留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Distribution and Susceptibility Assessment of Collapses and Landslides in the Riparian Zone of the Xiaowan Reservoir

ZHONG Ronghua HE Daming HU Jinming DUAN Xingwu HUANG Jiangcheng CHENG Xupeng

ZHONG Ronghua, HE Daming, HU Jinming, DUAN Xingwu, HUANG Jiangcheng, CHENG Xupeng. Distribution and Susceptibility Assessment of Collapses and Landslides in the Riparian Zone of the Xiaowan Reservoir[J]. 中国地理科学, 2019, 20(1): 70-85. doi: 10.1007/s11769-018-1012-0
引用本文: ZHONG Ronghua, HE Daming, HU Jinming, DUAN Xingwu, HUANG Jiangcheng, CHENG Xupeng. Distribution and Susceptibility Assessment of Collapses and Landslides in the Riparian Zone of the Xiaowan Reservoir[J]. 中国地理科学, 2019, 20(1): 70-85. doi: 10.1007/s11769-018-1012-0
ZHONG Ronghua, HE Daming, HU Jinming, DUAN Xingwu, HUANG Jiangcheng, CHENG Xupeng. Distribution and Susceptibility Assessment of Collapses and Landslides in the Riparian Zone of the Xiaowan Reservoir[J]. Chinese Geographical Science, 2019, 20(1): 70-85. doi: 10.1007/s11769-018-1012-0
Citation: ZHONG Ronghua, HE Daming, HU Jinming, DUAN Xingwu, HUANG Jiangcheng, CHENG Xupeng. Distribution and Susceptibility Assessment of Collapses and Landslides in the Riparian Zone of the Xiaowan Reservoir[J]. Chinese Geographical Science, 2019, 20(1): 70-85. doi: 10.1007/s11769-018-1012-0

Distribution and Susceptibility Assessment of Collapses and Landslides in the Riparian Zone of the Xiaowan Reservoir

doi: 10.1007/s11769-018-1012-0
基金项目: Under the auspices of the National Natural Science Foundation of China (No. 41601296) and National Key R&D Program of China (No. 2016YFA0601601), China Postdoctoral Science Foundation (No. 2016M592720), Yunnan Applied Basic Research Projects (No. 2016FD11)
详细信息
    通讯作者:

    HE Daming.E-mail:dmhe@ynu.educn;HU Jinming.E-mail:hujm@ynu.edu.cn

Distribution and Susceptibility Assessment of Collapses and Landslides in the Riparian Zone of the Xiaowan Reservoir

