留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Prediction of Suitable Habitat for Lycophytes and Ferns in Northeast China: A Case Study on Athyrium brevifrons

LI Yan CAO Wei HE Xingyuan CHEN Wei XU Sheng

LI Yan, CAO Wei, HE Xingyuan, CHEN Wei, XU Sheng. Prediction of Suitable Habitat for Lycophytes and Ferns in Northeast China: A Case Study on Athyrium brevifrons[J]. 中国地理科学, 2019, 29(6): 1011-1023. doi: 10.1007/s11769-019-1085-4
引用本文: LI Yan, CAO Wei, HE Xingyuan, CHEN Wei, XU Sheng. Prediction of Suitable Habitat for Lycophytes and Ferns in Northeast China: A Case Study on Athyrium brevifrons[J]. 中国地理科学, 2019, 29(6): 1011-1023. doi: 10.1007/s11769-019-1085-4
LI Yan, CAO Wei, HE Xingyuan, CHEN Wei, XU Sheng. Prediction of Suitable Habitat for Lycophytes and Ferns in Northeast China: A Case Study on Athyrium brevifrons[J]. Chinese Geographical Science, 2019, 29(6): 1011-1023. doi: 10.1007/s11769-019-1085-4
Citation: LI Yan, CAO Wei, HE Xingyuan, CHEN Wei, XU Sheng. Prediction of Suitable Habitat for Lycophytes and Ferns in Northeast China: A Case Study on Athyrium brevifrons[J]. Chinese Geographical Science, 2019, 29(6): 1011-1023. doi: 10.1007/s11769-019-1085-4

Prediction of Suitable Habitat for Lycophytes and Ferns in Northeast China: A Case Study on Athyrium brevifrons

doi: 10.1007/s11769-019-1085-4
基金项目: 

Under the auspices of National Key Research and Development Program of China (No. 2016YFC0500300), National Natural Science Foundation of China (No. 41675153)

Prediction of Suitable Habitat for Lycophytes and Ferns in Northeast China: A Case Study on Athyrium brevifrons

Funds: 

Under the auspices of National Key Research and Development Program of China (No. 2016YFC0500300), National Natural Science Foundation of China (No. 41675153)

