留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multi-scale Spatial Patterns and Influencing Factors of Rural Poverty: A Case Study in the Liupan Mountain Region, Gansu Province, China

MA Zhenbang CHEN Xingpeng CHEN Huan

MA Zhenbang, CHEN Xingpeng, CHEN Huan. Multi-scale Spatial Patterns and Influencing Factors of Rural Poverty: A Case Study in the Liupan Mountain Region, Gansu Province, China[J]. 中国地理科学, 2018, 28(2): 296-312. doi: 10.1007/s11769-018-0943-9
引用本文: MA Zhenbang, CHEN Xingpeng, CHEN Huan. Multi-scale Spatial Patterns and Influencing Factors of Rural Poverty: A Case Study in the Liupan Mountain Region, Gansu Province, China[J]. 中国地理科学, 2018, 28(2): 296-312. doi: 10.1007/s11769-018-0943-9
MA Zhenbang, CHEN Xingpeng, CHEN Huan. Multi-scale Spatial Patterns and Influencing Factors of Rural Poverty: A Case Study in the Liupan Mountain Region, Gansu Province, China[J]. Chinese Geographical Science, 2018, 28(2): 296-312. doi: 10.1007/s11769-018-0943-9
Citation: MA Zhenbang, CHEN Xingpeng, CHEN Huan. Multi-scale Spatial Patterns and Influencing Factors of Rural Poverty: A Case Study in the Liupan Mountain Region, Gansu Province, China[J]. Chinese Geographical Science, 2018, 28(2): 296-312. doi: 10.1007/s11769-018-0943-9

Multi-scale Spatial Patterns and Influencing Factors of Rural Poverty: A Case Study in the Liupan Mountain Region, Gansu Province, China

doi: 10.1007/s11769-018-0943-9
基金项目: Under the auspices of National Natural Science Foundation of China (No. 41401204, 41471462), Fundamental Research Funds for the Central Universities (No. lzujbky-2013-128)
详细信息
    通讯作者:

    MA Zhenbang.E-mail:zbma@lzu.edu.cn

Multi-scale Spatial Patterns and Influencing Factors of Rural Poverty: A Case Study in the Liupan Mountain Region, Gansu Province, China

Funds: Under the auspices of National Natural Science Foundation of China (No. 41401204, 41471462), Fundamental Research Funds for the Central Universities (No. lzujbky-2013-128)
More Information
    Corresponding author: MA Zhenbang.E-mail:zbma@lzu.edu.cn
  • 摘要: The important role of spatial scale in exploring the geography of poverty as well as its policy implications has been noticed but with limited knowledge. To improve such limited understanding, we mainly investigated the spatial patterns and influencing factors of rural poverty (indicated by poor population and poverty incidence) at three different administrative levels in the Liupan Mountain Region, one of the fourteen poorest regions in China. Our results show that from a global perspective, poor areas are clustered significantly at the county-, township-, and village-level, and more greatly at a lower level. Locally, there is spatial mismatch among poverty hotspots detected not only by the same indicator at different levels but also by different indicators at the same level. A scale effect can be found in the influencing factors of rural poverty. That is, the number of significant factors increases, but the degree of their association with poverty incidence decreases at a lower level. Such scale effect indicates that poverty incidence at lower levels may be affected by more complex factors, including not only the new local ones but also the already appeared non-local ones at higher levels. However, the natural conditions tend to play a scale-independent role to poverty incidence. In response to such scale-dependent patterns and factors, anti-poverty policies can be 1) a multilevel monitoring system to reduce incomplete or even misleading single-level information and understanding; 2) the village-based targeting strategy to increase the targeting efficiency and alleviate the mentioned spatial mismatch; 3) more flexible strategies responding to the local impoverishing factors, and 4) different task emphasises for multilevel policymakers to achieve the common goal of poverty reduction.
  • [1] Alkire S, Foster J, 2011. Counting and multidimensional poverty measurement. Journal of Public Economics, 95(7-8):476-487. doi: 10.1016/j.jpubeco.2010.11.006
    [2] Alwang J, Siegel P B, Jorgensen S L, 2001. Vulnerability:a view from different disciplines. Social Protection Discussion Paper Series No.0115. Washington, D.C.:The World Bank, 1-42.
