留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Comparison of Carbon, Nitrogen, and Sulfur in Coastal Wetlands Dominated by Native and Invasive Plants in the Yancheng National Nature Reserve, China

WAN Siang LIU Xingtu MOU Xiaojie ZHAO Yongqiang

WAN Siang, LIU Xingtu, MOU Xiaojie, ZHAO Yongqiang. Comparison of Carbon, Nitrogen, and Sulfur in Coastal Wetlands Dominated by Native and Invasive Plants in the Yancheng National Nature Reserve, China[J]. 中国地理科学, 2020, 30(2): 202-216. doi: 10.1007/s11769-020-1108-1
引用本文: WAN Siang, LIU Xingtu, MOU Xiaojie, ZHAO Yongqiang. Comparison of Carbon, Nitrogen, and Sulfur in Coastal Wetlands Dominated by Native and Invasive Plants in the Yancheng National Nature Reserve, China[J]. 中国地理科学, 2020, 30(2): 202-216. doi: 10.1007/s11769-020-1108-1
WAN Siang, LIU Xingtu, MOU Xiaojie, ZHAO Yongqiang. Comparison of Carbon, Nitrogen, and Sulfur in Coastal Wetlands Dominated by Native and Invasive Plants in the Yancheng National Nature Reserve, China[J]. Chinese Geographical Science, 2020, 30(2): 202-216. doi: 10.1007/s11769-020-1108-1
Citation: WAN Siang, LIU Xingtu, MOU Xiaojie, ZHAO Yongqiang. Comparison of Carbon, Nitrogen, and Sulfur in Coastal Wetlands Dominated by Native and Invasive Plants in the Yancheng National Nature Reserve, China[J]. Chinese Geographical Science, 2020, 30(2): 202-216. doi: 10.1007/s11769-020-1108-1

Comparison of Carbon, Nitrogen, and Sulfur in Coastal Wetlands Dominated by Native and Invasive Plants in the Yancheng National Nature Reserve, China

doi: 10.1007/s11769-020-1108-1
基金项目: 

Under the auspices of National Basic Research Program of China (No. 2012CB956100), National Natural Science Foundation of China (No. 41301085)

详细信息
    通讯作者:

    LIU Xingtu.E-mail:lxtmxh@163.com

Comparison of Carbon, Nitrogen, and Sulfur in Coastal Wetlands Dominated by Native and Invasive Plants in the Yancheng National Nature Reserve, China

Funds: 

Under the auspices of National Basic Research Program of China (No. 2012CB956100), National Natural Science Foundation of China (No. 41301085)

  • 摘要:

    The rapid invasion of the plant Spartina alterniflora in coastal wetland areas can threaten the capacity of their soils to store carbon (C), nitrogen (N), and sulfur (S). In this study, we investigated the spatial and temporal distribution patterns of C, N and S of both soil and (native and invasive) plants in four typical coastal wetlands in the core area of the Yancheng National Nature Reserve, China. The results show that the invasive S. alterniflora greatly influenced soil properties and increased soil C, N and S storage capacity:the stock (mean ±standard error) of soil organic carbon (SOC, (3.56 ±0.36) kg/m3), total nitrogen (TN, (0.43 ±0.02) kg/m3), and total sulfur (TS, (0.69 ±0.11) kg/m3) in the S. alterniflora marsh exceeded those in the adjacent bare mudflat, Suaeda salsa marsh, and Phragmites australis marsh. Because of its greater biomass, plant C ((1193.7 ±133.6) g/m2), N ((18.8 ±2.4) g/m2), and S ((9.4 ±1.5) g/m2) storage of S. alterniflora was also larger than those of co-occurring native plants. More biogenic elements circulated in the soil-plant system of the S. alterniflora marsh, and their spatial and temporal distribution patterns were also changed by the S. alterniflora invasion. Soil properties changed by S. alterniflora's invasion thereby indirectly affected the accumulation of soil C, N and S in this wetland ecosystem. The SOC, TN, and TS contents were positively correlated with soil electrical conductivity and moisture, but negatively correlated with the pH and bulk density of soil. Together, these results indicate that S. alterniflora invasion altered ecosystem processes, resulted in changes in net primary production and litter decomposition, and increased the soil C, N and S storage capacity in the invaded ecosystems in comparison to those with native tallgrass communities in the coastal wetlands of East China.