  • 摘要: Suitable habitat is vital for the survival and restoration of a species. Understanding the suitable habitat range for lycophytes and ferns is prerequisite for effective species resource conservation and recovery efforts. In this study, we took Athyrium brevifrons as an example, predicted its suitable habitat using a Maxent model with 67 occurrence data and nine environmental variables in Northeast China. The area under the curve (AUC) value of independent test data, as well as the comparison with specimen county areal distribution of A. brevifrons exhibited excellent predictive performance. The type of environmental variables showed that precipitation contributed the most to the distribution prediction, followed by temperature and topography. Percentage contribution and permutation importance both indicated that precipitation of driest quarter (Bio17) was the key factor in determining the natural distribution of A. brevifrons, the reason could be proved by the fern gametophyte biology. The analysis of high habitat suitability areas also showed the habitat preference of A. brevifrons:comparatively more precipitation and less fluctuation in the driest quarter. Changbai Mountains, covering almost all the high and medium habitat suitability areas, provide the best ecological conditions for the survival of A. brevifrons, and should be considered as priority areas for protection and restoration of the wild resource. The potential habitat suitability distribution map could provide a reference for the sustainable development and utilisation of A. brevifrons resource, and Maxent modelling could be valuable for conservation management planning for lycophytes and ferns in Northeast China.
  • [1] Amici V, Eggers B, Geri F et al., 2015. Habitat suitability and landscape structure:a maximum entropy approach in a medi-terranean area. Landscape Research, 40(2):208-225. doi: 10.1080/01426397.2013.774329
    [2] Baker K, Lambdon P, Jones E et al., 2014. Rescue, ecology and conservation of a rediscovered island endemic fern (Ano-gramma ascensionis):ex situ methodologies and a road map for species reintroduction and habitat restoration. Botanical Journal of the Linnean Society, 174(3):461-477. doi: 10.1111/boj.12131
    [3] Balbontín J, 2005. Identifying suitable habitat for dispersal in Bonelli's eagle:an important issue in halting its decline in Europe. Biological Conservation, 126(1):74-83. doi: 10.1016/j.biocon.2005.04.023
    [4] Baldwin R A, 2009. Use of maximum entropy modeling in wildlife research. Entropy, 11(4):854-866. doi: 10.3390/e11040854
    [5] Banks J A, 1999. Gametophyte development in ferns. Annual Review of Plant Physiology and Plant Molecular Biology, 50:163-186. doi: 10.1146/annurev.arplant.50.1.163
    [6] Benito Garzón M, Blazek R, Neteler M et al., 2006. Predicting habitat suitability with machine learning models:the potential area of Pinus sylvestris L. in the Iberian Peninsula. Ecological Modelling, 197(3-4):383-393. doi:10.1016/j.ecolmodel. 2006.03.015
    [7] Booth T H, Nix H A, Busby J R et al., 2014. BIOCLIM:the first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Diversity and Distributions, 20(1):1-9. doi: 10.1111/ddi.12144
    [8] Booth T H, 2018. Why understanding the pioneering and contin-uing contributions of BIOCLIM to species distribution model-ling is important. Austral Ecology, 43(8):852-860. doi: 10.1111/aec.12628
    [9] Boria R A, Olson L E, Goodman S M et al., 2014. Spatial filtering to reduce sampling bias can improve the performance of eco-logical niche models. Ecological Modelling, 275:73-77. doi: 10.1016/j.ecolmodel.2013.12.012
    [10] Brummitt N, Bachman S P, Aletrari E et al., 2015. The sampled red list index for plants, phaseⅡ:ground-truthing specimen-based conservation assessments. Philosophical Transactions of the Royal Society B:Biological Sciences, 370(1662):20140015. doi: 10.1098/rstb.2014.0015
    [11] Brummitt N, Aletrari E, Syfert M M et al., 2016. Where are threatened ferns found? Global conservation priorities for pteridophytes. Journal of Systematics and Evolution, 54(6):604-616. doi: 10.1111/jse.12224
    [12] Bruni I, Gentili R, De Mattia F et al., 2013. A multi-level analysis to evaluate the extinction risk of and conservation strategy for the aquatic fern Marsilea quadrifolia L. in Europe. Aquatic Botany, 111:35-42. doi: 10.1016/j.aquabot.2013.08.005
    [13] Campbell C A, Hilderbrand R H, 2017. Using maximum entropy to predict suitable habitat for the endangered dwarf wedge-mussel in the Maryland Coastal Plain. Aquatic Conservation:Marine and Freshwater Ecosystems, 27(2):462-475. doi: 10.1002/aqc.2699
    [14] Canestraro B K, Moran R C, Watkins J E, 2014. Reproductive and physiological ecology of climbing and terrestrial Polybotrya (Dryopteridaceae) at the La Selva biological station, Costa Rica. International Journal of Plant Sciences, 175(4):432-441. doi: 10.1086/675576
