留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Remote Detection of Varying Water Storage in Relation to Surfacial Temperature of Aral Sea

MU Guangyi CHEN Li HU Liangjun SONG Kaishan

MU Guangyi, CHEN Li, HU Liangjun, SONG Kaishan. Remote Detection of Varying Water Storage in Relation to Surfacial Temperature of Aral Sea[J]. 中国地理科学, 2019, 20(5): 741-755. doi: 10.1007/s11769-019-1069-4
引用本文: MU Guangyi, CHEN Li, HU Liangjun, SONG Kaishan. Remote Detection of Varying Water Storage in Relation to Surfacial Temperature of Aral Sea[J]. 中国地理科学, 2019, 20(5): 741-755. doi: 10.1007/s11769-019-1069-4
MU Guangyi, CHEN Li, HU Liangjun, SONG Kaishan. Remote Detection of Varying Water Storage in Relation to Surfacial Temperature of Aral Sea[J]. Chinese Geographical Science, 2019, 20(5): 741-755. doi: 10.1007/s11769-019-1069-4
Citation: MU Guangyi, CHEN Li, HU Liangjun, SONG Kaishan. Remote Detection of Varying Water Storage in Relation to Surfacial Temperature of Aral Sea[J]. Chinese Geographical Science, 2019, 20(5): 741-755. doi: 10.1007/s11769-019-1069-4

Remote Detection of Varying Water Storage in Relation to Surfacial Temperature of Aral Sea

doi: 10.1007/s11769-019-1069-4
基金项目: Under the auspices of State Special Funds for Research Infrastructure of China (No. 2015FY110500), National Natural Science Foundation of China (No. 41730104)
详细信息
    通讯作者:

    HU Liangjun.E-mail:hulj068@nenu.edu.cn;SONG Kaishan.E-mail:songkaishan@neigae.ac.cn

Remote Detection of Varying Water Storage in Relation to Surfacial Temperature of Aral Sea