  • [1] Adams C A, Andrews J E, Jickells T, 2012. Nitrous oxide and methane fluxes vs. carbon, nitrogen and phosphorous burial in new intertidal and saltmarsh sediments. Science of the Total Environment, 434:240-251. doi: 10.1016/j.scitotenv.2011.11.058
    [2] An S Q, Gu B H, Zhou C F et al., 2007. Spartina Invasion in China:implications for invasive species management and future research. Weed Research, 47(3):183-191. doi: 10.1111/j.1365-3180.2007.00559.x
    [3] Bagwell C E, Lovell C R, 2000. Persistence of selected Spartina alterniflora rhizoplane diazotrophs exposed to natural and manipulated environmental variability. Applied and Environmental Microbiology, 66(11):4625-4633. doi: 10.1128/AEM.66.11.4625-4633.2000
    [4] Bai J H, Zhang G L, Zhao Q Q et al., 2016. Depth-distribution patterns and control of soil organic carbon in coastal salt marshes with different plant covers. Scientific Reports, 6(1):34835. doi: 10.1038/srep34835
    [5] Bianchi TS, Allison M A, Zhao J, et al., 2013. Historical reconstruction of mangrove expansion in the Gulf of Mexico:linking climate change with carbon sequestration in coastal wetlands. Estuarine, Coastal and Shelf Science, 119:7-16. doi: 10.1016/j.ecss.2012.12.007
    [6] Bills J S, Jacinthe P A, Tedesco L P, 2010. Soil organic carbon pools and composition in a wetland complex invaded by reed canary grass. Biology and Fertility of Soils, 46(7):697-706. doi: 10.1007/s00374-010-0476-6
    [7] Bradley P M, Morris J T, 1990. Influence of oxygen and sulfide concentration on nitrogen uptake kinetics in Spartina alterniflora. Ecology, 71(1):282-287. doi: 10.2307/1940267
    [8] Bruno J F, Kennedy C W, 2000. Patch-size dependent habitat modification and facilitation on New England cobble beaches by Spartina alterniflora. Oecologia, 122(1):98-108. doi: 10.1007/PL00008841
    [9] Caffrey J M, Murrell M C, Wigand C et al., 2007. Effect of nutrient loading on biogeochemical and microbial processes in a New England salt marsh. Biogeochemistry, 82(3):251-264. doi: 10.1007/s10533-007-9068-4
    [10] Chambers R M, Mozdzer T J, Ambrose J C, 1998. Effects of salinity and sulfide on the distribution of Phragmites australis and Spartina alterniflora in a tidal saltmarsh. Aquatic Botany, 62(3):161-169. doi: 10.1016/s0304-3770(98)00095-3
    [11] Chen Y P, Chen G C, Ye Y, 2015. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation. Science of the Total Environment, 526:19-28. doi: 10.1016/j.scitotenv.2015.04.077
    [12] Chmura G L, 2013. What do we need to assess the sustainability of the tidal salt marsh carbon sink? Ocean & Coastal Management, 83:25-31. doi: 10.1016/j.ocecoaman.2011.09.006
    [13] Cook B J, Hauer F R, 2007. Effects of hydrologic connectivity on water chemistry, soils, and vegetation structure and function in an intermontane depressional wetland landscape. Wetlands, 27(3):719-738. doi: 10.1672/0277-5212(2007)27[719:EOHCOW]2.0.CO;2
    [14] Derry L A, Murray R W, 2004. Continental margins and the sulfur cycle. Science, 303(5666):1981-1982. doi:10.1126/science. 303.5666.1981
    [15] Ehrenfeld J G, 2010. Ecosystem consequences of biological invasions. Annual Review of Ecology, Evolution, and Systematics, 41:59-80. doi: 10.1146/annurev-ecolsys-102209-144650
    [16] Feller I C, Lovelock C E, Berger U et al., 2010. Biocomplexity in mangrove ecosystems. Annual Review of Marine Science, 2:395-417. doi: 10.1146/annurev.marine.010908.163809