    [3] Amara M, Ayadi M, 2013. The local geographies of welfare in Tunisia:does neighbourhood matter? International Journal of Social Welfare, 22(1):90-103. doi:10.1111/j.1468-2397.2011. 00863.x
    [4] Amarasinghe U, Samad M, Anputhas M, 2005. Spatial clustering of rural poverty and food insecurity in Sri Lanka. Food Policy, 30(5-6):493-509. doi: 10.1016/j.foodpol.2005.09.006
    [5] Annim S K, Mariwah S, Sebu J, 2012. Spatial inequality and household poverty in Ghana. Economic Systems, 36(4):487-505. doi: 10.1016/j.ecosys.2012.05.002
    [6] Anselin L, 1995. Local indicators of spatial association-LISA. Geographical Analysis, 27(2):93-115. doi: 10.1111/j.1538-4632.1995.tb00338.x
    [7] Anselin L, 2002. Under the hood issues in the specification and interpretation of spatial regression models. Agricultural Economics, 27(3):247-267. doi: 10.1016/S0169-5150(02)00077-4
    [8] Anselin L, 2003. GeoDaTM 0.9 User's Guide. Urbana-Champaign:University of Illinois.
    [9] Anselin L, Syabri I, Kho Y, 2010. GeoDa:an introduction to spatial data analysis. In:Fischer M M, Getis A (eds). Handbook of Applied Spatial Analysis. Berlin, Heidelberg:Springer. doi: 10.1007/978-3-642-03647-7_5
    [10] Benson T, Chamberlin J, Rhinehart I, 2005. An investigation of the spatial determinants of the local prevalence of poverty in rural Malawi. Food Policy, 30(5-6):532-550. doi:10.1016/j. foodpol.2005.09.004
    [11] Bird K, Hulme D, Moore K et al., 2002. Chronic poverty and remote rural areas. CPRC Working Paper No.13. London:Chronic Poverty Research Centre, 27-36.
    [12] Bird K, Shepherd A, 2003. Livelihoods and chronic poverty in semi-arid zimbabwe. World Development, 31(3):591-610. doi: 10.1016/S0305-750X(02)00220-6
    [13] Bird K, Higgins K, Harris D, 2010. Spatial poverty traps:an overview. CPRC Working Paper 161. London:Chronic Poverty Research Centre, 5-10.
    [14] Bloom D E, Canning D, Sevilla J, 2003. Geography and poverty traps. Journal of Economic Growth, 8(4):355-378. doi: 10.1023/A:1026294316581
    [15] Burke W J, Jayne T S, 2010. Spatial disadvantages or spatial poverty traps:household evidence from rural Kenya. CPRC Working Paper167. London:Chronic Poverty Research Centre, 16-27.
    [16] Carter P M R, Barrett C B, 2006. The economics of poverty traps and persistent poverty:an asset-based approach. Journal of Development Studies, 42(2):178-199. doi:10.1080/00220380 500405261
    [17] Cattell V, 2001. Poor people, poor places, and poor health:the mediating role of social networks and social capital. Social Science & Medicine, 52(10):1501-1516. doi: 10.1016/S0277-9536(00)00259-8
    [18] Curtis K J, Voss P R, Long D D, 2012. Spatial variation in poverty-generating processes:child poverty in the United States. Social Science Research, 41(1):146-159. doi:10.1016/j. ssresearch.2011.07.007
    [19] Data Center for Resources and Environmental Sciences, 2016. China meteorological data. Beijing:Chinese Academy of Sciences (RESDC).
    [20] Dercon S, 2001. Assessing vulnerability to poverty. Oxford:Oxford University, 1-79.
    [21] Donohue C, Biggs E, 2015. Monitoring socio-environmental change for sustainable development:developing a Multidimensional Livelihoods Index (MLI). Applied Geography, 62:391-403. doi: 10.1016/j.apgeog.2015.05.006
    [22] Dungan J L, Perry J N, Dale M R T et al., 2002. A balanced view of scale in spatial statistical analysis. Ecography, 25(5):626-640. doi: 10.1034/j.1600-0587.2002.250510.x
    [23] Editorial Board of Gansu Development Yearbook, 2014a. Gansu Development Yearbook 2014. Beijing:China Statistics Press.(in Chinese)
    [24] Elbers C, Lanjouw J O, Lanjouw P, 2003. Micro-level estimation of poverty and inequality. Econometrica, 71(1):355-364. doi: 10.1111/1468-0262.00399
    [25] Elbers C, Fujii T, Lanjouw P et al., 2007. Poverty alleviation through geographic targeting:how much does disaggregation help? Journal of Development Economics, 83(1):198-213. doi: 10.1016/j.jdeveco.2006.02.001
    [26] Epprecht M, Müller D, Minot N, 2011. How remote are Vietnam's ethnic minorities? An analysis of spatial patterns of poverty and inequality. The Annals of Regional Science, 46(2):349-368. doi: 10.1007/s00168-009-0330-7
    [27] Erenstein O, Hellin J, Chandna P, 2010. Poverty mapping based on livelihood assets:a meso-level application in the IndoGangetic Plains, India. Applied Geography, 30(1):112-125.
    [28] doi: 10.1016/j.apgeog.2009.05.001
    [29] Farrow A, Larrea C, Hyman G et al., 2005. Exploring the spatial variation of food poverty in Ecuador. Food Policy, 30(5-6):510-531. doi: 10.1016/j.foodpol.2005.09.005
    [30] Francis P, James R, 2003. Balancing rural poverty reduction and citizen participation:the contradictions of Uganda's decentralization program. World Development, 31(2):325-337. doi: 10.1016/S0305-750X(02)00190-0
    [31] Gansu Rural Yearbook Editorial Board, 2014b. Gansu Rural Yearbook 2014. Beijing:China Statistics Press. (in Chinese)
    [32] Geospatial Data Cloud, 2016. GDEMDEM 30M. Beijing:Computer Network Information Center, Chinese Academy of Sciences.
    [33] Grant U, Hulme D, Moore K et al., 2004. The chronic poverty report 2004-05. Manchester:Chronic Poverty Research Cen-tre, 30-51.
    [34] Hentschel J, Lanjouw J O, Lanjouw P et al., 2000. Combining census and survey data to trace the spatial dimensions of poverty:a case study of Ecuador. The World Bank Economic Review, 14(1):147-165. doi: 10.1093/wber/14.1.147
    [35] Holt J B, 2007. The topography of poverty in the United States:a spatial analysis using county-level data from the Community Health Status Indicators project. Preventing Chronic Disease, 4(4):A111.
    [36] Imran M, Stein A, Zurita-Milla R, 2014. Investigating rural poverty and marginality in Burkina Faso using remote sensingbased products. International Journal of Applied Earth Observation and Geoinformation, 26:322-334. doi: 10.1016/j.jag.2013.08.012
    [37] Jalan J, Ravallion M, 1997. Spatial poverty traps? Washington, D.C.:The World Bank, 4-10.
    [38] Jalan J, Ravallion M, 2002. Geographic poverty traps? A micro model of consumption growth in rural China. Journal of Applied Econometrics, 17(4):329-346. doi: 10.1002/jae.645
    [39] Kam S P, Hossain M, Bose M L et al., 2005. Spatial patterns of rural poverty and their relationship with welfare-influencing factors in Bangladesh. Food Policy, 30(5-6):551-567. doi: 10.1016/j.foodpol.2005.10.001
    [40] Kim R, Mohanty S K, Subramanian S V, 2016. Multilevel geographies of poverty in India. World Development, 87:349-359. doi: 10.1016/j.worlddev.2016.07.001
    [41] Legendre P, Fortin M J, 1989. Spatial pattern and ecological analysis. Vegetatio, 80(2):107-138. doi: 10.1007/bf00048036
    [42] Li Yurui, Cao Zhi, Zheng Xiaoyu et al., 2016. Regional and sustainable approach for Target-Poverty Alleviation and development of China. Bulletin of Chinese Academy of Sciences, 31(3):279-288. (in Chinese)
    [43] Liu Yansui, Zhou Yang, Liu Jilai, 2016. Regional differentiation characteristics of rural poverty and targeted poverty alleviation strategy in China. Bulletin of Chinese Academy of Sciences, 31(3):269-278. (in Chinese)
    [44] Liu Yansui, Li Jintao, 2017. Geographic detection and optimizing decision of the differentiation mechanism of rural poverty in China. Acta Geographica Sinica, 72(1):161-173. (in Chinese)
    [45] Liu Y H, Xu Y, 2016. A geographic identification of multidimensional poverty in rural China under the framework of sustainable livelihoods analysis. Applied Geography, 73:62-76. doi: 10.1016/j.apgeog.2016.06.004
    [46] Luo Qing, Fan Xinsheng, Gao Genghe et al., 2016. Spatial distribution of poverty village and influencing factors in Qinba Mountains. Economic Geography, 36(4):126-132. (in Chinese)
    [47] Minot N, 2000. Generating disaggregated poverty maps:an application to Vietnam. World Development, 28(2):319-331. doi: 10.1016/s0305-750x(99)00126-6
    [48] Minot N, Baulch B, 2005. Spatial patterns of poverty in Vietnam and their implications for policy. Food Policy, 30(5-6):461-475. doi: 10.1016/j.foodpol.2005.09.002
    [49] Minot N, Baulch B, Epprecht M, 2006. Poverty and Inequality in Vietnam:Spatial Patterns and Geographic Determinants. Washington, D.C.:International Food Policy Research Institute (IFPRI).
    [50] Mitchell A, 2005. The ESRI Guide to GIS Analysis, Volume 2:Spatial Measurements & Statistics. Redlands:ESRI.
    [51] Moran P A P, 1948. The interpretation of statistical maps. Journal of the Royal Statistical Society, 10(2):243-251.
    [52] National Bureau of Statistics of China, 2014. China County Statistical Yearbook 2014. Beijing:China Statistics Press. (in Chinese)
    [53] Oden N L, 1984. Assessing the significance of a spatial correlogram. Geographical Analysis, 16(1):1-16. doi:10.1111/j. 1538-4632.1984.tb00796.x
    [54] Okwi P O, Ndeng'e G, Kristjanson P et al., 2007. Spatial determinants of poverty in rural Kenya. Proceedings of the National Academy of Sciences of the United States of America, 104(43):16769-16774. doi: 10.1073/pnas.0611107104
    [55] Olivia S, Gibson J, Rozelle S et al., 2011. Mapping poverty in rural China:how much does the environment matter? Environment and Development Economics, 16(2):129-153. doi: 10.1017/s1355770x10000513
    [56] Palmer-Jones R, Sen K, 2006. It is where you are that matters:the spatial determinants of rural poverty in India. Agricultural Economics, 34(3):229-242. doi:10.1111/j.1574-0864.2006. 00121.x
    [57] Park A, Wang S G, Wu G B, 2002. Regional poverty targeting in China. Journal of Public Economics, 86(1):123-153. doi:10. 1016/s0047-2727(01)00108-6
    [58] Park A, Wang S G, 2010. Community-based development and poverty alleviation:an evaluation of China's poor village investment program. Journal of Public Economics, 94(9-10):790-799. doi: 10.1016/j.jpubeco.2010.06.005
    [59] Partridge M D, Rickman D S, 2008. Place-based policy and rural poverty:insights from the urban spatial mismatch literature. Cambridge Journal of Regions, Economy and Society, 1(1):131-156. doi: 10.1093/cjres/rsm005
    [60] Pijanowski B C, Iverson L R, Drew C A et al., 2010. Addressing the interplay of poverty and the ecology of landscapes:a Grand Challenge Topic for landscape ecologists? Landscape Ecology, 25(1):5-16. doi: 10.1007/s10980-009-9415-z
    [61] Ravallion M, Wodon Q, 1999. Poor areas, or only poor people? Journal of Regional Science, 39(4):689-711. doi: 10.1111/0022-4146.00156
    [62] Rupasingha A, Goetzb S J, 2007. Social and political forces as determinants of poverty:a spatial analysis. The Journal of Socio-Economics, 36(4):650-671. doi:10.1016/j.socec.2006. 12.021
    [63] State Council of the People's Republic of China, 2011. The Outline for Development-oriented poverty reduction for China's rural areas (2011-2020). http://www.gov.cn/gongbao/content/2011/content_2020905.htm. 2016-11-26. (in Chinese)
    [64] Sunderlin W D, Dewi S, Puntodewo A et al., 2008. Why forests are important for global poverty alleviation:a spatial explanation. Ecology and Society, 13(2):24.
    [65] Voss P R, Long D D, Hammer R B et al., 2006. County child poverty rates in the US:a spatial regression approach. Population Research and Policy Review, 25(4):369-391. doi:10. 1007/s11113-006-9007-4
    [66] Ward J, Kaczan D, 2014. Challenging Hydrological Panaceas:water poverty governance accounting for spatial scale in the Niger River Basin. Journal of Hydrology, 519:2501-2514. doi: 10.1016/j.jhydrol.2014.05.068
    [67] World Bank, 2000. World Development Report 2000/2001:Attacking Poverty. Washington, D.C.:The World Bank.
    [68] World Bank, 2009. World development report 2009:reshaping economic geography. Washington, D.C.:The World Bank.
    [69] Wu J G, 2004. Effects of changing scale on landscape pattern analysis:scaling relations. Landscape Ecology, 19(2):125-138. doi:10.1023/B:LAND.0000021711.40074.ae Wu Lizong, 2012. Basic geographic data set of Gansu at the scale of 1?100 000. Beijing:National Science & Technology Infrastructure of China, National Earth System Science Data Sharing Infrastructure.
    [70] Xu Yueqing, Li Shuangcheng, Cai Yunlong, 2006. Spatial simulation using GIS and artificial neural network for regional poverty-A case study of Maotiaohe Watershed, Guizhou Province. Progress in Geography, 25(3):79-85. (in Chinese)
    [71] Zhang Yongli, Huang Zuhui, 2008. Characteristics and trends of the new generation migrants:survey and analysis on 10 villages in Gansu Province. Chinese Journal of Population Science, (2):80-87. (in Chinese)
  • [1] LI Jinfeng, XU Haicheng, LIU Wanwan, WANG Dongfang, ZHOU Shuang.  Spatial Pattern Evolution and Influencing Factors of Cold Storage in China . Chinese Geographical Science, 2020, 30(3): 505-515. doi: 10.1007/s11769-020-1124-1
    [2] LU Yupeng, CHEN Wei, YAO Jing, HUANG Yanqing, ZHANG Yue, LIU Huanchu, HE Xingyuan.  Multiple Spatial Scale Analysis of the Niche Characteristics of the Rhododendron dauricum Plant Communities in Northeast China . Chinese Geographical Science, 2020, 30(4): 614-630. doi: 10.1007/s11769-020-1138-8
    [3] WANG Liyan, ANNA Herzberger, ZHANG Liyun, XIAO Yi, WANG Yaqing, XIAO Yang, LIU Jianguo, OUYANG Zhiyun.  Spatial and Temporal Changes of Arable Land Driven by Urbanization and Ecological Restoration in China . Chinese Geographical Science, 2019, 20(5): 809-819. doi: 10.1007/s11769-018-0983-1
    [4] XIAO Yang, OUYANG Zhiyun.  Spatial-temporal Patterns and Driving Forces of Water Retention Service in China . Chinese Geographical Science, 2019, 20(1): 100-111. doi: 10.1007/s11769-018-0984-0
    [5] CHEN Xiaohong, WEI Luyao, ZHANG Haifeng.  Spatial and Temporal Pattern of Urban Smart Development in China and Its Driving Mechanism . Chinese Geographical Science, 2018, 28(4): 584-599. doi: 10.1007/s11769-018-0976-0
    [6] LIU Daqian, LO Kevin, SONG Wei, XIE Chunyan.  Spatial Patterns of Car Sales and Their Socio-economic Attributes in China . Chinese Geographical Science, 2017, 27(5): 684-696. doi: 10.1007/s11769-017-0902-x
    [7] JU Hongrun, ZHANG Zengxiang, WEN Qingke, WANG Jiao, ZHONG Lijin, ZUO Lijun.  Spatial Patterns of Irrigation Water Withdrawals in China and Implications for Water Saving . Chinese Geographical Science, 2017, 27(3): 362-373. doi: 10.1007/s11769-017-0871-0
    [8] LIU Yaolin, WANG Huimin, JIAO Limin, LIU Yanfang, HE Jianhua, AI Tinghua.  Road Centrality and Landscape Spatial Patterns in Wuhan Metropolitan Area, China . Chinese Geographical Science, 2015, 25(4): 511-522. doi: 10.1007/s11769-015-0749-y
    [9] WANG Chengjin, César DUCRUET, WANG Wei.  Port Integration in China: Temporal Pathways, Spatial Patterns and Dynamics . Chinese Geographical Science, 2015, 25(5): 612-628. doi: 10.1007/s11769-015-0752-3
    [10] ZHEN Nahui, FU Bojie, LU Yihe, WANG Shuai.  Poverty Reduction, Environmental Protection and Ecosystem Services:A Prospective Theory for Sustainable Development . Chinese Geographical Science, 2014, 0(1): 83-92. doi: 10.1007/s11769-014-0658-5
    [11] TAN Minghong, Guy M ROBINSON, LI Xiubin, XIN Liangjie.  Spatial and Temporal Variability of Farm Size in China in Context of Rapid Urbanization . Chinese Geographical Science, 2013, 23(5): 607-619. doi: 10.1007/s11769-013-0610-0
    [12] ZHOU Suhong, DENG Lifang, HUANG Meiyu.  Spatial Analysis of Commuting Mode Choice in Guangzhou, China . