留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Comparative Analysis of Fractional Vegetation Cover Estimation Based on Multi-sensor Data in a Semi-arid Sandy Area

LIU Qiuyu ZHANG Tinglong LI Yizhe LI Ying BU Chongfeng ZHANG Qingfeng

LIU Qiuyu, ZHANG Tinglong, LI Yizhe, LI Ying, BU Chongfeng, ZHANG Qingfeng. Comparative Analysis of Fractional Vegetation Cover Estimation Based on Multi-sensor Data in a Semi-arid Sandy Area[J]. 中国地理科学, 2019, 20(1): 166-180. doi: 10.1007/s11769-018-1010-2
引用本文: LIU Qiuyu, ZHANG Tinglong, LI Yizhe, LI Ying, BU Chongfeng, ZHANG Qingfeng. Comparative Analysis of Fractional Vegetation Cover Estimation Based on Multi-sensor Data in a Semi-arid Sandy Area[J]. 中国地理科学, 2019, 20(1): 166-180. doi: 10.1007/s11769-018-1010-2
LIU Qiuyu, ZHANG Tinglong, LI Yizhe, LI Ying, BU Chongfeng, ZHANG Qingfeng. Comparative Analysis of Fractional Vegetation Cover Estimation Based on Multi-sensor Data in a Semi-arid Sandy Area[J]. Chinese Geographical Science, 2019, 20(1): 166-180. doi: 10.1007/s11769-018-1010-2
Citation: LIU Qiuyu, ZHANG Tinglong, LI Yizhe, LI Ying, BU Chongfeng, ZHANG Qingfeng. Comparative Analysis of Fractional Vegetation Cover Estimation Based on Multi-sensor Data in a Semi-arid Sandy Area[J]. Chinese Geographical Science, 2019, 20(1): 166-180. doi: 10.1007/s11769-018-1010-2

Comparative Analysis of Fractional Vegetation Cover Estimation Based on Multi-sensor Data in a Semi-arid Sandy Area

doi: 10.1007/s11769-018-1010-2
基金项目: Under the auspices of National Natural Science Foundation of China (No. 41301451, 41541008), Fundamental Research Funds for the Central Universities (No. 2452018144)
详细信息
    通讯作者:

    ZHANG Tinglong.E-mail:dargon810614@126.com;BU Chongfeng.E-mail:buchongfeng@163.com

Comparative Analysis of Fractional Vegetation Cover Estimation Based on Multi-sensor Data in a Semi-arid Sandy Area

