留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spatial-temporal Patterns and Driving Forces of Water Retention Service in China

XIAO Yang OUYANG Zhiyun

XIAO Yang, OUYANG Zhiyun. Spatial-temporal Patterns and Driving Forces of Water Retention Service in China[J]. 中国地理科学, 2019, 20(1): 100-111. doi: 10.1007/s11769-018-0984-0
引用本文: XIAO Yang, OUYANG Zhiyun. Spatial-temporal Patterns and Driving Forces of Water Retention Service in China[J]. 中国地理科学, 2019, 20(1): 100-111. doi: 10.1007/s11769-018-0984-0
XIAO Yang, OUYANG Zhiyun. Spatial-temporal Patterns and Driving Forces of Water Retention Service in China[J]. Chinese Geographical Science, 2019, 20(1): 100-111. doi: 10.1007/s11769-018-0984-0
Citation: XIAO Yang, OUYANG Zhiyun. Spatial-temporal Patterns and Driving Forces of Water Retention Service in China[J]. Chinese Geographical Science, 2019, 20(1): 100-111. doi: 10.1007/s11769-018-0984-0

Spatial-temporal Patterns and Driving Forces of Water Retention Service in China

doi: 10.1007/s11769-018-0984-0
基金项目: Under the auspices of National Key Technology Research and Development Program of China (No. 2011BAC09B08), Special Issue of National Remote Sensing Survey and Assessment of Eco-Environment Change between 2000 and 2010 (No. STSN-04-01)
详细信息
    通讯作者:

    OUYANG Zhiyun.E-mail:zyouyang@rcees.ac.cn

Spatial-temporal Patterns and Driving Forces of Water Retention Service in China

Funds: Under the auspices of National Key Technology Research and Development Program of China (No. 2011BAC09B08), Special Issue of National Remote Sensing Survey and Assessment of Eco-Environment Change between 2000 and 2010 (No. STSN-04-01)
More Information
    Corresponding author: OUYANG Zhiyun.E-mail:zyouyang@rcees.ac.cn
  • 摘要: Overwhelming water-deficiency conditions and an unbalanced water supply and demand have been major concerns of both the Chinese government and the general public during recent decades. Studying the spatial-temporal patterns and impact factors that influence water retention in China is important to enhance the management of water resources in China and other similar countries. We employed a revised Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model and regression analyses to investigate the water retention service in China. The results showed that the southeastern China generally performed much better than Northwest China in terms of the spatial distribution of water retention. In general, the efficacy of the water retention service in China increased from 2000 to 2014; although some areas still had a downward trend. Water retention service increased significantly (P < 0.05) in aggregate in the Qinghai-Tibet Plateau, and the Da Hinggan Mountains and Xiao Hinggan Mountains. However, the service in southwestern China showed a decreasing trend (P < 0.05), which would have significant negative impact on the downstream population. This study also showed that in China the changes in water retention service were primarily due to climate change (which could explain 83.49% of the total variance), with anthropogenic impact as a secondary influence (likewise the ecological programs and socioeconomic development could explain 9.47% and 1.06%, respectively). Moreover, the identification of water retention importance indicated that important areas conservation and selection based on downstream beneficiaries is vital for optimization protection of ecosystem services, and has practical significance for natural resources and ecosystem management.
  • [1] Arnold J G, Srinivasan R, Muttiah R S, 1998. Large area hydrological modeling and assessment. Part 1:model development. Journal of American Water Resources Associa-tion, 34(1):73-89. doi: 10.1111/j.1752-1688.1998.tb05961.x
    [2] Bai Zhongqiang, Wang juanle, Yang Yaping, Sun Jiulin, 2015. Characterizing spatial patterns of population distribution at township level across the 25 provinces in China. Acta Geographica Sinica, 70(8):1229-1242. (in Chinese)
    [3] Barano T, McKenzie E, Bhagabati N et al., 2010. TEEB case:Integrating Ecosystem Services into Spatial Planning in Sumatra, Indonesia. Available at:http://www.naturalcapitalproject.org/pubs/NatCap_Indonesia_Sumatra_TEEBcase_2010.pdf
    [4] Beck H E, McVicar T R, Dijk A I et al., 2011. Global evaluation of four AVHRR-NDVI data sets:Intercomparison and assessment against Landsat imagery. Remote Sensing of Environment, 115(10):2547-2563. doi:10.1016/j.rse.2011. 05.012
    [5] Brown L R, 1995. Who Will Feed China? Wake-up Call for a Small Planet. London:Earthscan Publications.
    [6] Cao S X, 2011. Impact of China's large-scale ecological restoration program on the environment and society in arid and semiarid areas of China:achievements, problems, synthesis, and applications. Critical Reviews in Environmental Science and Technology, 41(4):317-335. doi:10.1080/1064338090 2800034
    [7] Chen L, Xie G D, Zhang C S et al., 2011. Modelling ecosystem water supply services across the Lancang River Basin. Journal of Resources and Ecology, 2(4):322-327. doi:10.3969/j. issn.1674-764x.2011.04.005
    [8] Cheng H, Hu Y, Zhao J, 2009. Meeting China's water shortage crisis:current practices and challenges. Environmental Science & Technology, 43(2):240-4. doi: 10.1021/es801934a
    [9] Chinese Academy of Sciences, 2007. China Sustainable Development Strategy Report 2007-Water:Governance and Innovation. Beijing:Science Press. (in Chinese)