Funds: Under the auspices of State Special Funds for Research Infrastructure of China (No. 2015FY110500), National Natural Science Foundation of China (No. 41730104)
More Information
    Corresponding author: HU Liangjun.E-mail:hulj068@nenu.edu.cn;SONG Kaishan.E-mail:songkaishan@neigae.ac.cn
  • 摘要: Lake monitoring by remote sensing is of significant importance to understanding the lake and ambient ecological and environmental processes. In particular, whether lake water storage variation could predict lake surfacial temperature or vice versa has long fascinated the research community, in that it would greatly benefit the monitoring missions and scientific interpretation of the lake change processes. This study attempted to remotely detect the dynamics of the Aral Sea and pursue the relationships between varying lake water storage attributes and surface water temperature by using MODIS LST (Moderate-resolution Imaging Spectroradiometer Land Surface Temperature) 8-day composite products, satellite altimeter data, and actual meteorological measurements. Their associations with lake Surface Water Temperatures (SWT) were then analyzed. Results showed the lake water surface areas and elevations of the North Aral Sea tended to increasing trend from 2001 (2793.0 km2, 13.6 m) to 2015 (6997.8 km2, 15.9 m), while those of the South Aral Sea showed a decreasing trend during 2001 (20 434.6 km2, 3.9 m) and 2015 (3256.1 km2, 0.9 m). In addition, the annual daytime and nighttime lake SWT both decreased in the North Aral Sea, while only the daytime SWT in the South Aral Sea exhibited an increase, indicating a rising deviation of diurnal temperatures in the South Aral Sea during the past 15 yr. Moreover, a lower correlation was found between variations in the daytime SWT and storage capacity in the South Aral Sea (R2=0.33; P<0.05), no fair correlations were tested between lake water storage and daytime SWT in the North Aral Sea nor between lake water storage and nighttime SWT in either part of the sea. These results implied that climate change, if any at least during the research period, has no significant effects on lake dynamics over the two sectors of the Aral Sea with anthropogenic disturbances. However, climate change and human activities may overlap to explain complex consequences in the lake storage variations. Our results may provide a reference for monitoring the spatiotemporal variations of lakes, increasing understanding of the lake water storage changes in relation to the lake SWT, which may benefit the ecological management of the Aral Sea region, in the effort to face the likely threats from climate change and human activities to the region.
  • [1] Bai J, Chen X, Li J et al., 2011. Changes in the area of inland lakes in arid regions of central Asia during the past 30 years. Environmental Monitoring and Assessment, 178(1-4):247-256. doi: 10.1007/s10661-010-1686-y
    [2] Boomer I, Wünnemann B, Mackay A W et al., 2009. Advances in understanding the late Holocene history of the Aral Sea region. Quaternary International, 194(1-2):79-90. doi: 10.1016/j.quaint.2008.03.007
    [3] Cai X, Feng L, Hou X et al., 2016. Remote sensing of the water storage dynamics of large lakes and reservoirs in the Yangtze River Basin from 2000 to 2014. Scientific Reports, 6:36405. doi: 10.1038/srep36405
    [4] Chen J L, Wilson C R, Tapley B D et al., 2017. Long-term and seasonal Caspian Sea level change from satellite gravity and altimeter measurements. Journal of Geophysical Research:Solid Earth, 122(3):2274-2290. doi: 10.1002/2016JB013595
    [5] Cretaux J F, Letolle R, Bergé-Nguyen M, 2013. History of Aral Sea level variability and current scientific debates. Global and Planetary Change, 110:99-113. doi:10.1016/j.gloplacha. 2013.05.006
    [6] Crosman E T, Horel J D, 2009. MODIS-derived surface tempera-ture of the Great Salt Lake. Remote Sensing of Environment, 113(1):73-81. doi: 10.1016/j.rse.2008.08.013
    [7] Dessler A E, Palm S P, Spinhirne J D, 2006. Tropical cloud-top height distributions revealed by the ice, cloud, and land eleva-tion satellite (ICESat)/Geoscience laser altimeter system (GLAS). Journal of Geophysical Research:Atmospheres, 111(D12). doi: 10.1029/2005JD006705
    [8] Gafurov A, 2010. Water Balance Modeling Using Remote Sensing Information:Focus on Central Asia. Stuttgart:University of Stuttgart.
    [9] Gong P, 2012. Remote sensing of environmental changes over China:a review. Chinese Science Bulletin, 57:2793-2801. doi: 10.1007/s11434-012-5268-y
    [10] Gorham E, 1964. Morphometric control of annual heat budgets in temperate lakes. Limnology and Oceanography, 9(4):529-533. doi: 10.4319/lo.1964.9.4.0525
    [11] Hu Liangjun, Yang Haijun, Yang Qinke et al., 2010. A GIS-based modeling approach for fast assessment of soil erosion by water at regional scale, Loess Plateau. Chinese Geographical Science, 20(5):423-433. doi: 10.1007/s11769-010-0416-2
    [12] Huang X, Xie H, Liang T et al., 2011. Estimating vertical error of SRTM and map-based DEMs using ICESat altimetry data in the eastern Tibetan Plateau. International Journal of Remote Sensing, 32(18):5177-5196. doi:10.1080/01431161.2010. 495092
    [13] Ke L H, Song C Q, 2014. Remotely sensed surface temperature variation of an inland saline lake over the central Qinghai-Tibet Plateau. ISPRS Journal of Photogrammetry and Remote Sensing, 98:157-167. doi:10.1016/j.isprsjprs.2014. 09.007
    [14] Livingstone D M, Dokulil M T, 2001. Eighty years of spatially coherent Austrian lake surface temperatures and their rela-tionship to regional air temperature and the North Atlantic Os-cillation. Limnology and Oceanography, 46(5):1220-1227. doi: 10.4319/lo.2001.46.5.1220
    [15] Luyssaert S, Jammet M, Stoy P C et al., 2014. Land management and land-cover change have impacts of similar magnitude on surface temperature. Nature Climate Change, 4:389-393. doi: 10.1038/nclimate2196
    [16] McFeeters S K, 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7):1425-1432. doi: 10.1080/01431169608948714
    [17] Micklin P, 2010. The past, present, and future Aral Sea. Lakes & Reservoirs:Research & Management, 15(3):193-213. doi: 10.1111/j.1440-1770.2010.00437.x
    [18] Peneva E L, Stanev E V, Stanychni S V et al., 2004. The recent evolution of the Aral Sea level and water properties:analysis of satellite, gauge and hydrometeorological data. Journal of Marine Systems, 47(1-4):11-24. doi:10.1016/j.jmarsys.2003. 12.005
    [19] Riordan B, Verbyla D, McGuire A D, 2006. Shrinking ponds in subarctic Alaska based on 1950-2002 remotely sensed imag-es. Journal of Geophysical Research:Biogeosciences, 111(G4). doi: 10.1029/2005JG000150
    [20] Shi K, Zhang Y, Zhu G et al., 2015. Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250 m MODIS-Aqua data. Remote Sensing of Environment, 164:43-56. doi: 10.1016/j.rse.2015.02.029
    [21] Shi K, Zhang Y, Zhang Y et al., 2019. Phenology of Phytoplankton Blooms in a Trophic Lake Observed from Long-term MODIS Data. Environmental Science & Technology, 53:2324-2331. doi: 10.1021/acs.est.8b06887
    [22] Sima S, Ahmadalipour A, Tajrishy M, 2013. Mapping surface temperature in a hyper-saline lake and investigating the effect of temperature distribution on the lake evaporation. Remote Sensing of Environment, 136:374-385. doi:10.1016/j.rse. 2013.05.014
    [23] Song K, Wang M, Du J et al., 2016. Spatiotemporal variations of lake surface temperature across the Tibetan Plateau using MODIS LST product. Remote Sensing, 8(10):854. doi: 10.3390/rs8100854
    [24] Sun F, Sun W, Chen J et al., 2012. Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery. International journal of Remote Sensing, 33(21):6854-6875. doi: 10.1080/01431161.2012.692829
    [25] Wan Z, Zhang Y, Zhang Q et al., 2002. Validation of the land surface temperature products retrieved from terra moderate resolution imaging spectroradiometer data. Remote Sensing of Environment, 83(1-2):163-180. doi:10.1016/S0034-4257(02) 00093-7
    [26] Wang J, Song C, Reager J T et al., 2018. Recent global decline in endorheic basin water storages. Nature geoscience, 11(12):926. doi: 10.1038/NGEO2999
    [27] Wang X, Gong P, Zhao Y et al., 2013. Water-level changes in China's large lakes determined from ICESat/GLAS da-ta. Remote Sensing of Environment, 132:131-144. doi: 10.1016/j.rse.2013.01.005
    [28] Wang X W, Cheng X, Li Z et al., 2012. Lake water footprints identification from time-series ICESat/GLAS data. IEEE Ge-oscience and Remote Sensing Letters, 9:333-337. doi: 10.1109/LGRS.2011.2167495
    [29] Wang Z M, Song K S, Zhang B et al., 2009. Shrinkage and frag-mentation of grasslands in the West Songnen Plain, China. Ag-riculture, Ecosystems and Environment, 129:315-324. doi: 10.1016/j.agee.2008.10.009
    [30] Xiao F, Ling F, Du Y et al., 2013. Evaluation of spatial-temporal dynamics in surface water temperature of Qinghai Lake from 2001 to 2010 by using MODIS data. Journal of Arid Land, 5(4):452464. doi: 10.1007/s40333-013-0188-5
    [31] Zhang G, Xie H, Kang S et al, 2011. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003-2009). Remote Sensing of Environment, 115(7):1733-1742. doi: 10.1016/j.rse.2011.03.005
    [32] Zhang S, Gao H, Naz B S, 2014. Monitoring reservoir storage in South Asia from multisatellite remote sensing. Water Resources Research, 50(11):89278943. doi: 10.1002/2014WR015829
  • [1] Song SONG, Zheng CAO, Zhifeng WU, Xiaowei CHUAI.  Spatial and Temporal Dynamics of Surface Water in China from the 1980s to 2015 Based on Remote Sensing Monitoring . Chinese Geographical Science, 2022, 32(1): 174-188. doi: 10.1007/s11769-021-1252-2