Funds: Under the auspices of National Natural Science Foundation of China (No. 41301451, 41541008), Fundamental Research Funds for the Central Universities (No. 2452018144)
More Information
    Corresponding author: ZHANG Tinglong.E-mail:dargon810614@126.com;BU Chongfeng.E-mail:buchongfeng@163.com
  • 摘要: The estimation of fractional vegetation cover (FVC) is important for identifying and monitoring desertification, especially in arid and semiarid regions. By using regression and pixel dichotomy models, we present the comparison of Sentinel-2A (S2) multispectral instrument (MSI) and Landsat 8 (L8) operational land imager (OLI) data regarding the retrieval of FVC in a semi-arid sandy area (Mu Us Sandland, China, in August 2016). A combination of unmanned aerial vehicle (UAV) high-spatial-resolution images and field plots were used to produce verified data. Based on a normalized difference vegetation index (NDVI) regression model, the results showed that, compared with that of L8, the coefficient of determination (R2) of S2 increased by 26.0%, and the root mean square error (RMSE) and the sum of absolute error (SAE) decreased by 3.0% and 11.4%, respectively. For the ratio vegetation index (RVI) regression model, compared with that of L8, the R2 of S2 increased by 26.0%, and the RMSE and SAE decreased by 8.0% and 20.0%, respectively. When the pixel dichotomy model was used, compared with that of L8, the RMSE of S2 decreased by 21.3%, and the SAE decreased by 26.9%. Overall, S2 performed better than L8 in terms of FVC inversion. Additionally, in this paper, we develop a verified scheme based on UAV data in combination with the object-based classification method. This scheme is feasible and sufficiently robust for building relationships between field data and inversion results from satellite data. Further, the synergy of multi-source sensors (especially UAVs and satellites) is a potential effective way to estimate and evaluate regional ecological environmental parameters (FVC).
  • [1] Barati S, Rayegani B, Saati M et al., 2011. Comparison the accuracies of different spectral indices for estimation of vegetation cover fraction in sparse vegetated areas. The Egyptian Journal of Remote Sensing and Space Science, 14(1):49-56. doi: 10.1016/j.ejrs.2011.06.001
    [2] Bi Kaiyi, Niu Zheng, Huang Ni et al., 2017. Identifying vegetation with decision tree model based on object-oriented method using multi-temporal sentinel-2A images. Geography and Geo-Information Science, 33(5):16-20. (in Chinese)
    [3] Buyantuyev A, Wu J, Gries C, 2007. Estimating vegetation cover in an urban environment based on Landsat ETM+ imagery:a case study in Phoenix, USA. International Journal of Remote Sensing, 28(2):269-291. doi:10.1080/014311 60600658149
    [4] Chen Y, Gillieson D, 2009. Evaluation of Landsat TM vegetation indices for estimating vegetation cover on semi-arid rangelands:a case study from Australia. Canadian Journal of Remote Sensing, 35(5):435-446. doi: 10.5589/m09-037
    [5] Chen Z, CHEN W E, Leblanc S G et al., 2010. Digital photograph analysis for measuring percent plant cover in the Arctic. Arctic, 63(3):315-326. doi: 10.14430/arctic1495
    [6] Cheng Zhigang, Yang Xinyue, Dong Siyan et al., 2016. Vegetation coverage changes in chengdu based on DMSP/OLS and SPOT-VEG NDVI. Advances in Meteorological Science & Technology, 6(1):14-20. (in Chinese)
    [7] Curran P J, Williamson H D, 1986. Sample size for ground and remotely sensed data. Remote Sensing of Environment, 20 (1):31-41. doi: 10.1016/0034-4257(86)90012-X
    [8] Fernández-Manso A, Fernández-Manso O, Quintano C, 2016. Sentinel-2A Red-edge spectral indices suitability for discriminating burn severity. International Journal of Applied Earth Observation and Geoinformation, 50:170-175. doi: 10.1016/j.jag.2016.03.005
    [9] Frampton W J, Dash J, Watmough G et al., 2013. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS Journal of Photogrammetry and Remote Sensing, 82:83-92. doi:10. 1016/j.isprsjprs.2013.04.007
    [10] Gago J, Douthe C, Coopman R et al., 2015. UAVs challenge to assess water stress for sustainable agriculture. Agricultural Water Management, 153:9-19. doi:10.1016/j.agwat.2015. 01.020
    [11] Gao Lei, Lu gang, 2016. Estimating vegetation coverage of Nanjing Jiangbei district based on the GF-1 data. Journal of Anhui Agricultural Sciences, 44(10):246-248. (in Chinese)
    [12] Godínez-Alvarez H, Herrick J, Mattocks M et al., 2009. Comparison of three vegetation monitoring methods:their relative utility for ecological assessment and monitoring. Ecological indicators, 9(5):1001-1008. doi:10.1016/j. ecolind.2008.11.011
    [13] Graetz R, Pech R P, Davis A, 1988. The assessment and monitoring of sparsely vegetated rangelands using calibrated Landsat data. International Journal of Remote Sensing, 9(7):1201-1222. doi: 10.1080/01431168808954929
    [14] Gutman G, Ignatov A, 1998. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. International Journal of Remote Sensing, 19(8):1533-1543. doi:10.1080/01431169 8215333
    [15] Hamedianfar A, Shafri H Z M, Mansor S et al., 2014. Improving detailed rule-based feature extraction of urban areas from WorldView-2 image and lidar data. International Journal of Remote Sensing, 35(5):1876-1899. doi:10.1080/01431161. 2013.879350
    [16] Huete A R, 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3):295-309. doi:10. 1016/0034-4257(88)90106-X
    [17] Jakubauskas M, Kindscher K, Fraser A et al., 2000. Close-range remote sensing of aquatic macrophyte vegetation cover. International Journal of Remote Sensing, 21(18):3533-3538. doi: 10.1080/014311600750037543
    [18] Jesús D, Jochem V, Luis A et al., 2011. Evaluation of Sentinel-2 Red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors, 11(7):7063-7081. doi:10. 3390/s110707063
    [19] Jia K, Liang S, Gu X et al., 2016. Fractional vegetation cover estimation algorithm for Chinese GF-1 wide field view data. Remote Sensing of Environment, 177:184-191. doi:10. 1016/j.rse.2016.02.019
    [20] Jiang X, Wang D, Tang L et al., 2008. Analysing the vegetation cover variation of China from AVHRR-NDVI data. International Journal of Remote Sensing, 29(17-18):5301-5311. doi: 10.1080/01431160802036466
    [21] Jiapaer G, Chen X, Bao A, 2011. A comparison of methods for estimating fractional vegetation cover in arid regions. Agricultural and Forest Meteorology, 151(12):1698-1710. doi: 10.1016/j.agrformet.2011.07.004
    [22] Ju C, Cai T, Yang X, 2008. Topography-based modeling to estimate percent vegetation cover in semi-arid Mu Us sandy land, China. Computers and electronics in agriculture, 64(2):133-139. doi: 10.1016/j.compag.2008.04.008
    [23] Kaufman Y J, Tanre D, 1992. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE transactions on Geoscience and Remote Sensing, 30(2):261-270. doi: 10.1109/36.134076
    [24] Kobayashi T, Liao R T, and Li S Q, 1995. Ecophysiological behavior of Artemisia ordosica on the process of sand dune fixation. Ecological Research, 10(3):339-349. doi: 10.1007/BF02347860
    [25] Lehner A, Steinnocher K, 2017. Mapping population distribution in urban areas:using sentinel-2A in comparison with Landsat 8. Journal for Geographic Information Science, 1:93-105. doi: 10.1553/giscience2017_01_s93
    [26] Leprieur C, Kerr Y, Mastorchio S et al., 2000. Monitoring vegetation cover across semi-arid regions:comparison of remote observations from various scales. International Journal of Remote Sensing, 21(2):281-300. doi:10.1080/01431160 0210830
    [27] Li Xiaosong, Li Zengyuan, Gao Zhihai et al., 2010. Estimation of sparse vegetation cover in arid regions based on vegetation indices derived from hyperion data. Journal of Beijing Forestry University, 32(3):95-100. (in Chinese)
    [28] Nemani R R, Running S W, Pielke R A et al., 1996. Global vegetation cover changes from coarse resolution satellite data. Journal of Geophysical Research:Atmospheres, 101:7157-7162. doi: 10.1029/95JD02138
    [29] Novelli A, Aguilar M A, Nemmaoui A et al., 2016. Performance evaluation of object based greenhouse detection from Sentinel-2 MSI and Landsat 8 OLI data:a case study from Almería (Spain). International Journal of Applied Earth Observation and Geoinformation, 52:403-411. doi:10.1016/j.jag.2016. 07.011
    [30] Sivakumar M, 2007. Interactions between climate and desertification. Agricultural and Forest Meteorology, 142(2):143-155. doi: 10.1016/j.agrformet.2006.03.025
    [31] Souza A A, Galvão L S, Santos J R, 2010. Relationships between hyperion-derived vegetation indices, biophysical parameters, and elevation data in a Brazilian savannah environment. Remote Sensing Letters, 1(1):55-64. doi:10.1080/014311609 03329364
    [32] Tømmervik H, Høgda K A, Solheim I, 2003. Monitoring vegetation changes in Pasvik (Norway) and Pechenga in Kola Peninsula (Russia) using multitemporal Landsat MSS/TM data. Remote Sensing of Environment, 85(3):370-388. doi: 10.1016/S0034-4257(03)00014-2
    [33] Van de Voorde T, Vlaeminck J, Canters F, 2008. Comparing different approaches for mapping urban vegetation cover from Landsat ETM+ data:a case study on Brussels. Sensors, 8(6):3880-3902. doi: 10.3390/s8063880
    [34] Verstraete M M, Schwartz S, 1991. Desertification and global change. Vegetatio, 91(1-2):3-13. doi: 10.1007/BF00036043
    [35] Wang Xinyun, Guo Yige, 2013. Estimation of vegetation coverage using hyperion image. Journal of Yangtze River Scientific Research Institute, 30(7):106-1007. (in Chinese)
    [36] White M A, Asner G P, Nemani R R et al., 2000. Measuring fractional cover and leaf area index in arid ecosystems:digital camera, radiation transmittance, and laser altimetry methods. Remote Sensing of Environment, 74(1):45-57. doi:10.1016/S 0034-4257(00)00119-X
    [37] Wu D, Wu H, Zhao X et al., 2014. Evaluation of spatiotemporal variations of global fractional vegetation cover based on GIMMS NDVI data from 1982 to 2011. Remote Sensing, 6(5):4217-4239. doi: 10.3390/rs6054217
    [38] Yu F, Dong M, Krüsi B, 2004. Clonal integration helps Psammochloa villosa survive sand burial in an inland dune. New Phytologist, 162(3):697-704. doi:10.1111/j.1469-8137. 2004.01073.x
    [39] Zarco-Tejada P J, Diaz-Varela R, Angileri V et al., 2014. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. European Journal of Agronomy, 55:89-99. doi:10.1016/j.eja.2014.01. 004
    [40] Zeng X, Rao P, DeFries R S et al., 2003. Interannual variability and decadal trend of global fractional vegetation cover from 1982 to 2000. Journal of Applied Meteorology, 42(10):1525-1530. doi:10.1175/1520-0450(2003)042<1525:IVADTO>2.0. CO;2
    [41] Zhang N, Zhao J, Zhang L, 2016. Comparison and evaluation on image fusion methods for GaoFen-1 imagery. Proceedings of the Spie, 157:101571V. doi: 10.1117/12.2246695
    [42] Zhang X, Liao C, Li J et al., 2013. Fractional vegetation cover estimation in arid and semi-arid environments using HJ-1 satellite hyperspectral data. International Journal of Applied Earth Observation and Geoinformation, 21:506-512. doi: 10.1016/j.jag.2012.07.003
    [43] Zhang Z, Zhang H, Chang Y et al., 2015. Review of radiometric calibration methods of Landsat series optical remote sensors. Journal of Remote Sensing, 19(5):719. doi:10.11834/jrs.2015 4240
    [44] Zhou Z, Shangguan Z, Zhao D, 2006. Modeling vegetation coverage and soil erosion in the Loess Plateau Area of China. Ecological Modelling, 198(1):263-268. doi:10.1016/j. ecolmodel.2006.04.019
    [45] Zhou Z, Yang Y, Chen B, 2017. Estimating Spartina alterniflora fractional vegetation cover and aboveground biomass in a coastal wetland using SPOT6 satellite and UAV data. Aquatic Botany, 144:38-45. doi:10.1016/j.aquabot. 2017.10.004
    [46] Zhu Lei, Xu Junfeng, Huang Jingfeng et al., 2008. Study on hyperspectral estimation model of crop vegetation cover percentage. Spectroscopy and Spectral Analysis, 28(8):1827-1831. (in Chinese)
    [47] Zribi M, Dridi G, Amri R et al., 2016. Analysis of the effects of drought on vegetation cover in a mediterranean region through the use of SPOT-VGT and TERRA-MODIS long time series. Remote Sensing, 8(12):992. doi: 10.3390/rs8120992
  • [1] YANG Jun, BAO Yajun, ZHANG Yuqing, LI Xueming, GE Quansheng.  Impact of Accessibility on Housing Prices in Dalian City of China Based on a Geographically Weighted Regression Model . Chinese Geographical Science, 2018, 28(3): 505-515. doi: 10.1007/s11769-018-0954-6
    [2] LI Xianju, CHEN Gang, LIU Jingyi, CHEN Weitao, CHENG Xinwen, LIAO Yiwei.  Effects of RapidEye Imagery's Red-edge Band and Vegetation Indices on Land Cover Classification in an Arid Region . Chinese Geographical Science, 2017, 27(5): 827-835. doi: 10.1007/s11769-017-0894-6
    [3] WANG Xingping, ZHU Kai, LI Yingcheng, XU Jiabo.  Applicability and Prospect of China's Development Zone Model in Africa . Chinese Geographical Science, 2017, 27(6): 860-874. doi: 10.1007/s11769-017-0918-2
    [4] WANG Fenglong, LIU Yungang.  How Unique is ‘China Model’: A Review of Theoretical Perspectives on China's Urbanization in Anglophone Literature . Chinese Geographical Science, 2015, 25(1): 98-112. doi: 10.1007/s11769-014-0713-2
    [5] LI Fujia, DONG Suocheng, LI Shantong, LI Zehong, LI Yu.  Measurement and Scenario Simulation of Effect of Urbanisation on Regional CO2 Emissions Based on UEC-SD Model:A Case Study in Liaoning Province, China . Chinese Geographical Science, 2015, 25(3): 350-360. doi: 10.1007/s11769-014-0729-7
    [6] ZHANG Haitao, GUO Long, CHEN Jiaying, FU Peihong, GU Jianli, LIAO Guangyu.  Modeling of Spatial Distributions of Farmland Density and Its Temporal Change Using Geographically Weighted Regression Model . Chinese Geographical Science, 2014, 0(2): 191-204. doi: 10.1007/s11769-013-0631-8
    [7] YE Hanfeng, GUO Shuhai, LI Fengmei, LI Gang.  Water Quality Evaluation in Tidal River Reaches of Liaohe River Estuary, China Using a Revised QUAL2K Model . Chinese Geographical Science, 2013, 23(3): 301-311. doi: 10.1007/s11769-013-0586-9
    [8] LI Ming, WU Zhengfang, QIN Lijie, MENG Xiangjun.  Extracting Vegetation Phenology Metrics in Changbai Mountains Using an Improved Logistic Model . Chinese Geographical Science, 2011, 21(3): 304-311.
    [9] WU Huisheng, LIU Zhaoli, ZHANG Shuwen, ZUO Xiuling.  A Spatio-temporal Data Model for Road Network in Data Center Based on Incremental Updating in Vehicle Navigation System . Chinese Geographical Science, 2011, 21(3): 346-353.
    [10] WANG Xili, FU Li, MA Lei.  Semi-supervised support vector regression model for remote sensing water quality retrieving . Chinese Geographical Science, 2011, 21(1): 57-64.
    [11] YIN Kai, ZHAO Qianjun, LI Xuanqi, CUI Shenghui, HUA Lizhong, LIN Tao.  A New Carbon and Oxygen Balance Model Based on Ecological Service of Urban Vegetation . Chinese Geographical Science, 2010, 20(2): 144-151. doi: 10.1007/s11769-010-0144-7
    [12] JIANG Yan, LIU Changming, ZHENG Hongxing, LI Xuyong, WU Xianing.  Responses of River Runoff to Climate Change Based on Nonlinear Mixed Regression Model in Chaohe River Basin of Hebei Province, China . Chinese Geographical Science, 2010, 20(2): 152-158. doi: 10.1007/s11769-010-0152-7
    [13] CHEN Xuegang, YANG Zhaoping, LIU Xuling.  Empirical Analysis of Xinjiang's Bilateral Trade: Gravity Model Approach . Chinese Geographical Science, 2008, 18(1): 9-16. doi: 10.1007/s11769-008-0009-5
    [14] JIA Yuanyuan, LI Zhaoliang.  Soil-Vegetation-Atmosphere Radiative Transfer Model in Microwave Region . Chinese Geographical Science, 2008, 18(2): 171-177. doi: 10.1007/s11769-008-0171-9
    [15] YUAN Jinguo, NIU Zheng, WANG Chenli.  Vegetation NPP Distribution Based on MODIS Data and CASA Model——A Case Study of Northern Hebei Province . Chinese Geographical Science, 2006, 16(4): 334-341.
    [16] CAO Yun-gang, LIU Chuang.  NORMALIZED DIFFERENCE SNOW INDEX SIMULATION FOR SNOW-COVER MAPPING IN FOREST BY GEOSAIL MODEL . Chinese Geographical Science, 2006, 16(2): 171-175.
    [17] YU Ya-juan, GUO Huai-cheng, LIU Yong, WANG Shu-tong, WANG Jin-feng.  FUZZY COMPREHENSIVE EVALUATION MODEL OF ECOLOGICAL DEMONSTRATION AREA . Chinese Geographical Science, 2005, 15(4): 303-308.
    [18] ZHANG Xue-song, HAO Fang-hua, CHENG Hong-guang, LI Dao-feng.  APPLICATION OF SWAT MODEL IN THE UPSTREAM WATERSHED OF THE LUOHE RIVER . Chinese Geographical Science, 2003, 13(4): 334-339.
    [19] ZHUANG Da-fang, LIU Ming-liang, DENG Xiang-zheng.  SPATIALIZATION MODEL OF POPULATION BASED ON DATASET OF LAND USE AND LAND COVER CHANGE IN CHINA . Chinese Geographical Science, 2002, 12(2): 114-119.
    [20] 刘兆礼, 黄铁青, 万恩璞, 张养贞.  STUDY ON MODEL FOR REMOTE SENSING ESTIMATION OF MAIZE YIELD . Chinese Geographical Science, 1998, 8(2): 161-167.
  • 加载中
计量
  • 文章访问数:  210
  • HTML全文浏览量:  5
  • PDF下载量:  238
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-15
  • 修回日期:  2018-05-08
  • 刊出日期:  2019-02-27