    [15] Carnaval A C, Moritz C, 2008. Historical climate modelling pre-dicts patterns of current biodiversity in the Brazilian Atlantic forest. Journal of Biogeography, 35(7):1187-1201. doi: 10.1111/j.1365-2699.2007.01870.x
    [16] Cook C N, Morgan D G, Marshall D J, 2010. Reevaluating suita-ble habitat for reintroductions:lessons learnt from the eastern barred bandicoot recovery program. Animal Conservation, 13(2):184-195. doi: 10.1111/j.1469-1795.2009.00320.x
    [17] Cui Shaopeng, Luo Xiao, Li Chunwang et al., 2018. Predicting the potential distribution of white-lipped deer using the MaxEnt model. Biodiversity Science, 26(2):171-176. (in Chinese)
    [18] Davies A J, Wisshak M, Orr J C et al., 2008. Predicting suitable habitat for the cold-water coral Lophelia pertusa (Scleractinia). Deep Sea Research Part I:Oceanographic Research Papers, 55(8):1048-1062. doi: 10.1016/j.dsr.2008.04.010
    [19] Dong Shiyong, Zuo Zhengyu, Yan Yuehong et al., 2017. Red list assessment of lycophytes and ferns in China. Biodiversity Sci-ence, 25(7):765-773. (in Chinese)
    [20] Dong Yuan, Wang Jianzhong, 1991. Exploitation, Utilization and protection of wild plant resources under forest in Northeast China. Resources Science, (2):41-45. (in Chinese)
    [21] Elith J, 2000. Quantitative methods for modeling species habitat:comparative performance and an application to Australian plants. In:Ferson S, Burgman M (eds). Quantitative Methods for Conservation Biology. New York:Springer, 39-58.
    [22] Elith J, Graham C H, Anderson R P et al., 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29(2):129-151. doi: 10.1111/j.2006.0906-7590.04596.x
    [23] Elith J, Phillips S J, Hastie T et al., 2011. A statistical explanation of MaxEnt for ecologists. Biodiversity Research, 17(1):43-57. doi: 10.1111/j.1472-4642.2010.00725.x
    [24] Estallo E L, Sangermano F, Grech M et al., 2018. Modelling the distribution of the vector Aedes aegypti in a central Argentine city. Medical and Veterinary Entomology, 32(4):451-461. doi: 10.1111/mve.12323
    [25] Evangelista P H, Kumar S, Stohlgren T J et al., 2008. Modelling invasion for a habitat generalist and a specialist plant species. Diversity and Distributions, 14(5):808-817. doi: 10.1111/j.1472-4642.2008.00486.x
    [26] Fick S E, Hijmans R J, 2017. WorldClim 2:new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12):4302-4315. doi: 10.1002/joc.5086
    [27] French K J, Shackell N L, den Heyer C E, 2018. Strong relation-ship between commercial catch of adult Atlantic halibut (Hip-poglossus hippoglossus) and availability of suitable habitat for juveniles in the Northwest Atlantic Ocean. Fishery Bulletin, 116(2):107-121. doi: 10.7755/FB.116.2.1
    [28] Fu Peiyun, 1995. Clavis Plantarum Chinae Boreali-Orientalis (Editio Secunda). Beijing:Science Press, 35. (in Chinese)
    [29] Galparsoro I, Borja Á, Bald J et al., 2009. Predicting suitable habitat for the European lobster (Homarus gammarus), on the Basque continental shelf (Bay of Biscay), using Ecological-Niche Factor Analysis. Ecological Modelling, 220(4):556-567. doi: 10.1016/j.ecolmodel.2008.11.003
    [30] Giordano P F, Navarro J L, Martella M B, 2010. Building large-scale spatially explicit models to predict the distribution of suitable habitat patches for the Greater rhea (Rhea americana), a near-threatened species. Biological Conservation, 143(2):357-365. doi: 10.1016/j.biocon.2009.10.022
    [31] Greer G K, McCarthy B C, 2000. Patterns of growth and repro-duction in a natural population of the fern Polystichum acrostichoides. American Fern Journal, 90(2):60-76. doi: 10.2307/1547415
    [32] Gu W D, Swihart R K, 2004. Absent or undetected? Effects of non-detection of species occurrence on wildlife-habitat models. Biological Conservation, 116(2):195-203. doi: 10.1016/S0006-3207(03)00190-3
    [33] Han X Z, Ma R, Chen Q et al., 2018. Anti-inflammatory action of Athyrium multidentatum extract suppresses the LPS-induced TLR4 signaling pathway. Journal of Ethnopharmacology, 217:220-227. doi: 10.1016/j.jep.2018.02.031
    [34] He Xingyuan, Yu Jinghua, 2016. Technology and demonstration of ecological protection and exploitation and utilization of bi-ological resources in northeast forest region. Acta Ecologica Sinica, 36(22):7028-7033. (in Chinese)
    [35] Jia Xiang, Ma Fangfang, Zhou Wangming et al., 2017. Impacts of climate change on the potential geographical distribution of broadleaved Korean pine (Pinus koraiensis) forests. Acta Ecologica Sinica, 37(2):464-473. (in Chinese)
    [36] Khafaga O, Hatab E E, Omar K, 2011. Predicting the potential geographical distribution of Nepeta septemcrenata in Saint Katherine Protectorate, South Sinai, Egypt using Maxent. Ac-ademia Arena, 3(7):45-50.
    [37] Kumar S, Stohlgren T J, 2009. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomy-rica monticola in New Caledonia. Journal of Ecology and Natural Environment, 1(4):94-98.
    [38] Lathrop R G, Niles L, Smith P et al., 2018. Mapping and modeling the breeding habitat of the Western Atlantic Red Knot (Calidris canutus rufa) at local and regional scales. The Condor, 120(3):650-665. doi: 10.1650/CONDOR-17-247.1
    [39] Li G Q, Du S, Guo K, 2015. Evaluation of limiting climatic factors and simulation of a climatically suitable habitat for Chinese sea buckthorn. PLoS One, 10(7):e0131659. doi: 10.1371/journal.pone.0131659
    [40] Li G Q, Du S, Wen Z M, 2016. Mapping the climatic suitable habitat of oriental arborvitae (Platycladus orientalis) for in-troduction and cultivation at a global scale. Scientific Reports, 6:30009. doi: 10.1038/srep30009
    [41] Li N, Wang Z, Xia L et al., 2019. Effects of long-term coastal rec-lamation on suitable habitat and wintering population size of the endangered Red-crowned Crane, Grus japonensis. Hydrobiolo-gia, 827(1):21-29. doi: 10.1007/s10750-017-3341-x
    [42] Liu Baodong, Li Xinhong, 1995. Resources of economic plant pteridophyte in Northeast China. Chinese Wild Plant Resources, (4):36-38. (in Chinese)
    [43] Liu Dongmei, Sheng Jiwen, Wang Sihong et al., 2016. Chemical constituents from Athyrium multidentatum rhizome and their reducing capacity. Chinese Journal of Experimental Traditional Medical Formulae, 22(21):59-62. (in Chinese)
    [44] Lu C Y, Gu W, Dai A H et al., 2012. Assessing habitat suitability based on geographic information system (GIS) and fuzzy:a case study of Schisandra sphenanthera Rehd. et Wils. In Qin-ling Mountains, China. Ecological Modelling, 242:105-115. doi: 10.1016/j.ecolmodel.2012.06.002
    [45] Lu Shugang, Chen Feng, 2013. On the pteridophyte ecological types. Journal of Yunnan University (Natural Sciences Edition), 35(3):407-415. (in Chinese)
    [46] MacKenzie D I, Nichols J D, Lachman G B et al., 2002. Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83(8):2248-2255. doi:10.1890/0012-9658 (2002)083[2248:ESORWD]2.0.CO;2
    [47] Manel S, Williams H C, Ormerod S J, 2001. Evaluating presence-absence models in ecology:the need to account for prevalence. Journal of Applied Ecology, 38(5):921-931. doi: 10.1046/j.1365-2664.2001.00647.x
    [48] Merow C, Smith M J, Silander J A Jr, 2013. A practical guide to MaxEnt for modeling species' distributions:what it does, and why inputs and settings matter. Ecography, 36(10):1058-1069. doi: 10.1111/j.1600-0587.2013.07872.x
    [49] Nettesheim F C, Damasceno E R, Sylvestre L S, 2014. Different slopes of a mountain can determine the structure of ferns and lycophytes communities in a tropical forest of Brazil. Anais da Academia Brasileira de Ciências, 86(1):199-210. doi: 10.1590/0001-3765201495912
    [50] Nieto-Lugilde D, Lenoir J, Abdulhak S et al., 2015. Tree cover at fine and coarse spatial grains interacts with shade tolerance to shape plant species distributions across the Alps. Ecography, 38(6):578-589. doi: 10.1111/ecog.00954
    [51] Olsson O, Rogers D J, 2009. Predicting the distribution of a suit-able habitat for the white stork in Southern Sweden:identifying priority areas for reintroduction and habitat restoration. Animal Conservation, 12(1):62-70. doi: 10.1111/j.1469-1795.2008.00225.x
    [52] Pearce J L, Boyce M S, 2006. Modelling distribution and abun-dance with presence-only data. Journal of Applied Ecology, 43(3):405-412. doi: 10.1111/j.1365-2664.2005.01112.x
    [53] Pearson R G, Raxworthy C J, Nakamura M et al., 2007. ORIGINAL ARTICLE:Predicting species distributions from small numbers of occurrence records:a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34(1):102-117. doi: 10.1111/j.1365-2699.2006.01594.x
    [54] Peck J H, Peck C J, Farrar D R, 1990. Influences of life history attributes on formation of local and distant fern populations. American Fern Journal, 80(4):126-142. doi: 10.2307/1547200
    [55] Peterson A T, Soberón J, Pearson R G et al., 2011. Ecological Niches and Geographic Distributions. Princeton:Princeton University Press, 172.
    [56] Phillips S J, Anderson R P, Schapire R E, 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4):231-259. doi:10.1016/j.ecolmodel. 2005.03.026
    [57] Phillips S J, Dudik M, 2008. Modeling of species distributions with Maxent:new extensions and a comprehensive evaluation. Ecography, 31(2):161-175. doi: 10.1111/j.0906-7590.2008.5203.x
    [58] Phillips S J, Anderson R P, Dudik M et al., 2017. Opening the black box:an open-source release of Maxent. Ecography, 40(7):887-893. doi: 10.1111/ecog.03049
    [59] Phillips S J, Dudík M, Robert E S, 2018. Maxent software for modeling species niches and distributions (Version 3.4.1). Available at:http://biodiversityinformatics.amnh.org/open_source/maxent/.