Funds: Under the auspices of the National Natural Science Foundation of China (No. 41601296) and National Key R&D Program of China (No. 2016YFA0601601), China Postdoctoral Science Foundation (No. 2016M592720), Yunnan Applied Basic Research Projects (No. 2016FD11)
More Information
    Corresponding author: HE Daming.E-mail:dmhe@ynu.educn;HU Jinming.E-mail:hujm@ynu.edu.cn
  • 摘要: The southwest alpine gorge region is the major state base of hydropower energy development in China and hence planned many cascading hydropower stations. After the reservoir impoundment, the intense water level fluctuations under the interaction of cascade dams operating and the mountainous flooding, usually cause bank collapse, landslide and debris flow hazards. The Xiaowan reservoir (XWR), for example, as the ‘dragon head’ meg reservoir located in the middle mainstream of Lancang River, have resulted in a series of geohazards during its building and operating. In this study, we investigated the number and surface area of collapses and landslides (CLs) occurred in the water level fluctuations zone (WLFZ) of XWR using remote sensing images of Gaofen-1 and Google Earth; evaluated the CLs susceptibility using information value method. The results presented that the total WLFZ area of 87.03 km2 and 804 CLs masses with a total area of 1.98 km2 were identified in the riparian zone of XWR. CLs mainly occurred at an elevation of 1190-1240 m, and the CLs density increased with an increase in altitude. The WLFZ with a slope gradient of 25°-45° is the main CLs distribution area that accounts for more than half of the total CLs area. The susceptibility assessment revealed that high and very high susceptibility zones are generally distributed along zones with an elevation of 1210-1240 m, a slope degree of 25°-45° and a slope aspect perpendicular to the direction of Lancang River. Furthermore, these susceptible zones are close in distance to the dam site and tend to be in the riparian zones with the formation lithology of Silurian strata. These results provide a valuable contribution to prevent and control geohazards in the XWR area. Moreover, this study offers a constructive sample of geohazards assessment in the riparian zone of large reservoirs throughout the mountains of southwest China.
  • [1] Alimohammadlou Y, Najafi A, Yalcin A, 2013. Landslide process and impacts:a proposed classification method. Catena, 104:219-232. doi: 10.1016/j.catena.2012.11.013
    [2] Ba Q Q, Chen Y M, Deng S S et al., 2017. An improved infor-mation value model based on gray clustering for landslide susceptibility mapping. ISPRS International Journal of Geo-Information, 6(1):1-20. doi: 10.3390/ijgi6010018
    [3] Babanouri N, Dehghani H, 2017. Investigating a potential reservoir landslide and suggesting its treatment using limit-equilibrium and numerical methods. Journal of Mountain Science, 14(3):432-441. doi: 10.1007/s11629-016-3898-2
    [4] Bao Y H, Gao P, He X B, 2015. The water-level fluctuation zone of Three Gorges Reservoir-A unique geomorphological unit. Earth-Science Reviews, 150:14-24. doi:10.1016/j.earscirev. 2015.07.005
    [5] Bao Yuhai, He Xiubin, 2011. Preliminary study on soil erosion at the water-level -fluctuating zone of the Three-Gorges Reservoir. Research of Soil and Water Conservation, 18(6):190-195. (in Chinese)
    [6] Barla G, Paronuzzi P, 2013. The 1963 Vajont landslide:50th an-niversary. Rock Mechanics and Rock Engineering, 46(6):1267-1270. doi: 10.1007/s00603-013-0483-7
    [7] Butt M J, Mahmood R, Waqas A, 2011. Sediments deposition due to soil erosion in the watershed region of Mangla Dam. Envi-ronmental Monitoring and Assessment, 181(1-4):419-429. doi: 10.1007/s10661-010-1838-0
    [8] Chai Zongxin, 1996. Bank erosion and control. Jurnal of Catastrophology, 11(3):27-31. (in Chinese)
    [9] Chang X L, Liu X H, Zhou W, 2010. Hydropower in China at present and its further development. Energy, 35(11):4400-4406. doi: 10.1016/j.energy.2009.06.051
    [10] Chen T, Niu R Q, Du B et al., 2015a. Landslide spatial suscepti-bility mapping by using GIS and remote sensing techniques:a case study in Zigui County, the Three Georges reservoir, China. Environmental Earth Sciences, 73(9):5571-5583. doi: 10.1007/s12665-014-3811-7
    [11] Chen Weidong, Yin Yunkun, Zhu Tingxing, 2015b. Discussion on reservoir bank management of Xiaowan hydropower station. Water Power, 41(10):12-14. (in Chinese)