    [10] Crawford N H, Linsley R K, 1966. Digital simulation in hydrology, Stanford Watershed Model IV. Technical Report 39, Dept of Civil Engineering. Stanford:Stanford University.
    [11] Fan Jie, 2014. Influence of MRP and WRP of South-to-North Water Diversion on water resources in water source areas and countermeasures. Yangtz River, 45(7):23-26. (in Chinese)
    [12] Gao Y, Zhu X J, Yu G R et al., 2014. Water use efficiency threshold for terrestrial ecosystem carbon sequestration under afforestation in China. Agricultural and Forest Meteorology, 195-196(198):32-37. doi: 10.1016/j.agrformet.2014.04.010
    [13] Gao Y, Hao Z, Yang T et al., 2017. Effects of atmospheric reactive phosphorus deposition on phosphorus transport in a subtropical watershed:A Chinese case study. Environmental Pollution, 226:69-78. doi: 10.1016/j.envpol.2017.03.067
    [14] Goldstein J H, Caldarone G, Colvin C et al., 2010. TEEB case:Integrating ecosystem services into land-use planning in Hawaii, USA. available at:www.TEEBweb.org.
    [15] Gong W, Xu D R, Caine E D, 2016. Challenges arising from China's two-child policy. Lancet, 387(10025):1274-1274. doi: 10.1016/S0140-6736(16)30020-4
    [16] Hagemann S, Chen C, Clark D B et al., 2013. Climate change impact on available water resources obtained using multiple global climate and hydrology models. Earth System Dynamics, 4(1):129-144. doi: 10.5194/esd-4-129-2013
    [17] Hanjra M A, Qureshi M E, 2010. Global water crisis and future food security in an era of climate change. Food Policy, 35(5):365-377. doi: 10.1016/j.foodpol.2010.05.006
    [18] Hartanto H, Prabhu R, Widayat A S E et al., 2003. Factors affecting runoff and soil erosion:plot-level soil loss monitoring for assessing sustainability of forest management. Forest Ecology & Management, 180(1):361-374. doi: 10.1016/S0378-1127(02)00656-4
    [19] Hutchinson M F, Dan M K, Lawrence K et al., 2009. Development and testing of Canada-wide interpolated spatial models of daily minimum-maximum temperature and precipitation for 1961-2003. Journal of Applied Meteorology and Climatology, 48(4):725-741. doi: 10.1175/2008JAMC1979.1
    [20] Ivey J L, Smithers J, de Loë R C et al., 2004. Community capacity for adaptation to climate-induced water shortages:linking institutional complexity and local actors. Environmental Management, 33(1):36-47. doi:10.1007/s 00267-003-0014-5
    [21] Jiang C, Wang F, Zhang H et al., 2016. Quantifying changes in multiple ecosystem services during 2000-2012 on the loess plateau, China, as a result of climate variability and ecological restoration. Ecological Engineering, 97:258-271. doi:10. 1016/j.ecoleng.2016.10.030
    [22] Jiang Y, 2015. China's water security:Current status, emerging challenges and future prospects. Environmental Science & Policy, 54:106-125. doi: 10.1016/j.envsci.2015.06.006
    [23] Johnson F, Hutchinson M F, The C et al., 2016. Topographic relationships for design rainfalls over Australia. Journal of Hydrology, 533:439-451. doi: 10.1016/j.jhydrol.2015.12.035
    [24] Kareiva P, Tallis H, Ricketts T H et al., 2011. Natural Capital:Theory and Practice of Mapping Ecosystem Services. New York:Oxford Univ Press.
    [25] Leavesley G H, Lichty R W, Troutman B M et al., 1983. Precipitation runoff modeling system:user's manual. Landolt-Börnstein-Group Ⅱ Molecules and Radicals, 4(4):206-207.
    [26] Liu J G, Yang W, 2012. Water Sustainability for China and Beyond. Science, 337(6095):649-650. doi:10.1126/science. 1219471
    [27] Mandle L, Tallis H, Sotomayor L et al., 2015. Who loses? Tracking ecosystem service redistribution from road development and mitigation in the Peruvian Amazon. Frontiers in Ecology & the Environment, 13(6):309-315. doi: 10.1890/140337
    [28] McCabe G J, Wolock D M, 2007. Warming may create substantial water supply shortages in the Colorado River basin. Geophysical Research Letters, 34(22):60-64. doi: 10.1029/2007GL031764
    [29] Miao C Y, Borthwick A G L, Liu H H et al., 2015. China's policy on dams at the crossroads:removal or further construction. Water, 7:2349-2357. doi: 10.3390/w7052349
    [30] Millennium Assessment (MA), 2005. Millennium Ecosystem Assessment-Ecosystems and Human Wellbeing:General Synthesis. Washington, DC:Island Press.
