留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Validation of Global Evapotranspiration Product (MOD16) Using Flux Tower Data from Panjin Coastal Wetland, Northeast China

DU Jia SONG Kaishan

DU Jia, SONG Kaishan. Validation of Global Evapotranspiration Product (MOD16) Using Flux Tower Data from Panjin Coastal Wetland, Northeast China[J]. 中国地理科学, 2018, 28(3): 420-429. doi: 10.1007/s11769-018-0960-8
引用本文: DU Jia, SONG Kaishan. Validation of Global Evapotranspiration Product (MOD16) Using Flux Tower Data from Panjin Coastal Wetland, Northeast China[J]. 中国地理科学, 2018, 28(3): 420-429. doi: 10.1007/s11769-018-0960-8
DU Jia, SONG Kaishan. Validation of Global Evapotranspiration Product (MOD16) Using Flux Tower Data from Panjin Coastal Wetland, Northeast China[J]. Chinese Geographical Science, 2018, 28(3): 420-429. doi: 10.1007/s11769-018-0960-8
Citation: DU Jia, SONG Kaishan. Validation of Global Evapotranspiration Product (MOD16) Using Flux Tower Data from Panjin Coastal Wetland, Northeast China[J]. Chinese Geographical Science, 2018, 28(3): 420-429. doi: 10.1007/s11769-018-0960-8

Validation of Global Evapotranspiration Product (MOD16) Using Flux Tower Data from Panjin Coastal Wetland, Northeast China

doi: 10.1007/s11769-018-0960-8
基金项目: Under the auspices of National Key R&D Program of China (No. 2016YFA0602301-1), National Key Research Project (No. 2013CB430401)

Validation of Global Evapotranspiration Product (MOD16) Using Flux Tower Data from Panjin Coastal Wetland, Northeast China