    [2] Zhigao SUN, Jing LI, Liping TIAN, Bingbing CEHN, Xingyun HU.  Spatial Variation and Risk Assessment of Arsenic and Heavy Metals in Surface Water and Suspended Particulate Matter in Tail Reaches of the Yellow River, China . Chinese Geographical Science, 2021, 31(1): 181-196. doi: 10.1007/s11769-021-1182-z
    [3] Shuling YU, Xiaoyu LI, Bolong WEN, Guoshuang CHEN, Anne HARTLEYC, Ming JIANG, Xiujun LI.  Characterization of Water Quality in Xiao Xingkai Lake: Implications for Trophic Status and Management . Chinese Geographical Science, 2021, 31(3): 558-570. doi: 10.1007/s11769-021-1199-3
    [4] ZHANG Guangzong, WU Mengquan, ZHANG Anding, XING Qianguo, ZHOU Min, ZHAO Deheng, SONG Xiaodong, YU Zhilu.  Influence of Sea Surface Temperature on Outbreak of Ulva prolifera in the Southern Yellow Sea, China . Chinese Geographical Science, 2020, 30(4): 631-642. doi: 10.1007/s11769-020-1129-9
    [5] ZHAO Boyu, DU Jia, SONG Kaishan, Pierre-André JACINTHE, XIANG Xiaoyun, ZHOU Haohao, YANG Zhichao, ZHANG Liyan, GUO Pingping.  Spatio-temporal Variation of Water Heat Flux Using MODIS Land Surface Temperature Product over Hulun Lake, China During 2001-2018 . Chinese Geographical Science, 2020, 30(6): 1065-1080. doi: 10.1007/s11769-020-1166-4
    [6] WANG Rui, HE Min, NIU Zhenguo.  Responses of Alpine Wetlands to Climate Changes on the Qinghai-Tibetan Plateau Based on Remote Sensing . Chinese Geographical Science, 2020, 30(2): 189-201. doi: 10.1007/s11769-020-1107-2
    [7] XU Jie, XIAO Yu, XIE Gaodi, JIANG Yuan.  Ecosystem Service Flow Insights into Horizontal Ecological Compensation Standards for Water Resource: A Case Study in Dongjiang Lake Basin, China . Chinese Geographical Science, 2019, 20(2): 214-230. doi: 10.1007/s11769-019-1025-3
    [8] WAN Rongrong, YANG Guishan, DAI Xue, ZHANG Yanhui, LI Bing.  Water Security-based Hydrological Regime Assessment Method for Lakes with Extreme Seasonal Water Level Fluctuations: A Case Study of Poyang Lake, China . Chinese Geographical Science, 2018, 28(3): 456-469. doi: 10.1007/s11769-018-0958-2
    [9] LI Bing, YANG Guishan, WAN Rongrong, ZHANG Lu, ZHANG Yanhui, DAI Xue.  Using Fuzzy Theory and Variable Weights for Water Quality Evaluation in Poyang Lake, China . Chinese Geographical Science, 2017, 27(1): 39-51. doi: 10.1007/s11769-017-0845-2
    [10] XIA Shaoxia, LIU Yu, CHEN Bin, JIA Yifei, ZHANG Huan, LIU Guanhua, YU Xiubo.  Effect of Water Level Fluctuations on Wintering Goose Abundance in Poyang Lake Wetlands of China . Chinese Geographical Science, 2017, 27(2): 248-258. doi: 10.1007/s11769-016-0840-z
    [11] Ptak MARIUSZ.  Potential Renaturalisation of Lakes as An Element Building Up Water Re-sources: An Example of Mosina Lake, Poland . Chinese Geographical Science, 2017, 27(1): 8-12. doi: 10.1007/s11769-017-0842-5
    [12] MAO Kebiao, CHEN Jingming, LI Zhaoliang, MA Ying, SONG Yang, TAN Xuelan, Yang Kaixian.  Global Water Vapor Content Decreases from 2003 to 2012: An Analysis Based on MODIS Data . Chinese Geographical Science, 2017, 27(1): 1-7. doi: 10.1007/s11769-017-0841-6
    [13] ZHAO Haixia, YOU Bensheng, DUAN Xuejun et al..  Industrial and Agricultural Effects on Water Environment and Its Optimization in Heavily Polluted Area in Taihu Lake Basin, China . Chinese Geographical Science, 2013, 23(2): 203-215.
    [14] YIN Yixing, XU Youpeng, CHEN Ying.  Relationship Between Changes of River-lake Networks and Water Levels in Typical Regions of Taihu Lake Basin, China . Chinese Geographical Science, 2012, 22(6): 673-682.
    [15] WANG Yuandong, LIU Dianwei, SONG Kaishan, et al..  Characterization of Water Constituents Spectra Absorption in Chagan Lake of Jilin Province, Northeast China . Chinese Geographical Science, 2011, 21(3): 334-345.
    [16] WANG Deyu, FENG Xuezhi, MA Ronghua, KANG Guoding.  A Method for Retrieving Water-leaving Radiance from Landsat TM Image in Taihu Lake, East China . Chinese Geographical Science, 2007, 17(4): 364-369. doi: 10.1007/s11769-007-0364-7
    [17] 蔡启铭, 高锡芸, 陈宇炜, 马生伟, Martin Dokulil.  DYNAMIC VARIATIONS OF WATER QUALITY IN TAIHU LAKE AND MULTIVARIATE ANALYSIS OF ITS INFLUENTIAL FACTORS . Chinese Geographical Science, 1996, 6(4): 364-374.
    [18] 彭敏, 陈桂琛, 周立华.  RELATIONSHIP BETWEEN QINGHAI LAKE LEVEL DESCENDING AND ARTIFICIAL WATER-CONSUMPTION . Chinese Geographical Science, 1995, 5(1): 44-55.
    [19] 刘天仇.  STUDIES ON WATER STAGE FLUCTUATION OF YAMZHO LAKE IN XIZANG . Chinese Geographical Science, 1995, 5(4): 344-354.
    [20] 刘庆书, 许劲松, 张万忠.  THE CHARACTERISTIC AND CAUSE OF SEA WATER INTRUSION AND POLLUTION IN SOUTH LIAODONG PENINSULA . Chinese Geographical Science, 1993, 3(4): 334-347.
  • 加载中
计量
  • 文章访问数:  126
  • HTML全文浏览量:  1
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-24
  • 修回日期:  2019-05-20
  • 刊出日期:  2019-10-27