    [31] Monteith J L, 1965. Evaporation and environment. Symposium of the Society of Experimental Biology, 19:205-224. PMID 5321565.
    [32] Mu Q, Zhao M, Running S W, 2011. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment, 115:1781-1800. doi:10.1016/j.rse. 2011.02.019
    [33] Ouyang Z Y, Zheng H, Xiao Y et al., 2016. Improvements in ecosystem services from investments in natural capital. Science, 352(6292):1455-1459. doi: 10.1126/science.aaf2295
    [34] Piao S L, Wang X H, Ciais P et al., 2011. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Global Change Biology, 17(10):3228-3239. doi: 10.1111/j.1365-2486.2011.02419.x
    [35] Rao E M, Ouyang Z Y, Yu X X et al., 2014. Spatial patterns and impacts of soil conservation service in China. Geomorphology, 207(3):64-70. doi: 10.1016/j.geomorph.2013.10.027
    [36] State Water Agency, 2000-2015. China Water Resources Bulletin. Beijing:China Water Power Press. (in Chinese)
    [37] Tallis H T, Ricketts T, Nelson E et al., 2010. InVEST 1.005 Beta User's Guide. The Natural Capital Project. Stanford:Washington DC.
    [38] Wang F, 2014. What will happen if China adopts a two-child policy? New Scientist, 221(2961):26-27. doi: 10.1016/S0262-4079(14)60581-9
    [39] Wang S, Zhang Z, 2011. Effects of climate change on water resources in China. Climate Research, 47(1):77-82. doi: 10.3354/cr00965
    [40] Xiao Y, Xiao Q, Ouyang Z Y et al., 2015. Assessing changes in water flow regulation in Chongqing region, China. Environmental Monitoring and Assessment, 187(6):362. doi: 10.1007/s10661-015-4370-4
    [41] Xu K, Yang D W, Yang H B et al., 2015. Spatio-temporal variation of drought in China during 1961-2012:A climatic perspective. Journal of Hydrology, 526:253-264. doi: 10.1016/j.jhydrol.2014.09.047
    [42] Yu G, Yang Y, Tu Z et al., 2016. Modeling the water-satisfied degree for production of the main food crops in china. Science of the Total Environment, 547:215-225. doi:10.1016/j. scitotenv.2015.12.105
    [43] Zhang C Q, Li W H, Zhang B et al., 2012. Water yield of Xitiaoxi River Basin based on InVEST modeling. Journal of Resources & Ecology, 3(1):050-054. doi:10.5814/j.issn.1674-764x. 2012.01.008
    [44] Zhang P, Shao G, Zhao G et al., 2000. China's forest policy for the 21st century. Science, 288(5474):2135-2136. doi: 10.1126/science.288.5474.2135
    [45] Zhang L, Dawes W R, Walker G R, 2001. Response of mean annual evapotranspiration to vegetationchanges at catchment scale. Water Resources Research, 37(3):701-708. doi: 10.1029/2000WR900325
    [46] Zhao Renjun, 1984. Hydrological Simulation for Basin-Xinanjiang Model and Shanbei Model. Beijing:China Water Power Press. (in Chinese)
    [47] Zhao Tongqian, 2004. Research on China Terrestrial Ecosystem Services and Their Valuation. Beijing:Graduate University of Chinese Academy of Sciences. (in Chinese)
    [48] Zheng H, Li Y F, Robinson B E et al., 2016. Using ecosystem service trade-offs to inform water conservation policies and management practices. Frontiers in Ecology and the Environment, 14(10):527-532. doi:10.1002/fee.1432nt against Landsat imagery.Remote Sensing of Environment, 115(10):2547-2563.doi:10.1016/j.rse.2011.05.012
    [49] Brown L R, 1995.Who Will Feed China? Wake-up Call for a Small Planet.London:Earthscan Publications.
    [50] Cao S X, 2011.Impact of China's large-scale ecological restoration program on the environment and society in arid and semiarid areas of China:achievements, problems, synthesis, and applications.Critical Reviews in Environmental Science and Technology, 41(4):317-335.doi:10.1080/1064338090 2800034
    [51] Chen L, Xie G D, Zhang C S et al., 2011.Modelling ecosystem water supply services across the Lancang River Basin.Journal of Resources and Ecology, 2(4):322-327.doi: 10.3969/j.issn.1674-764x.2011.04.005
    [52] Cheng H, Hu Y, Zhao J, 2009.Meeting China's water shortage crisis:current practices and challenges.Environmental Science & Technology, 43(2):240-4.doi: 10.1021/es801934a
    [53] Chinese Academy of Sciences, 2007.China Sustainable Development Strategy Report 2007-Water:Governance and Innovation.Beijing:Science Press. (in Chinese)
    [54] Crawford N H, Linsley R K, 1966.Digital simulation in hydrology, Stanford Watershed Model IV.Technical Report 39, Dept of Civil Engineering.Stanford:Stanford University.
    [55] Fan Jie, 2014.Influence of MRP and WRP of South-to-North Water Diversion on water resources in water source areas and countermeasures.Yangtz River, 45(7):23-26. (in Chinese)
    [56] Gao Y, Zhu X J, Yu G R et al., 2014.Water use efficiency threshold for terrestrial ecosystem carbon sequestration under afforestation in China.Agricultural and Forest Meteorology, 195-196(198):32-37.doi: 10.1016/j.agrformet.2014.04.010
    [57] Gao Y, Hao Z, Yang T et al., 2017.Effects of atmospheric reactive phosphorus deposition on phosphorus transport in a subtropical watershed:A Chinese case study.Environmental Pollution, 226:69-78.doi: 10.1016/j.envpol.2017.03.067
    [58] Goldstein J H, Caldarone G, Colvin C et al., 2010.TEEB case:Integrating ecosystem services into land-use planning in Hawaii, USA.available at:www.TEEBweb.org.
    [59] Gong W, Xu D R, Caine E D, 2016.Challenges arising from China's two-child policy.Lancet, 387(10025):1274-1274.doi: 10.1016/S0140-6736(16)30020-4
    [60] Hagemann S, Chen C, Clark D B et al., 2013.Climate change impact on available water resources obtained using multiple global climate and hydrology models.Earth System Dynamics, 4(1):129-144.doi: 10.5194/esd-4-129-2013
    [61] Hanjra M A, Qureshi M E, 2010.Global water crisis and future food security in an era of climate change.Food Policy, 35(5):365-377.doi: 10.1016/j.foodpol.2010.05.006
    [62] Hartanto H, Prabhu R, Widayat A S E et al., 2003.Factors affecting runoff and soil erosion:plot-level soil loss monitoring for assessing sustainability of forest management.Forest Ecology & Management, 180(1):361-374.doi: 10.1016/S0378-1127(02)00656-4
    [63] Hutchinson M F, Dan M K, Lawrence K et al., 2009.Development and testing of Canada-wide interpolated spatial models of daily minimum-maximum temperature and precipitation for 1961-2003.Journal of Applied Meteorology and Climatology, 48(4):725-741.doi: 10.1175/2008JAMC1979.1
    [64] Ivey J L, Smithers J, de Loë R C et al., 2004.Community capacity for adaptation to climate-induced water shortages:linking institutional complexity and local actors.Environmental Management, 33(1):36-47.doi:10.1007/s 00267-003-0014-5
    [65] Jiang C, Wang F, Zhang H et al., 2016.Quantifying changes in multiple ecosystem services during 2000-2012 on the loess plateau, China, as a result of climate variability and ecological restoration.Ecological Engineering, 97:258-271.doi: 10.1016/j.ecoleng.2016.10.030
    [66] Jiang Y, 2015.China's water security:Current status, emerging challenges and future prospects.Environmental Science & Policy, 54:106-125.doi: 10.1016/j.envsci.2015.06.006
    [67] Johnson F, Hutchinson M F, The C et al., 2016.Topographic relationships for design rainfalls over Australia.Journal of Hydrology, 533:439-451.doi: 10.1016/j.jhydrol.2015.12.035
    [68] Kareiva P, Tallis H, Ricketts T H et al., 2011.Natural Capital:Theory and Practice of Mapping Ecosystem Services.New York:Oxford Univ Press.
    [69] Leavesley G H, Lichty R W, Troutman B M et al., 1983.Precipitation runoff modeling system:user's manual.Landolt-Börnstein-Group Ⅱ Molecules and Radicals, 4(4):206-207.
    [70] Liu J G, Yang W, 2012.Water Sustainability for China and Beyond.Science, 337(6095):649-650.doi: 10.1126/science.1219471
    [71] Mandle L, Tallis H, Sotomayor L et al., 2015.Who loses? Tracking ecosystem service redistribution from road development and mitigation in the Peruvian Amazon.Frontiers in Ecology & the Environment, 13(6):309-315.doi: 10.1890/140337
    [72] McCabe G J, Wolock D M, 2007.Warming may create substantial water supply shortages in the Colorado River basin.Geophysical Research Letters, 34(22):60-64.doi: 10.1029/2007GL031764
    [73] Miao C Y, Borthwick A G L, Liu H H et al., 2015.China's policy on dams at the crossroads:removal or further construction.Water, 7:2349-2357.doi: 10.3390/w7052349
    [74] Millennium Assessment (MA), 2005.Millennium Ecosystem Assessment-Ecosystems and Human Wellbeing:General Synthesis.Washington, DC:Island Press.