Comparative Analysis of Fractional Vegetation Cover Estimation Based on Multi-sensor Data in a Semi-arid Sandy Area

doi: 10.1007/s11769-018-1010-2
    基金项目:  Under the auspices of National Natural Science Foundation of China (No. 41301451, 41541008), Fundamental Research Funds for the Central Universities (No. 2452018144)
    通讯作者: ZHANG Tinglong.E-mail:dargon810614@126.com;BU Chongfeng.E-mail:buchongfeng@163.com

摘要: The estimation of fractional vegetation cover (FVC) is important for identifying and monitoring desertification, especially in arid and semiarid regions. By using regression and pixel dichotomy models, we present the comparison of Sentinel-2A (S2) multispectral instrument (MSI) and Landsat 8 (L8) operational land imager (OLI) data regarding the retrieval of FVC in a semi-arid sandy area (Mu Us Sandland, China, in August 2016). A combination of unmanned aerial vehicle (UAV) high-spatial-resolution images and field plots were used to produce verified data. Based on a normalized difference vegetation index (NDVI) regression model, the results showed that, compared with that of L8, the coefficient of determination (R2) of S2 increased by 26.0%, and the root mean square error (RMSE) and the sum of absolute error (SAE) decreased by 3.0% and 11.4%, respectively. For the ratio vegetation index (RVI) regression model, compared with that of L8, the R2 of S2 increased by 26.0%, and the RMSE and SAE decreased by 8.0% and 20.0%, respectively. When the pixel dichotomy model was used, compared with that of L8, the RMSE of S2 decreased by 21.3%, and the SAE decreased by 26.9%. Overall, S2 performed better than L8 in terms of FVC inversion. Additionally, in this paper, we develop a verified scheme based on UAV data in combination with the object-based classification method. This scheme is feasible and sufficiently robust for building relationships between field data and inversion results from satellite data. Further, the synergy of multi-source sensors (especially UAVs and satellites) is a potential effective way to estimate and evaluate regional ecological environmental parameters (FVC).