    [17] Gao Jianhua, Yang Guishan, Ou Weixin, 2005. Analysizing and quantitatively evaluating the organic matter source at different ecologic zones of tidal salt marsh, North Jiangsu Province. Environmental Science, 26(6):51-56. (in Chinese)
    [18] He Z L, Wu J, O'Donnell A G et al., 1997. Seasonal responses in microbial biomass carbon, phosphorus and sulphur in soils under pasture. Biology and Fertility of Soils, 24(4):421-428. doi: 10.1007/s003740050267
    [19] Idaszkin Y L, Bouza P, Marinho C H et al., 2014. Trace metal concentrations in Spartina densiflora and associated soil from a Patagonian salt marsh. Marine Pollution Bulletin, 89(1-2):444-450. doi: 10.1016/j.marpolbul.2014.10.001
    [20] Itanna F, 2005. Sulfur distribution in five Ethiopian Rift Valley soils under humid and semi-arid climate. Journal of Arid Environments, 62(4):597-612. doi: 10.1016/j.jaridenv.2005.01.010
    [21] Jackson R B, Banner J L, Jobbágy E G et al., 2002. Ecosystem carbon loss with woody plant invasion of grasslands. Nature, 418(6898):623-626. doi: 10.1038/nature00910
    [22] Jin B S, Lai D Y F, Gao D Z, et al., 2017. Changes in soil organic carbon dynamics in a native C4 plant-dominated tidal marsh following Spartina alterniflora invasion. Pedosphere, 27(5):856-867. doi: 10.1016/S1002-0160(17)60396-5
    [23] Jobbágy E G, Jackson R B, 2002. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2):423-436. doi:10.1890/1051-0761 (2000)010[0423:TVDOSO]2.0.CO;2
    [24] Li B, Liao C H, Zhang X D et al., 2009. Spartina alterniflora invasions in the Yangtze River Estuary, China:an overview of current status and ecosystem effects. Ecological Engineering, 35(4):511-520. doi: 10.1016/j.ecoleng.2008.05.013
    [25] Li Yangfan, Zhu Xiaodong, Zuo Xinqin et al., 2005. Study on landscape ecosystem of coastal wetlands in Yancheng, Jiangsu Province. Marine Science Bulletin, 24(4):46-51. (in Chinese)
    [26] Liao C Z, Luo Y Q, Jiang L F et al., 2007. Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China. Ecosystems, 10(8):1351-1361. doi: 10.1007/s10021-007-9103-2
    [27] Liao C Z, Peng R H, Lou Y Q et al., 2008a. Altered ecosystem carbon and nitrogen cycles by plant invasion:a meta-analysis. New Phytologist, 177(3):706-714. doi: 10.1111/j.1469-8137.2007.02290.x
    [28] Liao C Z, Luo Y Q, Fang C M et al., 2008b. Litter pool sizes, decomposition, and nitrogen dynamics in Spartina alterniflora-invaded and native coastal marshlands of the Yangtze Estuary. Oecologia, 156(3):589-600. doi: 10.1007/s00442-008-1007-0
    [29] Liao Chengzhang, Tang Xiaoping, Cheng Xiaoling et al., 2010. Nitrogen dynamics of aerial litter of exotic Spartina alterniflora and native Phragmites australis. Biodiversity Science, 18(6):631-637. (in Chinese)
    [30] Liu C Y, Jiang H X, Hou Y Q et al., 2010. Habitat changes for breeding waterbirds in Yancheng National Nature Reserve, China:a remote sensing study. Wetlands, 30(5):879-888. doi: 10.1007/s13157-010-0070-6
    [31] Liu J E, Zhou H X, Qin P et al., 2009. Comparisons of ecosystem services among three conversion systems in Yancheng National Nature Reserve. Ecological Engineering, 35(5):609-629. doi: 10.1016/j.ecoleng.2008.09.007