    [75] Monteith J L, 1965.Evaporation and environment.Symposium of the Society of Experimental Biology, 19:205-224.PMID 5321565.
    [76] Mu Q, Zhao M, Running S W, 2011.Improvements to a MODIS global terrestrial evapotranspiration algorithm.Remote Sensing of Environment, 115:1781-1800.doi: 10.1016/j.rse.2011.02.019
    [77] Ouyang Z Y, Zheng H, Xiao Y et al., 2016.Improvements in ecosystem services from investments in natural capital.Science, 352(6292):1455-1459.doi: 10.1126/science.aaf2295
    [78] Piao S L, Wang X H, Ciais P et al., 2011.Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006.Global Change Biology, 17(10):3228-3239.doi: 10.1111/j.1365-2486.2011.02419.x
    [79] Rao E M, Ouyang Z Y, Yu X X et al., 2014.Spatial patterns and impacts of soil conservation service in China.Geomorphology, 207(3):64-70.doi: 10.1016/j.geomorph.2013.10.027
    [80] State Water Agency, 2000-2015.China Water Resources Bulletin.Beijing:China Water Power Press. (in Chinese)
    [81] Tallis H T, Ricketts T, Nelson E et al., 2010.InVEST 1.005 Beta User's Guide.The Natural Capital Project.Stanford:Washington DC.
    [82] Wang F, 2014.What will happen if China adopts a two-child policy? New Scientist, 221(2961):26-27.doi: 10.1016/S0262-4079(14)60581-9
    [83] Wang S, Zhang Z, 2011.Effects of climate change on water resources in China.Climate Research, 47(1):77-82.doi: 10.3354/cr00965
    [84] Xiao Y, Xiao Q, Ouyang Z Y et al., 2015.Assessing changes in water flow regulation in Chongqing region, China.Environmental Monitoring and Assessment, 187(6):362.doi: 10.1007/s10661-015-4370-4
    [85] Xu K, Yang D W, Yang H B et al., 2015.Spatio-temporal variation of drought in China during 1961-2012:A climatic perspective.Journal of Hydrology, 526:253-264.doi: 10.1016/j.jhydrol.2014.09.047
    [86] Yu G, Yang Y, Tu Z et al., 2016.Modeling the water-satisfied degree for production of the main food crops in china.Science of the Total Environment, 547:215-225.doi: 10.1016/j.scitotenv.2015.12.105
    [87] Zhang C Q, Li W H, Zhang B et al., 2012.Water yield of Xitiaoxi River Basin based on InVEST modeling.Journal of Resources & Ecology, 3(1):050-054.doi: 10.5814/j.issn.1674-764x.2012.01.008
    [88] Zhang P, Shao G, Zhao G et al., 2000.China's forest policy for the 21st century.Science, 288(5474):2135-2136.doi: 10.1126/science.288.5474.2135
    [89] Zhang L, Dawes W R, Walker G R, 2001.Response of mean annual evapotranspiration to vegetationchanges at catchment scale.Water Resources Research, 37(3):701-708.doi: 10.1029/2000WR900325
    [90] Zhao Renjun, 1984.Hydrological Simulation for Basin-Xinanjiang Model and Shanbei Model.Beijing:China Water Power Press. (in Chinese)
    [91] Zhao Tongqian, 2004.Research on China Terrestrial Ecosystem Services and Their Valuation.Beijing:Graduate University of Chinese Academy of Sciences. (in Chinese)
    [92] Zheng H, Li Y F, Robinson B E et al., 2016.Using ecosystem service trade-offs to inform water conservation policies and management practices.Frontiers in Ecology and the Environment, 14(10):527-532.doi: 10.1002/fee.1432
    [93]  
  • [1] Peng ZHANG, Xiaoping LIU, Weihong ZHU, Chunjing LI, Ri JIN, Hengqi YAN, Chengyang GU, Jingzhi WANG.  Spatio-temporal Changes in Water Conservation Ecosystem Service During 1990–2019 in the Tumen River Basin, Northeast China . Chinese Geographical Science, 2023, 33(1): 102-115. doi: 10.1007/s11769-023-1328-2
    [2] DU Yan, QIN Weishan, SUN Jianfeng, WANG Xiaohui, GU Haoxin.  Spatial Pattern and Influencing Factors of Regional Ecological Civilisa-tion Construction in China . Chinese Geographical Science, 2020, 30(5): 776-790. doi: 10.1007/s11769-020-1145-9
    [3] LI Jinfeng, XU Haicheng, LIU Wanwan, WANG Dongfang, ZHOU Shuang.  Spatial Pattern Evolution and Influencing Factors of Cold Storage in China . Chinese Geographical Science, 2020, 30(3): 505-515. doi: 10.1007/s11769-020-1124-1
    [4] HE Binbin, SHENG Yu, CAO Wei, WU Jichun.  Characteristics of Climate Change in Northern Xinjiang in 1961-2017, China . Chinese Geographical Science, 2020, 30(2): 249-265. doi: 10.1007/s11769-020-1104-5