    [60] Phipps W L, Diekmann M, MacTavish L M et al., 2017. Due South:a first assessment of the potential impacts of climate change on Cape vulture occurrence. Biological Conservation, 210:16-25. doi: 10.1016/j.biocon.2017.03.028
    [61] Qi G Y, Yang L Q, Xiao C X et al., 2015. Nutrient values and bioactivities of the extracts from three fern species in China:a comparative assessment. Food & Function, 6(9):2918-2929. doi: 10.1039/C5FO00510H
    [62] Qi G Y, Liu Z G, Fan R et al., 2017. Athyrium multidentatum (Doll.) Ching extract induce apoptosis via mitochondrial dys-function and oxidative stress in HepG2 cells. Scientific Reports, 7(1):2275. doi: 10.1038/s41598-017-02573-8
    [63] Radosavljevic A, Anderson R P, 2014. Making better MAXENT models of species distributions:complexity, overfitting and evaluation. Journal of Biogeography, 41(4):629-643. doi: 10.1111/jbi.12227
    [64] Remya K, Ramachandran A, Jayakumar S, 2015. Predicting the current and future suitable habitat distribution of Myristica dactyloides Gaertn. using MaxEnt model in the Eastern Ghats, India. Ecological Engineering, 82:184-188. doi: 10.1016/j.ecoleng.2015.04.053
    [65] Richard K, Abdel-Rahman E M, Mohamed S A et al., 2018. Im-portance of remotely-sensed vegetation variables for predicting the spatial distribution of African citrus Triozid (Trioza erytreae) in Kenya. International Journal of Geo-Information, 7(11):429. doi: 10.3390/ijgi7110429
    [66] Sato T, 1992. Size dependency of gametophytes decay in Athyrium brevifrons Nakai during spring desiccation. Ecological Research, 7(1):1-7. doi: 10.1007/BF02348591
    [67] Sheffield E, 1994. Alternation of generations in ferns:mechanisms and significance. Biological Review, 69(3):331-343. doi: 10.1111/j.1469-185X.1994.tb01275.x
    [68] Shen Tao, Zhang Ji, Yang Qing et al., 2017. Ecology suitability study of Gentiana rhodantha in Yunnan-Guizhou Plateau. Chinese Pharmaceutical Journal, 52(20):1816-1823. (in Chinese)
    [69] Testo W L, Watkins J E Jr, 2013. Understanding mechanisms of rarity in Pteridophytes:competition and climate change threaten the rare fern Asplenium scolopendrium var. americanum (As-pleniaceae). American Journal of Botany, 100(11):2261-2270. doi: 10.3732/ajb.1300150
    [70] Vilar L, Gómez I, Martínez-Vega J et al., 2016. Multitemporal modelling of socio-economic wildfire drivers in central Spain between the 1980s and the 2000s:comparing generalized linear models to machine learning algorithms. PLoS One, 11(8):e0161344. doi: 10.1371/journal.pone.0161344
    [71] Vormisto J, Tuomisto H, Oksanen J, 2004. Palm distribution pat-terns in Amazonian rainforests:what is the role of topographic variation? Journal of Vegetation Science, 15(4):485-494. doi: 10.1111/j.1654-1103.2004.tb02287.x
    [72] Wang Yunsheng, Xie Bingyan, Wan Fanghao et al., 2007. Appli-cation of ROC curve analysis in evaluating the performance of alien species' potential distribution models. Biodiversity Science, 15(4):365-372. (in Chinese)
    [73] Wang Zhongren, Zhang Xianchun, Zhu Weiming et al., 1999. Flora Reipublicae Popularis Sinicae, vol. 3(2). Beijing:Science Press, 162-165. (in Chinese)
    [74] Watkins J E Jr, Mack M K, Mulkey S S, 2007. Gametophyte ecology and demography of epiphytic and terrestrial tropical ferns. American Journal of Botany, 94(4):701-708. doi: 10.3732/ajb.94.4.701
    [75] West A M, Kumar S, Brown C S et al., 2016. Field validation of an invasive species Maxent model. Ecological Informatics, 36:126-134. doi: 10.1016/j.ecoinf.2016.11.001
    [76] Wu F, Wang M M, Xi Z et al., 2014. Study on drought stress of six common ferns in North China. Acta Horticulturae, 1035:113-124. doi: 10.17660/ActaHortic.2014.1035.13
    [77] Wu Z Y, Raven P H, Hong D Y, 2013. Flora of China, Vol. 2-3. Beijing:Science Press; St. Louis:Missouri Botanical Garden Press, 452, 466-467.
    [78] Xu Wenduo, 1986. The relation between the zonal distribution of types of vegetation and the climate in Northeast China. Acta Phytoecologica et Geobotanica Sinica, 10(4):254-263. (in Chinese)
    [79] Yang X Q, Kushwaha S P S, Saran S et al., 2013. Maxent model-ing for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecological Engineering, 51:83-87. doi: 10.1016/j.ecoleng.2012.12.004
    [80] Yi Y J, Cheng X, Yang Z F et al., 2016. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecological Engi-neering, 92:260-269. doi: 10.1016/j.ecoleng.2016.04.010
    [81] Zaniewski A E, Lehmann A, Overton J M, 2002. Predicting species spatial distributions using presence-only data:a case study of native New Zealand ferns. Ecological Modelling, 157(2-3):261-280. doi: 10.1016/s0304-3800(02)00199-0