    [32] Loomis M J, Craft C B, 2010. Carbon sequestration and nutrient (nitrogen, phosphorus) accumulation in river-dominated tidal marshes, Georgia, USA. Soil Science Society of America Journal, 74(3):1028-1036. doi: 10.2136/sssaj2009.0171
    [33] Lövei G L, 1997. Biodiversity:global change through invasion. Nature, 388(6643):627-628. doi: 10.1038/41665
    [34] Lu Rukun, 1999. Soil Agrochemistry Analysis Method. Beijing:China Agriculture Science Press, 106-150. (in Chinese)
    [35] Lu W Z, Xiao J F, Liu F et al., 2017. Contrasting ecosystem CO2 fluxes of inland and coastal wetlands:a meta-analysis of eddy covariance data. Global Change Biology, 23(3):1180-1198. doi: 10.1111/gcb.13424
    [36] Ma Z J, Li W J, Wang Z J et al., 1998. Habitat change and protection of the red-crowned crane (Grus japonensis) in Yancheng Biosphere Reserve, China. Ambio, 27(6):461-464.
    [37] Ma Z J, Wang Y, Gan X J et al., 2009. Waterbird population changes in the wetlands at Chongming Dongtan in the Yangtze River Estuary, China. Environmental Management, 43(6):1187-1200. doi: 10.1007/s00267-008-9247-7
    [38] Ministry of Environmental Protection of the People's Republic of China, 2013. Notice on the area, scope and functional zoning of 28 national nature reserves in Daituo, Hebei Province, etc. Available at http://finance.china.com.cn/roll/20130722/1660589.shtml. 2013-07-22. (in Chinese)
    [39] Mitsch W J, Bernal B, Nahlik A M et al., 2013. Wetlands, carbon, and climate change. Landscape Ecology, 28(4):583-597. doi: 10.1007/s10980-012-9758-8
    [40] Morris J T, Sundareshwar P V, Nietch C T et al., 2002. Responses of coastal wetlands to rising sea level. Ecology, 83(10):2869-2877. doi:10.1890/0012-9658(2002)083[2869:ROCWTR] 2.0.CO;2
    [41] Pedersen O, Binzer T, Borum J, 2004. Sulphide intrusion in eelgrass (Zostera marina L.). Plant, Cell & Environment, 27(5):595-602. doi: 10.1111/j.1365-3040.2004.01173.x
    [42] Pyšek P, Jarošík V, Hulme P E et al., 2012. A global assessment of invasive plant impacts on resident species, communities and ecosystems:the interaction of impact measures, invading species' traits and environment. Global Change Biology, 18(5):1725-1737. doi: 10.1111/j.1365-2486.2011.02636.x
    [43] Ramsar, 2013. The Ramsar Convention Manual. 6th ed. Switzerland:Ramsar Convention Secretariat.
    [44] Reddy K R, DeLaune R D, 2008. Biogeochemistry of Wetlands:Science and Applications, 1st ed. Boca Raton, FL:CRC Press, 447-476. doi: https://doi.org/10.1201/9780203491454
    [45] Sardans J, Peñuelas J, 2014. Hydraulic redistribution by plants and nutrient stoichiometry:shifts under global change. Ecohydrology, 7(1):1-20. doi: 10.1002/eco.1459
    [46] Sardans J, Bartrons M, Margalef O et al., 2017. Plant invasion is associated with higher plant-soil nutrient concentrations in nutrient-poor environments. Global Change Biology, 23(3):1282-1291. doi: 10.1111/gcb.13384
    [47] Silver W L, Kueppers L M, Lugo A E et al., 2004. Carbon sequestration and plant community dynamics following reforestation of tropical pasture. Ecological Applications, 14(4):1115-1127. doi: 10.1890/03-5123
    [48] Souza-Alonso P, Guisande-Collazo A, González L, 2015. Gradualism in Acacia dealbata Link invasion:impact on soil chemistry and microbial community over a chronological sequence. Soil Biology and Biochemistry, 80:315-323. doi: 10.1016/j.soilbio.2014.10.022
    [49] Srivastava P P, Pandiaraj T, Susmita D et al., 2017. Characteristics of soil organic carbon, total nitrogen and C/N ratio in Tasar silkworm growing regions of Jharkhand and Bihar States. Imperial Journal of Interdisciplinary Research, 3(5):426-429.
    [50] Stribling J M, 1997. The relative importance of sulfate availability in the growth of Spartina alterniflora and Spartina cynosuroides. Aquatic Botany, 56(2):131-143. doi: 10.1016/S0304-3770(96)01102-3
    [51] Sun Z G, Mou X J, Song H L et al., 2013. Sulfur biological cycle of the different Suaeda salsa marshes in the intertidal zone of the Yellow River estuary, China. Ecological Engineering, 53:153-164. doi: 10.1016/j.ecoleng.2012.12.036
    [52] Wan S W, Qin P, Li Y et al., 2001. Wetland creation for rare waterfowl conservation:a project designed according to the principles of ecological succession. Ecological Engineering, 18(1):115-120. doi: 10.1016/s0925-8574(01)00062-3
    [53] Wang Qing, An Shuqing, Ma Zhijun et al., 2006. Invasive Spartina alterniflora:biology, ecology and management. Acta Phytotaxonomica Sinica, 44(5):559-588. (in Chinese)
    [54] Wang W Q, Wang C, Sardans J et al., 2015. Plant invasive success associated with higher N-use efficiency and stoichiometric shifts in the soil-plant system in the Minjiang River tidal estuarine wetlands of China. Wetlands Ecology and Management, 23(5):865-880. doi: 10.1007/s11273-015-9425-3
    [55] Wang W Q, Sardans J, Wang C et al., 2019. The response of stocks of C, N, and P to plant invasion in the coastal wetlands of China. Global Change Biology, 25(2):733-743. doi: 10.1111/gcb.14491
    [56] Wen Y, Zhao H, Chen X L et al., 2013. Consequences of short-term C4 plant Spartina alterniflora invasions for soil organic carbon dynamics in a coastal wetland of Eastern China. Ecological Engineering, 61:50-57. doi:10.1016/j.ecoleng. 2013.09.056
    [57] Wolkovich E M, Lipson D A, Virginia R A et al., 2010. Grass invasion causes rapid increases in ecosystem carbon and nitrogen storage in a semiarid shrubland. Global Change Biology, 16(4):1351-1365. doi: 10.1111/j.1365-2486.2009.02001.x
    [58] Yang S G, Li J H, Zheng Z et al., 2009. Characterization of Spartina alterniflora as feedstock for anaerobic digestion. Biomass and Bioenergy, 33(4):597-602. doi: 10.1016/j.biombioe.2008.09.007
    [59] Yang W, Zhao H, Chen X L et al., 2013. Consequences of short-term C4 plant Spartina alterniflora invasions for soil organic carbon dynamics in a coastal wetland of Eastern China. Ecological Engineering, 61:50-57. doi:10.1016/j.ecoleng. 2013.09.056
    [60] Yin Xijie, Zhou Huaiyang, Yang Qunhui et al., 2010. Sulfate reduction and reduced sulfur speciation in the coastal sediments of Qi'ao Island in the Zhujiang estuary in China. Acta Oceanologica Sinica, 32(3):31-39. (in Chinese)
    [61] Yu X Q, Yang J, Liu L M et al., 2015. Effects of spartina alterniflora invasion on biogenic elements in a subtropical coastal mangrove wetland. Environmental Science and Pollution Research, 22(4):3107-3115. doi: 10.1007/s11356-014-3568-2
    [62] Yuan J J, Ding W X, Liu D Y et al., 2015. Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China. Global Change Biology, 21(4):1567-1580. doi: 10.1111/gcb.12797
    [63] Zhang Xianglin, Shi Shengli, Pan Genxing et al., 2008. Changes in eco-chemical properties of a mangrove wetland under Spartina invasion from Zhangjiangkou, Fujian, China. Advances in Earth Science, 23(9):974-981. (in Chinese)
    [64] Zhang C B, Wang J, Qian B Y et al., 2009. Effects of the invader Solidago canadensis on soil properties. Applied Soil Ecology, 43(2-3):163-169. doi: 10.1016/j.apsoil.2009.07.001
    [65] Zhang Huabing, Liu Hongyu, Li Yufeng et al., 2013. Spatial variation of soil moisture/salinity and the relationship with vegetation under natural conditions in Yancheng coastal wetland. Environmental Science, 34(2):540-546. (in Chinese)
    [66] Zhang H, Wu P B, Yin A J et al., 2016. Organic carbon and total nitrogen dynamics of reclaimed soils following intensive agricultural use in eastern China. Agriculture, Ecosystems & Environment, 235:193-203. doi: 10.1016/j.agee.2016.10.017
    [67] Zhou C F, An S Q, Deng Z F et al., 2009. Sulfur storage changed by exotic Spartina alterniflora in coastal saltmarshes of China. Ecological Engineering, 35(4):536-543. doi: 10.1016/j.ecoleng.2008.01.004
    [68] Zhou J L, Wu Y, Kang Q S et al., 2007. Spatial variations of carbon, nitrogen, phosphorous and sulfur in the salt marsh sediments of the Yangtze Estuary in China. Estuarine, Coastal and Shelf Science, 71(1-2):47-59. doi: 10.1016/j.ecss.2006.08.012
  • [1] Jiuge FENG, Jinfeng LIANG, Qianwei LI, Xiaoya ZHANG, Yi YUE, Junqin GAO.  Effect of Hydrological Connectivity on Soil Carbon Storage in the Yellow River Delta Wetlands of China . Chinese Geographical Science, 2021, 31(2): 197-208. doi: 10.1007/s11769-021-1185-9
    [2] ZHANG Danhua, HU Yuanman, LIU Miao, CHANG Yu, SUN Lishuang.  Geographical Variation and Influencing Factors of Spartina alterniflora Expansion Rate in Coastal China . Chinese Geographical Science, 2020, 30(1): 127-141. doi: 10.1007/s11769-020-1100-9
    [3] HUO Lili, ZOU Yuanchun, LYU Xianguo, ZHANG Zhongsheng, WANG Xuehong, AN Yi.  Effect of Wetland Reclamation on Soil Organic Carbon Stability in Peat Mire Soil Around Xingkai Lake in Northeast China . Chinese Geographical Science, 2018, 28(2): 325-336. doi: 10.1007/s11769-018-0939-5
    [4] DU Jia, SONG Kaishan.  Validation of Global Evapotranspiration Product (MOD16) Using Flux Tower Data from Panjin Coastal Wetland, Northeast China . Chinese Geographical Science, 2018, 28(3): 420-429. doi: 10.1007/s11769-018-0960-8
    [5] MOU Xiaojie, LIU Xingtu, SUN Zhigao, TONG Chuan, HUANG Jiafang, WAN Siang, WANG Chun, WEN Bolong.  Effects of Anthropogenic Disturbance on Sediment Organic Carbon Mineralization Under Different Water Conditions in Coastal Wetland of a Subtropical Estuary . Chinese Geographical Science, 2018, 28(3): 400-410. doi: 10.1007/s11769-018-0956-4
    [6] ZHANG Guangliang, BAI Junhong, JIA Jia, WANG Xin, WANG Wei, ZHAO Qingqing, ZHANG Shuai.  Soil Organic Carbon Contents and Stocks in Coastal Salt Marshes with Spartina alterniflora Following an Invasion Chronosequence in the Yellow River Delta, China . Chinese Geographical Science, 2018, 28(3): 374-385. doi: 10.1007/s11769-018-0955-5
    [7] WAN Siang, MOU Xiaojie, LIU Xingtu.  Effects of Reclamation on Soil Carbon and Nitrogen in Coastal Wet lands of Liaohe River Delta, China . Chinese Geographical Science, 2018, 28(3): 443-455. doi: 10.1007/s11769-018-0961-7
    [8] SUN Guojun, LI Weihong, ZHU Chenggang, CHEN Yaning.  Spatial Variability of Soil Carbon to Nitrogen Ratio and Its Driving Factors in Ili River Valley, Xinjiang, Northwest China . Chinese Geographical Science, 2017, 27(4): 529-538. doi: 10.1007/s11769-017-0885-7