Funds: Under the auspices of National Key R&D Program of China (No. 2016YFA0602301-1), National Key Research Project (No. 2013CB430401)
  • 摘要: Recent advances in remote sensing technology and methods have resulted in the development of an evapotranspiration (ET) product from the Moderate Resolution Imaging Spectrometer (MOD16). The accuracy of this product however has not been tested for coastal wetland ecosystems. The objective of this study therefore is to validate the MOD16 ET product using data from one eddy covariance flux tower situated in the Panjin coastal wetland ecosystem within the Liaohe River Delta, Northeast China. Cumulative ET data over an eight-day period in 2005 from the flux tower was calculated to coincide with the MOD16 products across the same period. Results showed that data from the flux tower were inconsistent with that gained form the MOD16 ET. In general, results from Panjin showed that there was an underestimation of MOD16 ET in the spring and fall, with Biases of -2.27 and -3.53 mm/8d, respectively (-40.58% and -49.13% of the observed mean). Results for Bias during the summer had a range of 1.77 mm/8d (7.82% of the observed mean), indicating an overestimation of MOD16 ET. According to the RMSE, summer (6.14 mm/8d) achieved the lowest value, indicating low accuracy of the MOD16 ET product. However, RMSE (2.09 mm/8d) in spring was the same as that in the fall. Relationship between ET and its relevant meteorological parameters were analyzed. Results indicated a very good relationship between surface air temperature and ET. Meanwhile a significant relationship between wind speed and ET also existed. The inconsistent comparison of MOD16 and flux tower-based ET are mainly attributed to the parameterization of the Penman-Monteith model, flux tower measurement errors, and flux tower footprint vs. MODIS pixels.
  • [1] Allen R G, Pereira L S, Raes D et al., 1998. Crop Evapotranspiration-Guidelines for Computing Crop Water RequirementsFAO Irrigation and Drainage Paper 56. Rome:FAO, D05109.
    [2] Allen R G, Tasumi M, Trezza R, 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (metric)-model. Journal of Irrigation and Drainage Engineering, 133(4):380-394. doi: 10.1061/(ASCE)0733-9437(2007)133:4(380)
    [3] Aubinet M, Grelle A, Ibrom A et al., 1999. Estimates of the annual net carbon and water exchange of forests:the EUROFLUX methodology. Advances in Ecological Research, 30:113-175. doi: 10.1016/S0065-2504(08)60018-5
    [4] Bastiaanssen W G M, Menenti M, Feddes R A et al., 1998a. A remote sensing surface energy balance algorithm for land(SEBAL). 1. Formulation. Journal of Hydrology, 212-213:198-212. doi: 10.1016/S0022-1694(98)00253-4
    [5] Bastiaanssen W G M, Noordman E J M, Pelgrum H et al., 2005. Sebal model with remotely sensed data to improve waterresources management under actual field conditions. Journal of Irrigation and Drainage Engineering, 131(1):85-93. doi: 10.1061/(ASCE)0733-9437(2005)131:1(85)
    [6] Bastiaanssen W G M, Pelgrum H, Wang J et al., 1998b. A remote sensing surface energy balance algorithm for land (SEBAL).:Part 2:validation. Journal of Hydrology, 212-213:213-229. doi: 10.1016/S0022-1694(98)00254-6
    [7] Bouwer L M, Biggs T W, Aerts J C J H, 2008. Estimates of spatial variation in evaporation using satellite-derived surface temperature and a water balance model. Hydrological Processes, 22(5):670-682. doi: 10.1002/hyp.6636
    [8] Budyko M, 1974. Climate and Life. Orlando:Academic Press, 1-7.
    [9] Burba G, Anderson D, 2010. A Brief Practical Guide to Eddy Covariance Flux Measurements, Principles And Workflow Examples for Scientific And Industrial Applications. Lincoln, NE, USA:LI-COR Biosciences.
    [10] Costanza R, D'Arge R, De Groot R et al., 1997. The value of the world's ecosystem services and natural capital. Nature, 387(6630):253-260. doi: 10.1038/387253a0
    [11] Droogers P, Bastiaanssen W, 2002. Irrigation performance using hydrological and remote sensing modeling. Journal of Irrigation and Drainage Engineering, 128(1):11-18. doi:10. 1061/(ASCE)0733-9437(2002)128:1(11)