    [5] FU Zhanhui, MEI Lin, LIU Yanjun, TIAN Junfeng, ZHENG Rumin, TIAN Jing.  Spatial Pattern of Female Non-agricultural Employment and Its Driving Forces in Guangdong Province, China: A Perspective of Individual and Family-level . Chinese Geographical Science, 2020, 30(4): 725-735. doi: 10.1007/s11769-020-1141-0
    [6] MA Zhenbang, CHEN Xingpeng, CHEN Huan.  Multi-scale Spatial Patterns and Influencing Factors of Rural Poverty: A Case Study in the Liupan Mountain Region, Gansu Province, China . Chinese Geographical Science, 2018, 28(2): 296-312. doi: 10.1007/s11769-018-0943-9
    [7] CHEN Xiaohong, WEI Luyao, ZHANG Haifeng.  Spatial and Temporal Pattern of Urban Smart Development in China and Its Driving Mechanism . Chinese Geographical Science, 2018, 28(4): 584-599. doi: 10.1007/s11769-018-0976-0
    [8] JU Hongrun, ZHANG Zengxiang, WEN Qingke, WANG Jiao, ZHONG Lijin, ZUO Lijun.  Spatial Patterns of Irrigation Water Withdrawals in China and Implications for Water Saving . Chinese Geographical Science, 2017, 27(3): 362-373. doi: 10.1007/s11769-017-0871-0
    [9] WANG Chengjin, César DUCRUET, WANG Wei.  Port Integration in China: Temporal Pathways, Spatial Patterns and Dynamics . Chinese Geographical Science, 2015, 25(5): 612-628. doi: 10.1007/s11769-015-0752-3
    [10] LIU Hailong, SHI Peiji, TONG Huali, ZHU Guofeng, LIU Haimeng, ZHANG Xuebin, WEI Wei, WANG Xinmin.  Characteristics and Driving Forces of Spatial Expansion of Oasis Cities and Towns in Hexi Corridor, Gansu Province, China . Chinese Geographical Science, 2015, 25(2): 250-262. doi: 10.1007/s11769-014-0687-0
    [11] LI Linshan, MA Yanji.  Spatial-temporal Pattern Evolution of Manufacturing Geographical Agglomeration and Influencing Factors of Old Industrial Base: A Case of Jilin Province, China . Chinese Geographical Science, 2015, 25(4): 486-497. doi: 10.1007/s11769-014-0730-1
    [12] Sven Grashey-Jansen, Martin Kuba, Bernd Cyffka, Ümüt Halik, Tayierjiang Aishan.  Spatio-temporal Variability of Soil Water at Three Seasonal Floodplain Sites: A Case Study in Tarim Basin, Northwest China . Chinese Geographical Science, 2014, 0(6): 647-657. doi: 10.1007/s11769-014-0717-y
    [13] TAN Minghong, Guy M ROBINSON, LI Xiubin, XIN Liangjie.  Spatial and Temporal Variability of Farm Size in China in Context of Rapid Urbanization . Chinese Geographical Science, 2013, 23(5): 607-619. doi: 10.1007/s11769-013-0610-0
    [14] LIU Feng, CHEN Shenliang, PENG Jun, CHEN Guangquan.  Temporal Variations of Water Discharge and Sediment Load of Huanghe River, China . Chinese Geographical Science, 2012, 22(5): 507-521.
    [15] SHI Longyu, SHAO Guofan, CUI Shenghui, LI Xuanqi, LIN Tao, YIN Kai, ZHAO Jingzhu.  Urban Three-dimensional Expansion and Its Driving Forces——A Case Study of Shanghai, China . Chinese Geographical Science, 2009, 19(4): 391-398. doi: 10.1007/s11769-009-0291-x
    [16] SHEN Yuming, QIU Ling, REN Wangbing, CAO Yi, HU Dan, SONG Yujing.  Basic Characteristics, Spatial Disparity and Its Major Influencing Factors of Service Industry in China . Chinese Geographical Science, 2009, 19(4): 314-324. doi: 10.1007/s11769-009-0314-7
    [17] WANG Kaiyong, GAO Xiaolu, CHEN Tian.  Influencing Factors for Formation of Urban and Rural Spatial Structure in Metropolis Fringe Area——Taking Shuangliu County of Chengdu in China as a Case . Chinese Geographical Science, 2008, 18(3): 224-234. doi: 10.1007/s11769-008-0224-0
    [18] LIU Chen, Kuninori OTSUBO, WANG Qinxue, Toshiaki ICHINOSE, Sadao ISHIMURA.  Spatial and Temporal Changes of Floating Population in China Between 1990 and 2000 . Chinese Geographical Science, 2007, 17(2): 99-109. doi: 10.1007/s11769-007-0099-5
    [19] WANG Wu-yi, ZHANG Li, LI Hai-rong, LI Ri-bang, YANG Lin-sheng, LIAO Yong-feng.  SPATIAL-TEMPORAL CHANGES AND TRENDS OF AGEING IN CHINA . Chinese Geographical Science, 2005, 15(3): 200-205.
    [20] ZHAI Jin-liang, FENG Ren-guo, XIA Jun.  CONSTRAINING FACTORS TO SUSTAINABLE UTILIZATION OF WATER RESOURCES AND THEIR COUNTERMEASURES IN CHINA . Chinese Geographical Science, 2003, 13(4): 310-316.
  • 加载中
计量
  • 文章访问数:  257
  • HTML全文浏览量:  10
  • PDF下载量:  428
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-23
  • 修回日期:  2018-02-08
  • 刊出日期:  2019-02-01