    [9] ZHANG Zhongsheng, XUE Zhenshan, LYU Xianguo, TONG Shouzheng, JIANG Ming.  Scaling of Soil Carbon, Nitrogen, Phosphorus and C:N:P Ratio Patterns in Peatlands of China . Chinese Geographical Science, 2017, 27(4): 507-515. doi: 10.1007/s11769-017-0884-8
    [10] LYU Mingzhi, SHENG Lianxi, ZHANG Zhongsheng, ZHANG Li.  Distribution and Accumulation of Soil Carbon in Temperate Wetland, Northeast China . Chinese Geographical Science, 2016, 26(3): 295-303. doi: 10.1007/s11769-016-0809-y
    [11] ZONG Shengwei, XU Jiawei, Eckart DEGE, WU Zhengfang, HE Hongshi.  Effective Seed Distribution Pattern of an Upward Shift Species in Alpine Tundra of Changbai Mountains . Chinese Geographical Science, 2016, 26(1): 48-58. doi: 10.1007/s11769-015-0775-9
    [12] BAO Kunshan, SHEN Ji, QUAN Guixiang, LIU Fugang.  A 150-year Isotopic Record of Lead Deposition in Yancheng Coastal Wetland, China . Chinese Geographical Science, 2016, 26(6): 755-769. doi: 10.1007/s11769-016-0835-9
    [13] ZHANG Shaoliang, JIANG Lili, LIU Xiaobing, ZHANG Xingyi, FU Shicong, DAI Lin.  Soil Nutrient Variance by Slope Position in a Mollisol Farmland Area of Northeast China . Chinese Geographical Science, 2016, 26(4): 508-517. doi: 10.1007/s11769-015-0737-2
    [14] XU Xiuli, ZHANG Qi, TAN Zhiqiang, LI Yunliang, WANG Xiaolong.  Effects of Water-table Depth and Soil Moisture on Plant Biomass, Diversity, and Distribution at a Seasonally Flooded Wetland of Poyang Lake, China . Chinese Geographical Science, 2015, 25(6): 739-756. doi: 10.1007/s11769-015-0774-x
    [15] CHAI Hua, YU Guirui, HE Nianpeng, WEN Ding, LI Jie, FANG Jiangping.  Vertical Distribution of Soil Carbon, Nitrogen, and Phosphorus in Typical Chinese Terrestrial Ecosystems . Chinese Geographical Science, 2015, 25(5): 549-560. doi: 10.1007/s11769-015-0756-z
    [16] WU Xing, LI Zongshan, FU Bojie, LU Fei, WANG Dongbo, LIU Huifeng, LIU Guohua.  Effects of Grazing Exclusion on Soil Carbon and Nitrogen Storage in Semi-arid Grassland in Inner Mongolia, China . Chinese Geographical Science, 2014, 0(4): 479-487. doi: 10.1007/s11769-014-0694-1
    [17] XIONG Dingpeng, SHI Peili, SUN Yinliang, WU Jianshuang, ZHANG Xianzhou.  Effects of Grazing Exclusion on Plant Productivity and Soil Carbon, Nitrogen Storage in Alpine Meadows in Northern Tibet, China . Chinese Geographical Science, 2014, 0(4): 488-498. doi: 10.1007/s11769-014-0697-y
    [18] MOU Xiaojie, LIU Xingtu, TONG Chuan, SUN Zhigao.  Responses of CH4 Emissions to Nitrogen Addition and Spartina alterniflora Invasion in Minjiang River Estuary, Southeast of China . Chinese Geographical Science, 2014, 0(5): 562-574. doi: 10.1007/s11769-014-0692-3
    [19] WANG Aijun, CHEN Jian.  Spatial Variations in Depth-distribution of Trace Metals in Coastal Wetland Sediments from Quanzhou Bay, Fujian Province, China . Chinese Geographical Science, 2009, 19(1): 62-68. doi: 10.1007/s11769-009-0062-8
    [20] YANG Ji-song, LIU Jing-shuang, YU Jun-bao, WANG Jin-da, QIN Sheng-jin, LI Xin-hua.  EFFECTS OF WATER TABLE AND NITROGEN ADDITION ON CO2 EMISSION FROM WETLAND SOIL . Chinese Geographical Science, 2005, 15(3): 262-268.
  • 加载中
计量
  • 文章访问数:  122
  • HTML全文浏览量:  0
  • PDF下载量:  181
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-04

Comparison of Carbon, Nitrogen, and Sulfur in Coastal Wetlands Dominated by Native and Invasive Plants in the Yancheng National Nature Reserve, China

doi: 10.1007/s11769-020-1108-1
    基金项目:

    Under the auspices of National Basic Research Program of China (No. 2012CB956100), National Natural Science Foundation of China (No. 41301085)

    通讯作者: LIU Xingtu.E-mail:lxtmxh@163.com

摘要: 

The rapid invasion of the plant Spartina alterniflora in coastal wetland areas can threaten the capacity of their soils to store carbon (C), nitrogen (N), and sulfur (S). In this study, we investigated the spatial and temporal distribution patterns of C, N and S of both soil and (native and invasive) plants in four typical coastal wetlands in the core area of the Yancheng National Nature Reserve, China. The results show that the invasive S. alterniflora greatly influenced soil properties and increased soil C, N and S storage capacity:the stock (mean ±standard error) of soil organic carbon (SOC, (3.56 ±0.36) kg/m3), total nitrogen (TN, (0.43 ±0.02) kg/m3), and total sulfur (TS, (0.69 ±0.11) kg/m3) in the S. alterniflora marsh exceeded those in the adjacent bare mudflat, Suaeda salsa marsh, and Phragmites australis marsh. Because of its greater biomass, plant C ((1193.7 ±133.6) g/m2), N ((18.8 ±2.4) g/m2), and S ((9.4 ±1.5) g/m2) storage of S. alterniflora was also larger than those of co-occurring native plants. More biogenic elements circulated in the soil-plant system of the S. alterniflora marsh, and their spatial and temporal distribution patterns were also changed by the S. alterniflora invasion. Soil properties changed by S. alterniflora's invasion thereby indirectly affected the accumulation of soil C, N and S in this wetland ecosystem. The SOC, TN, and TS contents were positively correlated with soil electrical conductivity and moisture, but negatively correlated with the pH and bulk density of soil. Together, these results indicate that S. alterniflora invasion altered ecosystem processes, resulted in changes in net primary production and litter decomposition, and increased the soil C, N and S storage capacity in the invaded ecosystems in comparison to those with native tallgrass communities in the coastal wetlands of East China.

English Abstract

WAN Siang, LIU Xingtu, MOU Xiaojie, ZHAO Yongqiang. Comparison of Carbon, Nitrogen, and Sulfur in Coastal Wetlands Dominated by Native and Invasive Plants in the Yancheng National Nature Reserve, China[J]. 中国地理科学, 2020, 30(2): 202-216. doi: 10.1007/s11769-020-1108-1
引用本文: WAN Siang, LIU Xingtu, MOU Xiaojie, ZHAO Yongqiang. Comparison of Carbon, Nitrogen, and Sulfur in Coastal Wetlands Dominated by Native and Invasive Plants in the Yancheng National Nature Reserve, China[J]. 中国地理科学, 2020, 30(2): 202-216. doi: 10.1007/s11769-020-1108-1
WAN Siang, LIU Xingtu, MOU Xiaojie, ZHAO Yongqiang. Comparison of Carbon, Nitrogen, and Sulfur in Coastal Wetlands Dominated by Native and Invasive Plants in the Yancheng National Nature Reserve, China[J]. Chinese Geographical Science, 2020, 30(2): 202-216. doi: 10.1007/s11769-020-1108-1
Citation: WAN Siang, LIU Xingtu, MOU Xiaojie, ZHAO Yongqiang. Comparison of Carbon, Nitrogen, and Sulfur in Coastal Wetlands Dominated by Native and Invasive Plants in the Yancheng National Nature Reserve, China[J]. Chinese Geographical Science, 2020, 30(2): 202-216. doi: 10.1007/s11769-020-1108-1
参考文献 (68)

目录

    /

    返回文章
    返回