    [82] Zhang Jiping, Zhang Yili, Liu Linshan et al., 2011. Predicting potential distribution of Tibetan Spruce (Picea smithiana) in Qomolangma (Mount Everest) national nature preserve using maximum entropy niche-based model. Chinese Geographical Science, 21(4):417-426. doi: 10.1007/s11769-011-0483-z
    [83] Zhang M G, Zhou Z K, Chen W Y et al., 2014. Major declines of woody plant species ranges under climate change in Yunnan, China. Diversity and Distributions, 20(4):405-415. doi: 10.1111/ddi.12165
    [84] Zhang Xianchun, Wei Ran, Liu Hongmei et al., 2013. Phylogeny and classification of the extant lycophytes and ferns from China. Chinese Bulletin of Botany, 48(2):119-137. (in Chinese)
  • [1] Qing QI, Mingye ZHANG, Shouzheng TONG, Yan LIU, Dongjie ZHANG, Guanglei ZHU, Xianguo LYU.  Evolution of Potential Spatial Distribution Patterns of Carex Tussock Wetlands Under Climate Change Scenarios, Northeast China . Chinese Geographical Science, 2022, 32(1): 142-154. doi: 10.1007/s11769-022-1260-x
    [2] REN Wanxia, XUE Bing, YANG Jun, LU Chengpeng.  Effects of the Northeast China Revitalization Strategy on Regional Economic Growth and Social Development . Chinese Geographical Science, 2020, 30(5): 791-809. doi: 10.1007/s11769-020-1149-5
    [3] HUANG Yue, FANG Yangang, GU Guofeng, LIU Jisheng.  The Evolution and Differentiation of Economic Convergence of Resource-based Cities in Northeast China . Chinese Geographical Science, 2018, 28(3): 495-504. doi: 10.1007/s11769-018-0962-6
    [4] LYU Mingzhi, SHENG Lianxi, ZHANG Zhongsheng, ZHANG Li.  Distribution and Accumulation of Soil Carbon in Temperate Wetland, Northeast China . Chinese Geographical Science, 2016, 26(3): 295-303. doi: 10.1007/s11769-016-0809-y
    [5] CHENG Yeqing, WANG Ying, WANG Zheye, DU Na, SUN Yu, ZHAO Zhizhong.  Spatio-temporal Dynamic of Quality of Life of Residents, Northeast China . Chinese Geographical Science, 2016, 26(5): 623-637. doi: 10.1007/s11769-016-0827-9
    [6] FAN Ruqin, ZHANG Xiaoping, YANG Xueming, LIANG Aizhen, JIA Shuxia, CHEN Xuewen.  Effects of Tillage Management on Infiltration and Preferential Flow in a Black Soil, Northeast China . Chinese Geographical Science, 2013, 23(3): 312-320. doi: 10.1007/s11769-013-0606-9
    [7] WANG Qiang, ZHANG Zhongsheng1, ZHOU Xuehong, LU Xianguo.  Mercury Distribution and Accumulation in Typical Wetland Ecosystems of Sanjiang Plain, Northeast China . Chinese Geographical Science, 2013, 23(1): 49-58.
    [8] QIU Fangdao, TONG Lianjun, ZHANG Huimin, ZHANG Na.  Decomposition Analysis on Direct Material Input and Dematerialization of Mining Cities in Northeast China . Chinese Geographical Science, 2009, 19(2): 104-112. doi: 10.1007/s11769-009-0104-2
    [9] WANG Zongming, LIU Zhiming, SONG Kaishan, ZHANG Bai, ZHANG Sumei, LIU Dianwei, REN Chunying, YANG Fei.  Land Use Changes in Northeast China Driven by Human Activities and Climatic Variation . Chinese Geographical Science, 2009, 19(3): 225-230. doi: 10.1007/s11769-009-0225-7
    [10] ZHANG Pingyu.  Revitalizing Old Industrial Base of Northeast China:Process, Policy and Challenge . Chinese Geographical Science, 2008, 18(2): 109-118. doi: 10.1007/s11769-008-0109-2
    [11] LI Bo, TONG Lianjun.  Vulnerability and Sustainable Development Mode of Coal Cities in Northeast China . Chinese Geographical Science, 2008, 18(2): 119-126. doi: 10.1007/s11769-008-0119-0
    [12] MEI Lin, XU Xiaopo, CHEN Mingxiu.  Regional Evolution Features and Coordinated Development Strategies for Northeast China . Chinese Geographical Science, 2006, 16(4): 378-382.
    [13] LI Ji, GONG Qiang, ZHAO Lian-wei.  CLIMATIC FEATURES OF SUMMER TEMPERATURE IN NORTHEAST CHINA UNDER WARMING BACKGROUND . Chinese Geographical Science, 2005, 15(4): 337-342.
    [14] ZHANG Lei, SONG Feng-bin.  SORPTION AND DESORPTION CHARACTERISTICS OF CADMIUM BY FOUR DIFFERENT SOILS IN NORTHEAST CHINA . Chinese Geographical Science, 2005, 15(4): 343-347.
    [15] WANG Xi-kui, QIU Shan-wen, SONG Chang-chun, KULAKOV Aleksey, TASHCHI Stepan, MYASNIKOV Evgeny.  CENOZOIC VOLCANISM AND GEOTHERMAL RESOURCES IN NORTHEAST CHINA . Chinese Geographical Science, 2001, 11(2): 150-154.
    [16] 黄铁青, 刘兆礼, 潘瑜春, 张养贞.  LAND COVER SURVEY IN NORTHEAST CHINA USING REMOTE SENSING AND GIS . Chinese Geographical Science, 1998, 8(3): 264-270.
    [17] 刘红玉.  CONSERVATION OF WETLANDS ESPECIALLY AS WATERFOWL HABITAT IN NORTHEAST CHINA . Chinese Geographical Science, 1998, 8(3): 281-288.
    [18] 邹春静, 徐文铎, 卜军.  INFLUENCE OF GLOBAL WARMING ON VEGETATION IN NORTHEAST CHINA . Chinese Geographical Science, 1997, 7(1): 68-78.
    [19] 王荣芬, 于国政.  THE OPEN PORT SYSTEM IN NORTHEAST CHINA . Chinese Geographical Science, 1997, 7(3): 270-277.
    [20] 刘继生.  A FRACTAL STUDY ON URBAN SYSTEM IN NORTHEAST CHINA . Chinese Geographical Science, 1996, 6(3): 272-281.
  • 加载中
计量
  • 文章访问数:  70
  • HTML全文浏览量:  0
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-03