    [12] Du J, Song K S, Wang Z M et al., 2013. Evapotranspiration estimation based on MODIS products and surface energy balance algorithms for land (SEBAL) model in Sanjiang Plain, Northeast China. Chinese Geographical Science, 23(1):73-91. doi: 10.1007/s11769-013-0587-8
    [13] Dugas W A, Fritschen L J, Gay L W et al., 1991. Bowen ratio, eddy correlation, and portable chamber measurements of sensible and latent heat flux over irrigated spring wheat. Agricultural and Forest Meteorology, 56(1-2):1-20. doi: 10.1016/0168-1923(91)90101-U
    [14] El Maayar M, Chen J M, 2006. Spatial scaling of evapotranspiration as affected by heterogeneities in vegetation, topography, and soil texture. Remote Sensing of Environment, 102(1-2):33-51. doi: 10.1016/j.rse.2006.01.017
    [15] Flannigan M, Stocks B, Turetsky M et al., 2009. Impacts of climate change on fire activity and fire management in the circumboreal forest. Global Change Biology, 15(3):549-560. doi: 10.1111/j.1365-2486.2008.01660.x
    [16] Friedl M A, McIver D K, Hodges J C F et al., 2002. Global land cover mapping from MODIS:algorithms and early results. Remote Sensing of Environment, 83(1-2):287-302. doi:10. 1016/S0034-4257(02)00078-0
    [17] Jia Z Z, Liu S M, Xu Z W et al., 2012. Validation of remotely sensed evapotranspiration over the Hai River Basin, China. Journal of Geophysical Research, 117(D13):D13113. doi: 10.1029/2011JD017037
    [18] Jin Y F, Schaaf C B, Woodcock C E et al., 2003. Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals:2. Validation. Journal of Geophysical Research, 108(D5):4159. doi: 10.1029/2002JD002804
    [19] Kim H W, Hwang K, Mu Q Z et al., 2012. Validation of MODIS 16 global terrestrial evapotranspiration products in various climates and land cover types in Asia. KSCE Journal of Civil Engineering, 16(2):229-238. doi: 10.1007/s12205-012-0006-1
    [20] Kustas W P, Norman J M, 1996. Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrological Sciences Journal, 41(4):495-516. doi:10.1080/0262666960 9491522
    [21] Li X W, Liang C, Shi J B, 2012. Developing wetland restoration scenarios and modeling its ecological consequences in the Liaohe River Delta Wetlands, China. Clean-Soil Air Water, 40(10):1185-1196. doi: 10.1002/clen.201200025
    [22] Liu S M, Xu Z W, Zhu Z L et al., 2013. Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. Journal of Hydrology, 487:24-38. doi: 10.1016/j.jhydrol.2013.02.025
    [23] Lucht W, Schaaf C B, Strahler A H, 2000. An algorithm for the retrieval of albedo from space using semiempirical BRDF models. IEEE Transactions on Geoscience and Remote Sensing, 38(2):977-998. doi: 10.1109/36.841980
    [24] McKenney M S, Rosenberg N J, 1993. Sensitivity of some potential evapotranspiration estimation methods to climate change. Agricultural and Forest Meteorology, 64(1-2):81-110. doi: 10.1016/0168-1923(93)90095-Y
    [25] Miller G R, Baldocchi D D, Law B E et al., 2007. An analysis of soil moisture dynamics using multi-year data from a network of micrometeorological observation sites. Advances in Water Resources, 30(5):1065-1081. doi:10.1016/j.advwatres.2006. 10.002
    [26] Mo X, Liu S, Lin Z et al., 2005. Prediction of crop yield, water consumption and water use efficiency with a SVAT-crop growth model using remotely sensed data on the North China Plain. Ecological Modelling, 183(2-3):301-322. doi: 10.1016/j.ecolmodel.2004.07.032
    [27] Monteith J L, 1965. Evaporation and environment. Symposia of the Society for Experimental Biology, 19:205-234.
    [28] Mu Q Z, Heinsch F A, Zhao M S et al., 2007. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment, 111(4):519-536. doi: 10.1016/j.rse.2007.04.015
    [29] Mu Q Z, Zhao M S, Running S W, 2011. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment, 115(8):1781-1800. doi: 10.1016/j.rse.2011.02.019
    [30] Musselman R C, Minnick T J, 2000. Nocturnal stomatal conductance and ambient air quality standards for ozone. Atmospheric Environment, 34(5):719-733. doi:10.1016/S1352-2310(99) 00355-6
    [31] Myneni R B, Hoffman S, Knyazikhin Y et al., 2002. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sensing of Environment, 83(1-2):214-231. doi: 10.1016/S0034-4257(02)00074-3