English Abstract

LIU Qiuyu, ZHANG Tinglong, LI Yizhe, LI Ying, BU Chongfeng, ZHANG Qingfeng. Comparative Analysis of Fractional Vegetation Cover Estimation Based on Multi-sensor Data in a Semi-arid Sandy Area[J]. 中国地理科学, 2019, 20(1): 166-180. doi: 10.1007/s11769-018-1010-2
引用本文: LIU Qiuyu, ZHANG Tinglong, LI Yizhe, LI Ying, BU Chongfeng, ZHANG Qingfeng. Comparative Analysis of Fractional Vegetation Cover Estimation Based on Multi-sensor Data in a Semi-arid Sandy Area[J]. 中国地理科学, 2019, 20(1): 166-180. doi: 10.1007/s11769-018-1010-2
LIU Qiuyu, ZHANG Tinglong, LI Yizhe, LI Ying, BU Chongfeng, ZHANG Qingfeng. Comparative Analysis of Fractional Vegetation Cover Estimation Based on Multi-sensor Data in a Semi-arid Sandy Area[J]. Chinese Geographical Science, 2019, 20(1): 166-180. doi: 10.1007/s11769-018-1010-2
Citation: LIU Qiuyu, ZHANG Tinglong, LI Yizhe, LI Ying, BU Chongfeng, ZHANG Qingfeng. Comparative Analysis of Fractional Vegetation Cover Estimation Based on Multi-sensor Data in a Semi-arid Sandy Area[J]. Chinese Geographical Science, 2019, 20(1): 166-180. doi: 10.1007/s11769-018-1010-2
参考文献 (47)

目录

    /

    返回文章
    返回