Prediction of Suitable Habitat for Lycophytes and Ferns in Northeast China: A Case Study on Athyrium brevifrons

doi: 10.1007/s11769-019-1085-4
    基金项目:

    Under the auspices of National Key Research and Development Program of China (No. 2016YFC0500300), National Natural Science Foundation of China (No. 41675153)

摘要: Suitable habitat is vital for the survival and restoration of a species. Understanding the suitable habitat range for lycophytes and ferns is prerequisite for effective species resource conservation and recovery efforts. In this study, we took Athyrium brevifrons as an example, predicted its suitable habitat using a Maxent model with 67 occurrence data and nine environmental variables in Northeast China. The area under the curve (AUC) value of independent test data, as well as the comparison with specimen county areal distribution of A. brevifrons exhibited excellent predictive performance. The type of environmental variables showed that precipitation contributed the most to the distribution prediction, followed by temperature and topography. Percentage contribution and permutation importance both indicated that precipitation of driest quarter (Bio17) was the key factor in determining the natural distribution of A. brevifrons, the reason could be proved by the fern gametophyte biology. The analysis of high habitat suitability areas also showed the habitat preference of A. brevifrons:comparatively more precipitation and less fluctuation in the driest quarter. Changbai Mountains, covering almost all the high and medium habitat suitability areas, provide the best ecological conditions for the survival of A. brevifrons, and should be considered as priority areas for protection and restoration of the wild resource. The potential habitat suitability distribution map could provide a reference for the sustainable development and utilisation of A. brevifrons resource, and Maxent modelling could be valuable for conservation management planning for lycophytes and ferns in Northeast China.