    [32] Pendleton L H, 2008. Are we collecting the right economic data for local conservation needs? Indicators of human uses of ecosystems. In:Economics and Conservation in the Tropics:A Strategic Dialogue. North Sandwich, NH:The Ocean Foundation and University of California-Los Angeles, 1-7.
    [33] P?ibáň K, Ondok J P, 1985. Heat balance components and evapotranspiration from a sedge-grass marsh. Folia Geobotanica et Phytotaxonomica, 20(1):41-56. doi: 10.1007/BF02856464
    [34] Ramoelo A, Majozi N, Mathieu R et al., 2014. Validation of Global Evapotranspiration Product (MOD16) using Flux Tower Data in the African Savanna, South Africa. Remote Sensing, 6(8):7406-7423. doi: 10.3390/rs6087406
    [35] Ruhoff A L, Paz A R, Aragao L E O C et al., 2013. Assessment of the MODIS global evapotranspiration algorithm using eddy covariance measurements and hydrological modelling in the Rio Grande basin. Hydrological Sciences Journal, 58(8):1658-1676. doi: 10.1080/02626667.2013.837578
    [36] Soucha C, Wolfe C P, Grimmtind C S B, 1996. Wetland evaporation and energy partitioning:Indiana dunes national lakeshore. Journal of Hydrology, 184(3-4):189-208. doi:10. 1016/0022-1694(95)02989-3
    [37] Su Z, 2002. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6(1):85-100. doi: 10.5194/hess-6-85-2002
    [38] Sun Z G, Gebremichael M, Ardö J et al., 2012. Estimation of daily evapotranspiration over Africa using MODIS/Terra and SEVIRI/MSG data. Atmospheric Research, 112:35-44. doi: 10.1016/j.atmosres.2012.04.005
    [39] Tang R L, Li Z L, Jia Y Y et al., 2011. An intercomparison of three remote sensing-based energy balance models using Large Aperture Scintillometer measurements over a wheat-corn production region. Remote Sensing of Environment, 115(12):3187-3202. doi: 10.1016/j.rse.2011.07.004
    [40] Zhou Guangsheng, Zhou Li, Guan Enkai et al., 2006. Brief introduction of Panjin wetland ecosystem research station. Journal of Meteorology and Environment, 22(4):1-6. (in Chinese)
    [41] Zhou L, Zhou G S, Liu S H et al., 2010. Seasonal contribution and interannual variation of evapotranspiration over a reed marsh (Phragmites australis) in Northeast China from 3-year eddy covariance data. Hydrological Processes, 2010, 24(8):1039-1047. doi: 10.1002/hyp.7545
    [42] Zhou L, Zhou G, Liu S et al., 2010. Seasonal contribution and interannual variation of evapotranspiration over a reed marsh(Phragmites australis) in Northeast China from 3-year eddy covariance data. Hydrological Processes, 2010, 24(8):1039-1047. doi: 10.1002/hyp.7545
    [43] Ahmad M, Biggs T, Turral H et al., 2005. Application of SEBAL approach and MODIS time-series to map vegetation water use patterns in the data scarce Krishna river basin of India. In:Proceedings of the 10th IWA Specialist Conference on Watershed and River Basin Management. Calgary, Canada:International Water Association Publishing, 83-90.
  • [1] Xiaofei LI, Wei LIANG, Lei JIAO, Jianwu YAN, Weibin ZHANG, Fengjiao WANG, Fen GOU, Chengxi WANG, Quanqin SHAO.  Identification of Dominant Climate Variables on Spatiotemporal Variation in Reference Evapotranspiration on the Loess Plateau, China . Chinese Geographical Science, 2022, 32(4): 620-642. doi: 10.1007/s11769-022-1290-4
    [2] Jiuge FENG, Jinfeng LIANG, Qianwei LI, Xiaoya ZHANG, Yi YUE, Junqin GAO.  Effect of Hydrological Connectivity on Soil Carbon Storage in the Yellow River Delta Wetlands of China . Chinese Geographical Science, 2021, 31(2): 197-208. doi: 10.1007/s11769-021-1185-9
    [3] Lixiang WEN, Meng GUO, Shuai YIN, Shubo HUANG, Xingli LI, Fangbing YU.  Vegetation Phenology in Permafrost Regions of Northeastern China Based on MODIS and Solar-induced Chlorophyll Fluorescence . Chinese Geographical Science, 2021, 31(3): 459-473. doi: 10.1007/s11769-021-1204-x
    [4] ZHAO Boyu, DU Jia, SONG Kaishan, Pierre-André JACINTHE, XIANG Xiaoyun, ZHOU Haohao, YANG Zhichao, ZHANG Liyan, GUO Pingping.  Spatio-temporal Variation of Water Heat Flux Using MODIS Land Surface Temperature Product over Hulun Lake, China During 2001-2018 . Chinese Geographical Science, 2020, 30(6): 1065-1080. doi: 10.1007/s11769-020-1166-4