    [12] Chen Z, Han F, Chen Z et al., 2015c. Final Acceptance Report of the Environmental Protection after the Completion of Xiaowan Hydropower station on Lancang River. Environmental Engi-neering Assessment Center of Ministry of environmental pro-tection of the People's Republic of China. (in Chinese)
    [13] Chen T, Niu R Q, Jia X P, 2016. A comparison of information value and logistic regression models in landslide susceptibility mapping by using GIS. Environmental Earth Sciences, 75:867. doi: 10.1007/s12665-016-5317-y
    [14] Cyberski J, 1973. Erosion of banks of storage reservoirs in Po-land. Hydrological Sciences Bulletin, 18(3):317-320. doi: 10.1080/02626667309494042
    [15] Dai F C, Lee C F, 2002. Landslide characteristics and slope insta-bility modeling using GIS, Lantau Island, Hong Kong. Geo-morphology, 42(3-4):213-228. doi:10.1016/S0169-555X (01)00087-3
    [16] Du G L, Zhang Y S, Iqbal J et al., 2017. Landslide susceptibility mapping using an integrated model of information value method and logistic regression in the Bailongjiang watershed, Gansu Province, China. Journal of Mountain Science, 14(2):249-268. doi: 10.1007/s11629-016-4126-9
    [17] Duan X W, Gu Z J, Li Y G et al., 2016. The spatiotemporal pat-terns of rainfall erosivity in Yunnan Province, southwest China:An analysis of empirical orthogonal functions. Global and Planetary Change, 144:82-93. doi:10.1016/j.gloplacha. 2016.07.011
    [18] Fu B J, Wu B F, Lu Y H et al., 2010. Three gorges project:efforts and challenges for the environment. Progress in Physical Ge-ography, 34(6):741-754. doi: 10.1177/0309133310370286
    [19] Fujita H, 1977. Influence of water level fluctuations in a reservoir on slope stability. Bulletin of the International Association of Engineering Geology-Bulletin de l'Association Internationale de Géologie de l'Ingénieur, 16(1):170-173. doi:10.1007/BF 02591474
    [20] Guo C, Montgomery D R, Zhang Y et al., 2015. Quantitative assessment of landslide susceptibility along the Xianshuihe fault zone, Tibetan Plateau, China. Geomorphology, 248:93-110. doi: 10.1016/j.geomorph.2015.07.012
    [21] Huang B L, Yin Y P, Liu G N et al., 2012. Analysis of waves gen-erated by Gongjiafang landslide in Wu Gorge, three Gorges reservoir, on November 23, 2008. Landslides, 9(3):395-405. doi: 10.1007/s10346-012-0331-y
    [22] Iverson R M, 2000. Landslide triggering by rain infiltration. Water Resources Research, 36(7):1897-1910. doi: 10.1029/2000WR900090
    [23] Jia G W, Zhan T L T, Chen Y M et al., 2009. Performance of a large-scale slope model subjected to rising and lowering water levels. Engineering Geology, 106(1-2):92-103. doi: 10.1016/j.enggeo.2009.03.003
    [24] Jiang Q H, Wei W, Xie N et al., 2016. Stability analysis and treatment of a reservoir landslide under impounding conditions:a case study. Environmental Earth Sciences, 75:2. doi: 10.1007/S12665-015-4790-Z
    [25] Johansson J, Edeskär T, 2014. Effects of external water-level fluctuations on slope stability. The Electronic Journal of Ge-otechnical Engineering, 19:2437-2463.
    [26] Kaczmarek H, Mazaeva O A, Kozyreva E A et al., 2016. Impact of large water level fluctuations on geomorphological processes and their interactions in the shore zone of a dam reservoir. Journal of Great Lakes Research, 42(5):926-941. doi: 10.1016/j.jglr.2016.07.024
    [27] Lee S, Pradhan B, 2006. Probabilistic landslide hazards and risk mapping on Penang Island, Malaysia. Journal of Earth System Science, 115(6):661-672. doi: 10.1007/s12040-006-0004-0
    [28] Lee S, Sambath T, 2006. Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and lo-gistic regression models. Environmental Geology, 50(6):847-855. doi: 10.1007/s00254-006-0256-7
    [29] Li H, 2012. Bank Slope Risk Assessment on The Reservoir Region of Xiaowan Reservoir Based on RS and GIS. Chengdu:Chengdu University of Technology, Chendgu. (in Chinese)
    [30] Li Pengyue, 2011. Study on Bank Collapse's Type and Mechanism in Mountain Reservoir-A Case of Xianwan Reservoir. Chendgu:Chengdu University of Technology. (in Chinese)
    [31] Li K F, Zhu C, Wu L et al., 2013. Problems caused by the three gorges dam construction in the Yangtze River basin:a review. Environmental Reviews, 21(3):127-135. doi: 10.1139/Er-2012-0051
    [32] Liao Hongjian, Sheng Qian, Gao Shihang et al., 2005. Influence of drawdown of reservoir water level on landslide stability. Chinese Journal of Rock Mechanics and Engineering, 24(19):3454-3458. (in Chinese)
    [33] Liu Y., Huang R, and Deng H, 2011. Stability of Xinminbazi Landslide Located in Xiaowan Hydropower Station Reservoir Region, Journal of Mountain Science, 29(3):328-336.
    [34] Luo Hongming, Tang Huiming, Zhang Guangcheng et al., 2008. The influence of water level fluctuation on the bank landslide stability. Earth Science-Journal of China University of Geo-sciences, 33(5):687-692. (in Chinese)
    [35] Pardeshi S D, Autade S E, Pardeshi S S, 2013. Landslide hazard assessment:recent trends and techniques. SpringerPlus, 2:523. doi: 10.1186/2193-1801-2-523
    [36] Park N W, 2010. Application of Dempster-Shafer theory of evi-dence to GIS-based landslide susceptibility analysis. Environ-mental Earth Sciences. 62(2):367-376. doi:10.1007/s 12665-010-0531-5
    [37] Paronuzzi P, Bolla A, 2012. The prehistoric Vajont rockslide:an updated geological model. Geomorphology, 169-170:165-191. doi: 10.1016/j.geomorph.2012.04.021
    [38] Paronuzzi P, Rigo E, Bolla A, 2013. Influence of filling-draw-down cycles of the Vajont reservoir on Mt. Toc slope stability. Geomorphology, 191:75-93. doi: 10.1016/j.geomorph.2013.03.004
    [39] Pradhan B, Lee S, 2010. Landslide susceptibility assessment and factor effect analysis:backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environmental Modelling & Software, 25(6):747-759. doi:10.1016/j.envsoft. 2009.10.016
    [40] Saint-Laurent D, Touileb B N, Saucet J P et al., 2001. Effects of simulated water level management on shore erosion rates. Case study:Baskatong Reservoir, Québec, Canada. Canadian Journal of Civil Engineering, 28(3):482-495. doi: 10.1139/l01-018
    [41] Song K, Yan E C, Zhang G D et al., 2015. Effect of hydraulic properties of soil and fluctuation velocity of reservoir water on landslide stability. Environmental Earth Sciences, 74(6):5319-5329. doi: 10.1007/s12665-015-4541-1
    [42] Su X L, Nilsson C, Pilotto F et al., 2017. Soil erosion and deposi-tion in the new shorelines of the three gorges reservoir. Science of the Total Environment, 599-600:1485-1492. doi: 10.1016/j.scitotenv.2017.05.001
    [43] Sun G H, Yang Y T, Cheng S G et al., 2017a. Phreatic line calcu-lation and stability analysis of slopes under the combined effect of reservoir water level fluctuations and rainfall. Canadian Geotechnical Journal, 54(5):631-645. doi:10. 1139/cgj-2016-0315
    [44] Sun G H, Yang Y T, Jiang W et al., 2017b. Effects of an increase in reservoir drawdown rate on bank slope stability:A case study at the Three Gorges Reservoir, China. Engineering Geology, 221:61-69. doi: 10.1016/j.enggeo.2017.02.018
    [45] Tang Q, Bao Y H, He X B et al., 2016. Flow regulation manipu-lates contemporary seasonal sedimentary dynamics in the res-ervoir fluctuation zone of the Three Gorges Reservoir, China. Science of the Total Environment, 548-549:410-420. doi: 10.1016/j.scitotenv.2015.12.158
    [46] Tang Q, Bao Y H, He X B et al., 2014. Sedimentation and associ-ated trace metal enrichment in the riparian zone of the Three Gorges Reservoir, China. Science of the Total Environment, 479-480:258-266. doi:10.1016/j.scitotenv. 2014.01.122
    [47] Tang Q, Fu B J, Collins A L et al., 2017. Developing a sustainable strategy to conserve reservoir marginal landscapes. National Science Review, 5(1):10-14. doi:10.1093/nsr/nwx 102
    [48] Tang W Z, Li Z Y, Qiang M S et al., 2013. Risk management of hydropower development in China. Energy, 60:316-324. doi: 10.1016/j.energy.2013.08.034
    [49] Wang H B, Xu W Y, Xu R C et al., 2007. Hazard assessment by 3D stability analysis of landslides due to reservoir impounding. Landslides, 4(4):381-388. doi: 10.1007/s10346-007-0095-y
    [50] Wang Minghua, Yan Echuan, 2007. Study on influence of reser-voir water impounding on reservoir landslide. Rock and Soil Mechanics, 28(12):2722-2725. (in Chinese)
    [51] Wang J, Xiang W, Lu N, 2014. Landsliding triggered by reservoir operation:a general conceptual model with a case study at Three Gorges Reservoir. Acta Geotechnica, 9(5):771-788. doi: 10.1007/s11440-014-0315-2
    [52] Wang T, 2012. Analysis on revival formation mechanism and hazard of Ximi Landslide in Heihui River Reservoir area of Xiaowan Hydropower Station. Chengdu:Chengdu University of Technology, Chendgu. (in Chinese)
    [53] Wu Jiahao, 2011. The Research and Forecasting on the Mountain River-type SlopenSurge Hazard-Acase of Xiaowan Reservoir. Chengdu:Chengdu University of Technology, Chendgu. (in Chinese)
    [54] Wu L, Wang Z, 2013. Three Gorges Reservoir water level fluctu-ation influents on the stability of the slope's analysis. Advanced Materials Research, 739, 283-286. doi: 10.4028/www.scientific.net/AMR.739.283
    [55] Wu S R, Shi L, Wang R J et al., 2001. Zonation of the landslide hazards in the forereservoir region of the Three Gorges Project on the Yangtze River. Engineering Geology, 59(1-2):51-58. doi: 10.1016/S0013-7952(00)00061-2