Remote Detection of Varying Water Storage in Relation to Surfacial Temperature of Aral Sea

doi: 10.1007/s11769-019-1069-4
    基金项目:  Under the auspices of State Special Funds for Research Infrastructure of China (No. 2015FY110500), National Natural Science Foundation of China (No. 41730104)
    通讯作者: HU Liangjun.E-mail:hulj068@nenu.edu.cn;SONG Kaishan.E-mail:songkaishan@neigae.ac.cn

摘要: Lake monitoring by remote sensing is of significant importance to understanding the lake and ambient ecological and environmental processes. In particular, whether lake water storage variation could predict lake surfacial temperature or vice versa has long fascinated the research community, in that it would greatly benefit the monitoring missions and scientific interpretation of the lake change processes. This study attempted to remotely detect the dynamics of the Aral Sea and pursue the relationships between varying lake water storage attributes and surface water temperature by using MODIS LST (Moderate-resolution Imaging Spectroradiometer Land Surface Temperature) 8-day composite products, satellite altimeter data, and actual meteorological measurements. Their associations with lake Surface Water Temperatures (SWT) were then analyzed. Results showed the lake water surface areas and elevations of the North Aral Sea tended to increasing trend from 2001 (2793.0 km2, 13.6 m) to 2015 (6997.8 km2, 15.9 m), while those of the South Aral Sea showed a decreasing trend during 2001 (20 434.6 km2, 3.9 m) and 2015 (3256.1 km2, 0.9 m). In addition, the annual daytime and nighttime lake SWT both decreased in the North Aral Sea, while only the daytime SWT in the South Aral Sea exhibited an increase, indicating a rising deviation of diurnal temperatures in the South Aral Sea during the past 15 yr. Moreover, a lower correlation was found between variations in the daytime SWT and storage capacity in the South Aral Sea (R2=0.33; P<0.05), no fair correlations were tested between lake water storage and daytime SWT in the North Aral Sea nor between lake water storage and nighttime SWT in either part of the sea. These results implied that climate change, if any at least during the research period, has no significant effects on lake dynamics over the two sectors of the Aral Sea with anthropogenic disturbances. However, climate change and human activities may overlap to explain complex consequences in the lake storage variations. Our results may provide a reference for monitoring the spatiotemporal variations of lakes, increasing understanding of the lake water storage changes in relation to the lake SWT, which may benefit the ecological management of the Aral Sea region, in the effort to face the likely threats from climate change and human activities to the region.

English Abstract

MU Guangyi, CHEN Li, HU Liangjun, SONG Kaishan. Remote Detection of Varying Water Storage in Relation to Surfacial Temperature of Aral Sea[J]. 中国地理科学, 2019, 20(5): 741-755. doi: 10.1007/s11769-019-1069-4
引用本文: MU Guangyi, CHEN Li, HU Liangjun, SONG Kaishan. Remote Detection of Varying Water Storage in Relation to Surfacial Temperature of Aral Sea[J]. 中国地理科学, 2019, 20(5): 741-755. doi: 10.1007/s11769-019-1069-4
MU Guangyi, CHEN Li, HU Liangjun, SONG Kaishan. Remote Detection of Varying Water Storage in Relation to Surfacial Temperature of Aral Sea[J]. Chinese Geographical Science, 2019, 20(5): 741-755. doi: 10.1007/s11769-019-1069-4
Citation: MU Guangyi, CHEN Li, HU Liangjun, SONG Kaishan. Remote Detection of Varying Water Storage in Relation to Surfacial Temperature of Aral Sea[J]. Chinese Geographical Science, 2019, 20(5): 741-755. doi: 10.1007/s11769-019-1069-4
参考文献 (32)

目录

    /

    返回文章
    返回