Spatial-temporal Patterns and Driving Forces of Water Retention Service in China

doi: 10.1007/s11769-018-0984-0
    基金项目:  Under the auspices of National Key Technology Research and Development Program of China (No. 2011BAC09B08), Special Issue of National Remote Sensing Survey and Assessment of Eco-Environment Change between 2000 and 2010 (No. STSN-04-01)
    通讯作者: OUYANG Zhiyun.E-mail:zyouyang@rcees.ac.cn

摘要: Overwhelming water-deficiency conditions and an unbalanced water supply and demand have been major concerns of both the Chinese government and the general public during recent decades. Studying the spatial-temporal patterns and impact factors that influence water retention in China is important to enhance the management of water resources in China and other similar countries. We employed a revised Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model and regression analyses to investigate the water retention service in China. The results showed that the southeastern China generally performed much better than Northwest China in terms of the spatial distribution of water retention. In general, the efficacy of the water retention service in China increased from 2000 to 2014; although some areas still had a downward trend. Water retention service increased significantly (P < 0.05) in aggregate in the Qinghai-Tibet Plateau, and the Da Hinggan Mountains and Xiao Hinggan Mountains. However, the service in southwestern China showed a decreasing trend (P < 0.05), which would have significant negative impact on the downstream population. This study also showed that in China the changes in water retention service were primarily due to climate change (which could explain 83.49% of the total variance), with anthropogenic impact as a secondary influence (likewise the ecological programs and socioeconomic development could explain 9.47% and 1.06%, respectively). Moreover, the identification of water retention importance indicated that important areas conservation and selection based on downstream beneficiaries is vital for optimization protection of ecosystem services, and has practical significance for natural resources and ecosystem management.

English Abstract

XIAO Yang, OUYANG Zhiyun. Spatial-temporal Patterns and Driving Forces of Water Retention Service in China[J]. 中国地理科学, 2019, 20(1): 100-111. doi: 10.1007/s11769-018-0984-0
引用本文: XIAO Yang, OUYANG Zhiyun. Spatial-temporal Patterns and Driving Forces of Water Retention Service in China[J]. 中国地理科学, 2019, 20(1): 100-111. doi: 10.1007/s11769-018-0984-0
XIAO Yang, OUYANG Zhiyun. Spatial-temporal Patterns and Driving Forces of Water Retention Service in China[J]. Chinese Geographical Science, 2019, 20(1): 100-111. doi: 10.1007/s11769-018-0984-0
Citation: XIAO Yang, OUYANG Zhiyun. Spatial-temporal Patterns and Driving Forces of Water Retention Service in China[J]. Chinese Geographical Science, 2019, 20(1): 100-111. doi: 10.1007/s11769-018-0984-0
参考文献 (93)

目录

    /

    返回文章
    返回