    [56] Wu S R, Jin Y M, Zhang Y S et al., 2004. Investigations and as-sessment of the landslide hazards of Fengdu County in the reservoir region of the Three Gorges project on the Yangtze River. Environmental Geology, 45(4):560-566. doi:10. 1007/s00254-003-0911-1
    [57] Wu X D, He D M, Yang G J et al., 2014. Seasonal variability of water quality and metazooplankton community structure in Xiaowan Reservoir of the upper Mekong River. Journal of Limnology, 73(1):167-176. doi: 10.4081/jlimnol.2014.801
    [58] Xia M, Ren G M, Ma X L, 2013. Deformation and mechanism of landslide influenced by the effects of reservoir water and rain-fall, Three Gorges, China. Natural Hazards, 68(2):467-482. doi: 10.1007/s11069-013-0634-x
    [59] Xia M, Ren G M, Zhu S S, et al., 2015. Relationship between landslide stability and reservoir water level variation. Bulletin of Engineering Geology and the Environment, 74(3):909-917. doi: 10.1007/s10064-014-0654-0
    [60] Xu C, Dai F C, Xu X W, et al., 2012. GIS-based support vector machine modeling of earthquake-triggered landslide suscepti-bility in the Jianjiang River watershed, China. Geomorphology, 145-146:70-80. doi: 10.1016/j.geomorph.2011.12.040
    [61] Xu X B, Tan Y, Yang G S, 2013. Environmental impact assess-ments of the Three Gorges Project in China:Issues and inter-ventions. Earth-Science Reviews, 124:115-125. doi: 10.1016/j.earscirev.2013.05.007
    [62] Yan Z L, Wang J J, Chai H J, 2010. Influence of water level fluc-tuation on phreatic line in silty soil model slope. Engineering Geology, 113(1-4):90-98. doi: 10.1016/j.enggeo.2010.02.004
    [63] Yang Q, Ye Z, Ding W et al., 2014. Impact of water level fluctua-tion on the reservoir landslide stability. In:Sassa K, Canuti P, Yin Y (eds). Landslide Science for a Safer Geoenvironment. Cham:Springer, 659-664.
    [64] Yalcin A, Reis S, Aydinoglu A C, et al., 2011. A GIS-based com-parative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena, 85(3):274-287. doi: 10.1016/j.catena.2011.01.014
    [65] Ye C, Li S, Zhang Y, et al., 2011. Assessing soil heavy metal pol-lution in the water-level-fluctuation zone of the Three Gorges Reservoir, China. J. Hazard Mater, 191(1):366-372. doi: 10.1016/j.jhazmat.2011.04.090
    [66] Yilmaz I, 2010. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey:conditional probability, logistic regression, artificial neural networks, and support vector machine. Environmental Earth Sciences, 61(4):821-836. doi: 10.1007/s12665-009-0394-9
    [67] Yuan X Z, Zhang Y W, Liu H, et al., 2013. The littoral zone in the Three Gorges Reservoir, China:challenges and opportunities. Environmental Science and Pollution Research, 20(10):7092-7102. doi: 10.1007/s11356-012-1404-0
    [68] Zhang Wenjie, Zhan Liangtong, Ling Daosheng, et al., 2006. Influence of reservoir water level fluctuations on stability of unsaturated soil banks. Journal of Zhejiang University (Engi-neering Science), 40(8):1365-1370, 1428. (in Chinese)
    [69] Zhong R H, He X B, Bao Y H et al., 2016. Estimation of soil reinforcement by the roots of four post-dam prevailing grass species in the riparian zone of Three Gorges Reservoir, China. Journal of Mountain Science, 13(3):508-521. doi:10.1007/s 11629-014-3397-2
    [70] Zhou Dan, 2008. The Stabilization Mechanism and Tracking Countermeasures of Water-Level-Fluctuating Zone. Chongqing:Chongqing Jiaotong University. (in Chinese)
    [71] Zhou Yongjuan, Qiu Jiangxiao, Wang Jiao et al., 2010. A vulnera-bility assessment of landslide in water-level-fluctuation zones of the Three Gorges Reservoir. Resources Science, 30(7):1301-1307. (in Chinese)
    [72] Zhou J W, Lu P Y, Yang Y C, 2017. Reservoir landslides and its hazard effects for the hydropower station:a case study. In:Mikoš, M, Tiwari B, Yin Y P, et al (eds). Advancing Culture of Living with Landslides:Volume 2 Advances in Landslide Sci-ence. Cham:Springer, 699-706. doi: 10.1007/978-3-319-53498-581
  • [1] Zhigao SUN, Jing LI, Liping TIAN, Bingbing CEHN, Xingyun HU.  Spatial Variation and Risk Assessment of Arsenic and Heavy Metals in Surface Water and Suspended Particulate Matter in Tail Reaches of the Yellow River, China . Chinese Geographical Science, 2021, 31(1): 181-196. doi: 10.1007/s11769-021-1182-z
    [2] WEI Jianfei, DING Zhiwei, MENG Yiwei, LI Qiang.  Regional Sustainable Assessment at City Level Based on CSDIS (China Sustainable Development Indicator System) Concept in the New Era, China . Chinese Geographical Science, 2020, 30(6): 976-992. doi: 10.1007/s11769-020-1158-4