    [5] ZHANG Yuan, LIU Shaomin, HU Xiao, WANG Jianghao, LI Xiang, XU Ziwei, MA Yanfei, LIU Rui, XU Tongren, YANG Xiaofan.  Evaluating Spatial Heterogeneity of Land Surface Hydrothermal Con-ditions in the Heihe River Basin . Chinese Geographical Science, 2020, 30(5): 855-875. doi: 10.1007/s11769-020-1151-y
    [6] WAN Siang, LIU Xingtu, MOU Xiaojie, ZHAO Yongqiang.  Comparison of Carbon, Nitrogen, and Sulfur in Coastal Wetlands Dominated by Native and Invasive Plants in the Yancheng National Nature Reserve, China . Chinese Geographical Science, 2020, 30(2): 202-216. doi: 10.1007/s11769-020-1108-1
    [7] WU Zongfan, ZHANG Lihua, LIU Dandan, ZHANG Kang, ZHU Zhiru, FU Yasheng, MA Yongming.  Simulation of Evapotranspiration Based on BEPS-TerrainLab V2.0 from 1990 to 2018 in the Dajiuhu Basin . Chinese Geographical Science, 2020, 30(6): 1095-1110. doi: 10.1007/s11769-020-1160-x
    [8] JIN Cui, LUO Xue, XIAO Xiangming, DONG Jinwei, LI Xueming, YANG Jun, ZHAO Deyu.  The 2012 Flash Drought Threatened US Midwest Agroecosystems . Chinese Geographical Science, 2019, 20(5): 768-783. doi: 10.1007/s11769-019-1066-7
    [9] MOU Xiaojie, LIU Xingtu, SUN Zhigao, TONG Chuan, HUANG Jiafang, WAN Siang, WANG Chun, WEN Bolong.  Effects of Anthropogenic Disturbance on Sediment Organic Carbon Mineralization Under Different Water Conditions in Coastal Wetland of a Subtropical Estuary . Chinese Geographical Science, 2018, 28(3): 400-410. doi: 10.1007/s11769-018-0956-4
    [10] BAO Kunshan, SHEN Ji, QUAN Guixiang, LIU Fugang.  A 150-year Isotopic Record of Lead Deposition in Yancheng Coastal Wetland, China . Chinese Geographical Science, 2016, 26(6): 755-769. doi: 10.1007/s11769-016-0835-9
    [11] TANG Xuguang, LI Hengpeng, LIU Guihua, LI Xinyan, YAO Li, XIE Jing, CHANG Shouzhi.  Sensitivity of Near Real-time MODIS Gross Primary Productivity in Terrestrial Forests Based on Eddy Covariance Measurements . Chinese Geographical Science, 2015, 25(5): 537-548. doi: 10.1007/s11769-015-0777-7
    [12] DU Jia, SONG Kaishan, WANG Zongming, ZHANG Bai, LIU Dianwei.  Evapotranspiration Estimation Based on MODIS Products and Surface Energy Balance Algorithms for Land (SEBAL) Model in Sanjiang Plain, Northeast China . Chinese Geographical Science, 2013, 23(1): 73-91.
    [13] LI Huixia, LIU Guohua, FU Bojie.  Estimation of Regional Evapotranspiration in Alpine Area and Its Response to Land Use Change: A Case Study in Three-River Headwaters Region of Qinghai-Tibet Plateau, China . Chinese Geographical Science, 2012, 22(4): 437-449.
    [14] WANG Aijun, CHEN Jian.  Spatial Variations in Depth-distribution of Trace Metals in Coastal Wetland Sediments from Quanzhou Bay, Fujian Province, China . Chinese Geographical Science, 2009, 19(1): 62-68. doi: 10.1007/s11769-009-0062-8
    [15] LIANG Liqiao, LI Lijuan, ZHANG Li, LI Jiuyi, LI Bin.  Sensitivity of Penman-Monteith Reference Crop Evapotranspiration in Tao'er River Basin of Northeastern China . Chinese Geographical Science, 2008, 18(4): 340-347. doi: 10.1007/s11769-008-0340-x
    [16] LI Xianghu, REN Liliang.  Effect of Temporal Resolution of NDVI on Potential Evapotranspiration Estimation and Hydrological Model Performance . Chinese Geographical Science, 2007, 17(4): 357-363. doi: 10.1007/s11769-007-0363-6
    [17] PENG Guangxiong, LI Jing, CHEN Yunhao, Abdul Patah NORIZAN, Liphong TAY.  High-resolution Surface Relative Humidity Computation Using MODIS Image in Peninsular Malaysia . Chinese Geographical Science, 2006, 16(3): 260-264.
    [18] WANG Hao, XU Shiguo, SUN Leshi.  Effects of Climatic Change on Evapotranspiration in Zhalong Wetland, Northeast China . Chinese Geographical Science, 2006, 16(3): 265-269.
    [19] WU Jin-kui, DING Yong-jian, WANG Gen-xu, SHEN Yong-ping, Yusuke YAMAZAKI, Jumpei KUBOTA.  EVAPOTRANSPIRATION OF LOW-LYING PRAIRIE WETLAND IN MIDDLE REACHES OF HEIHE RIVER IN NORTHWEST CHINA . Chinese Geographical Science, 2005, 15(4): 325-329.
    [20] 陈刚起, 吕宪国.  A STUDY ON MARSH EVAPOTRANSPIRATION IN THE SANJIANG PLAIN . Chinese Geographical Science, 1994, 4(2): 159-167.
  • 加载中
计量
  • 文章访问数:  253
  • HTML全文浏览量:  10
  • PDF下载量:  450
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-29
  • 修回日期:  2017-12-08
  • 刊出日期:  2018-06-27

