The findings could lay a foundation for the high-precision spatial-temporal modelling of PM2.5 concentrations and the scientific planning of urban 3D spaces by authorities responsible for controlling PM2.5 concentrations.

English Abstract

LUAN Qingzu, JIANG Wei, LIU Shuo, GUO Hongxiang. Impact of Urban 3D Morphology on Particulate Matter 2.5 (PM2.5) Concentrations: Case Study of Beijing, China[J]. 中国地理科学, 2020, 30(2): 294-308. doi: 10.1007/s11769-020-1112-5
引用本文: LUAN Qingzu, JIANG Wei, LIU Shuo, GUO Hongxiang. Impact of Urban 3D Morphology on Particulate Matter 2.5 (PM2.5) Concentrations: Case Study of Beijing, China[J]. 中国地理科学, 2020, 30(2): 294-308. doi: 10.1007/s11769-020-1112-5
LUAN Qingzu, JIANG Wei, LIU Shuo, GUO Hongxiang. Impact of Urban 3D Morphology on Particulate Matter 2.5 (PM2.5) Concentrations: Case Study of Beijing, China[J]. Chinese Geographical Science, 2020, 30(2): 294-308. doi: 10.1007/s11769-020-1112-5
Citation: LUAN Qingzu, JIANG Wei, LIU Shuo, GUO Hongxiang. Impact of Urban 3D Morphology on Particulate Matter 2.5 (PM2.5) Concentrations: Case Study of Beijing, China[J]. Chinese Geographical Science, 2020, 30(2): 294-308. doi: 10.1007/s11769-020-1112-5
参考文献 (51)

目录

    /

    返回文章
    返回