    [3] DING Chengzhi, JIANG Xiaoming, WANG Lieen, FAN Hui, CHEN Liqiang, HU Jinming, WANG Hailong, CHEN Yifeng, SHI Xiaotao, CHEN Hao, PAN Bohui, DING Liuyong, ZHANG Chao, HE Daming.  Fish Assemblage Responses to a Low-head Dam Removal in the Lancang River . Chinese Geographical Science, 2019, 20(1): 26-36. doi: 10.1007/s11769-018-0995-x
    [4] LUO Xian, WU Wenqi, HE Daming, LI Yungang, JI Xuan.  Hydrological Simulation Using TRMM and CHIRPS Precipitation Estimates in the Lower Lancang-Mekong River Basin . Chinese Geographical Science, 2019, 20(1): 13-25. doi: 10.1007/s11769-019-1014-6
    [5] FENG Yan, WANG Wenling, SUMAN Daniel, YU Shiwei, HE Daming.  Water Cooperation Priorities in the Lancang-Mekong River Basin Based on Cooperative Events Since the Mekong River Commission Establishment . Chinese Geographical Science, 2019, 20(1): 58-69. doi: 10.1007/s11769-019-1016-4
    [6] WAN Rongrong, YANG Guishan, DAI Xue, ZHANG Yanhui, LI Bing.  Water Security-based Hydrological Regime Assessment Method for Lakes with Extreme Seasonal Water Level Fluctuations: A Case Study of Poyang Lake, China . Chinese Geographical Science, 2018, 28(3): 456-469. doi: 10.1007/s11769-018-0958-2
    [7] XIA Shaoxia, LIU Yu, CHEN Bin, JIA Yifei, ZHANG Huan, LIU Guanhua, YU Xiubo.  Effect of Water Level Fluctuations on Wintering Goose Abundance in Poyang Lake Wetlands of China . Chinese Geographical Science, 2017, 27(2): 248-258. doi: 10.1007/s11769-016-0840-z
    [8] JIANG Guangjia, LIU Dianwei, SONG Kaishan, WANG Zongming, ZHANG Bai, WANG Yuandong.  Application of Multivariate Model Based on Three Simulated Sensors for Water Quality Variables Estimation in Shitoukoumen Reservoir, Jilin Province, China . Chinese Geographical Science, 2010, 20(4): 337-344. doi: 10.1007/s11769-010-0406-4
    [9] LU Yingxia, LI Baosheng, WEN Xiaohao, QIU Shifan, WANG Fengnian, NIU Dongfeng, LI Zhiwen.  Millennial-centennial Scales Climate Changes of Holocene Indicated by Magnetic Susceptibility of High-resolution Section in Salawusu River Valley, China . Chinese Geographical Science, 2010, 20(3): 243-251. doi: 10.1007/s11769-010-0243-5
    [10] YANG Yuhong, YAN Baixing, SHEN Wanbin.  Assessment of Point and Nonpoint Sources Pollution in Songhua River Basin, Northeast China by Using Revised Water Quality Model . Chinese Geographical Science, 2010, 20(1): 30-36. doi: 10.1007/s11769-010-0030-3
    [11] CUI Baoshan, HUA Yanyan, WANG Chongfang, LIAO Xiaolin, TAN Xuejie, TAO Wendong.  Estimation of Ecological Water Requirements Based on Habitat Response to Water Level in Huanghe River Delta, China . Chinese Geographical Science, 2010, 20(4): 318-329. doi: 10.1007/s11769-010-0404-6
    [12] TANG Yanling, ZHANG Guangxin, YANG Yuesuo, GAO Yingzhi.  Identifying Key Environmental Factors Influencing Spatial Variation of Water Quality in Upper Shitoukoumen Reservoir Basin in Jilin Province, China . Chinese Geographical Science, 2009, 19(4): 365-374. doi: 10.1007/s11769-009-0365-9
    [13] ZHANG Baolei, ZHANG Shumin, ZHOU Wancun.  Investigation and Assessment of Landslides and Debris Flows in Sichuan Province of China by Remote Sensing Technique . Chinese Geographical Science, 2006, 16(3): 223-228.
    [14] DAI Chang-lei, CHI Bao-ming, GAO Shu-qin.  ANALYSIS AND CALCULATION OF REGULATED WATER RESOURCES OF GROUNDWATER RESERVOIR . Chinese Geographical Science, 2005, 15(1): 60-63.
    [15] ZANG Shu-ying, YUAN Hui, NING Jing.  THE LANDSCAPE ECOLOGICAL ASSESSMENT AND PLANNING IN THE CONTROL WATERSHED BY RESERVOIR OF ERLONG MOUNTAIN . Chinese Geographical Science, 2002, 12(2): 176-181.
    [16] 姜乃森, 傅玲燕.  PROBLEMS OF RESERVOIR SEDIMENTATION IN CHINA . Chinese Geographical Science, 1998, 8(2): 117-125.
    [17] 林承坤, 高锡珍.  EVOLUTION OF RAPIDS OF CREEK MOUTH-BAR AT GEZHOUBA RESERVOIR AND THE IMPACTS ON NAVIGABLE CHANNEL IN THE UPPER REACHES OF THE CHANGJIANG RIVER . Chinese Geographical Science, 1996, 6(3): 223-230.
    [18] 王俊, 赵宝中.  WATER QUALITY ANALYSIS AND ASSESSMENT OF RIVERS IN JILIN PROVINCE OF CHINA . Chinese Geographical Science, 1995, 5(1): 87-96.
    [19] 陈发虎, 潘保田.  THE STUDY ON CLIMATIC CHANGES AND LAKE LEVEL FLUCTUATIONS OF OINGHAIB LAKE IN HOLOCENE . Chinese Geographical Science, 1993, 3(2): 126-137.
    [20] 杨桂山.  IMPACTS OF FUTURE SEA LEVEL RISE ON SALT WATER INTRUSION IN THE CHANGJIANG RIVER ESTUARY . Chinese Geographical Science, 1992, 2(1): 30-41.
  • 加载中
计量
  • 文章访问数:  96
  • HTML全文浏览量:  3
  • PDF下载量:  252
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-31
  • 修回日期:  2018-04-28
  • 刊出日期:  2019-02-27