English Abstract

LI Yan, CAO Wei, HE Xingyuan, CHEN Wei, XU Sheng. Prediction of Suitable Habitat for Lycophytes and Ferns in Northeast China: A Case Study on Athyrium brevifrons[J]. 中国地理科学, 2019, 29(6): 1011-1023. doi: 10.1007/s11769-019-1085-4
引用本文: LI Yan, CAO Wei, HE Xingyuan, CHEN Wei, XU Sheng. Prediction of Suitable Habitat for Lycophytes and Ferns in Northeast China: A Case Study on Athyrium brevifrons[J]. 中国地理科学, 2019, 29(6): 1011-1023. doi: 10.1007/s11769-019-1085-4
LI Yan, CAO Wei, HE Xingyuan, CHEN Wei, XU Sheng. Prediction of Suitable Habitat for Lycophytes and Ferns in Northeast China: A Case Study on Athyrium brevifrons[J]. Chinese Geographical Science, 2019, 29(6): 1011-1023. doi: 10.1007/s11769-019-1085-4
Citation: LI Yan, CAO Wei, HE Xingyuan, CHEN Wei, XU Sheng. Prediction of Suitable Habitat for Lycophytes and Ferns in Northeast China: A Case Study on Athyrium brevifrons[J]. Chinese Geographical Science, 2019, 29(6): 1011-1023. doi: 10.1007/s11769-019-1085-4
参考文献 (84)

目录

    /

    返回文章
    返回