Validation of Global Evapotranspiration Product (MOD16) Using Flux Tower Data from Panjin Coastal Wetland, Northeast China

doi: 10.1007/s11769-018-0960-8
    基金项目:  Under the auspices of National Key R&D Program of China (No. 2016YFA0602301-1), National Key Research Project (No. 2013CB430401)

摘要: Recent advances in remote sensing technology and methods have resulted in the development of an evapotranspiration (ET) product from the Moderate Resolution Imaging Spectrometer (MOD16). The accuracy of this product however has not been tested for coastal wetland ecosystems. The objective of this study therefore is to validate the MOD16 ET product using data from one eddy covariance flux tower situated in the Panjin coastal wetland ecosystem within the Liaohe River Delta, Northeast China. Cumulative ET data over an eight-day period in 2005 from the flux tower was calculated to coincide with the MOD16 products across the same period. Results showed that data from the flux tower were inconsistent with that gained form the MOD16 ET. In general, results from Panjin showed that there was an underestimation of MOD16 ET in the spring and fall, with Biases of -2.27 and -3.53 mm/8d, respectively (-40.58% and -49.13% of the observed mean). Results for Bias during the summer had a range of 1.77 mm/8d (7.82% of the observed mean), indicating an overestimation of MOD16 ET. According to the RMSE, summer (6.14 mm/8d) achieved the lowest value, indicating low accuracy of the MOD16 ET product. However, RMSE (2.09 mm/8d) in spring was the same as that in the fall. Relationship between ET and its relevant meteorological parameters were analyzed. Results indicated a very good relationship between surface air temperature and ET. Meanwhile a significant relationship between wind speed and ET also existed. The inconsistent comparison of MOD16 and flux tower-based ET are mainly attributed to the parameterization of the Penman-Monteith model, flux tower measurement errors, and flux tower footprint vs. MODIS pixels.

English Abstract

DU Jia, SONG Kaishan. Validation of Global Evapotranspiration Product (MOD16) Using Flux Tower Data from Panjin Coastal Wetland, Northeast China[J]. 中国地理科学, 2018, 28(3): 420-429. doi: 10.1007/s11769-018-0960-8
引用本文: DU Jia, SONG Kaishan. Validation of Global Evapotranspiration Product (MOD16) Using Flux Tower Data from Panjin Coastal Wetland, Northeast China[J]. 中国地理科学, 2018, 28(3): 420-429. doi: 10.1007/s11769-018-0960-8
DU Jia, SONG Kaishan. Validation of Global Evapotranspiration Product (MOD16) Using Flux Tower Data from Panjin Coastal Wetland, Northeast China[J]. Chinese Geographical Science, 2018, 28(3): 420-429. doi: 10.1007/s11769-018-0960-8
Citation: DU Jia, SONG Kaishan. Validation of Global Evapotranspiration Product (MOD16) Using Flux Tower Data from Panjin Coastal Wetland, Northeast China[J]. Chinese Geographical Science, 2018, 28(3): 420-429. doi: 10.1007/s11769-018-0960-8
参考文献 (43)

目录

    /

    返回文章
    返回