Distribution and Susceptibility Assessment of Collapses and Landslides in the Riparian Zone of the Xiaowan Reservoir

doi: 10.1007/s11769-018-1012-0
    基金项目:  Under the auspices of the National Natural Science Foundation of China (No. 41601296) and National Key R&D Program of China (No. 2016YFA0601601), China Postdoctoral Science Foundation (No. 2016M592720), Yunnan Applied Basic Research Projects (No. 2016FD11)
    通讯作者: HE Daming.E-mail:dmhe@ynu.educn;HU Jinming.E-mail:hujm@ynu.edu.cn

摘要: The southwest alpine gorge region is the major state base of hydropower energy development in China and hence planned many cascading hydropower stations. After the reservoir impoundment, the intense water level fluctuations under the interaction of cascade dams operating and the mountainous flooding, usually cause bank collapse, landslide and debris flow hazards. The Xiaowan reservoir (XWR), for example, as the ‘dragon head’ meg reservoir located in the middle mainstream of Lancang River, have resulted in a series of geohazards during its building and operating. In this study, we investigated the number and surface area of collapses and landslides (CLs) occurred in the water level fluctuations zone (WLFZ) of XWR using remote sensing images of Gaofen-1 and Google Earth; evaluated the CLs susceptibility using information value method. The results presented that the total WLFZ area of 87.03 km2 and 804 CLs masses with a total area of 1.98 km2 were identified in the riparian zone of XWR. CLs mainly occurred at an elevation of 1190-1240 m, and the CLs density increased with an increase in altitude. The WLFZ with a slope gradient of 25°-45° is the main CLs distribution area that accounts for more than half of the total CLs area. The susceptibility assessment revealed that high and very high susceptibility zones are generally distributed along zones with an elevation of 1210-1240 m, a slope degree of 25°-45° and a slope aspect perpendicular to the direction of Lancang River. Furthermore, these susceptible zones are close in distance to the dam site and tend to be in the riparian zones with the formation lithology of Silurian strata. These results provide a valuable contribution to prevent and control geohazards in the XWR area. Moreover, this study offers a constructive sample of geohazards assessment in the riparian zone of large reservoirs throughout the mountains of southwest China.

English Abstract

ZHONG Ronghua, HE Daming, HU Jinming, DUAN Xingwu, HUANG Jiangcheng, CHENG Xupeng. Distribution and Susceptibility Assessment of Collapses and Landslides in the Riparian Zone of the Xiaowan Reservoir[J]. 中国地理科学, 2019, 20(1): 70-85. doi: 10.1007/s11769-018-1012-0
引用本文: ZHONG Ronghua, HE Daming, HU Jinming, DUAN Xingwu, HUANG Jiangcheng, CHENG Xupeng. Distribution and Susceptibility Assessment of Collapses and Landslides in the Riparian Zone of the Xiaowan Reservoir[J]. 中国地理科学, 2019, 20(1): 70-85. doi: 10.1007/s11769-018-1012-0
ZHONG Ronghua, HE Daming, HU Jinming, DUAN Xingwu, HUANG Jiangcheng, CHENG Xupeng. Distribution and Susceptibility Assessment of Collapses and Landslides in the Riparian Zone of the Xiaowan Reservoir[J]. Chinese Geographical Science, 2019, 20(1): 70-85. doi: 10.1007/s11769-018-1012-0
Citation: ZHONG Ronghua, HE Daming, HU Jinming, DUAN Xingwu, HUANG Jiangcheng, CHENG Xupeng. Distribution and Susceptibility Assessment of Collapses and Landslides in the Riparian Zone of the Xiaowan Reservoir[J]. Chinese Geographical Science, 2019, 20(1): 70-85. doi: 10.1007/s11769-018-1012-0
参考文献 (72)

目录

    /

    返回文章
    返回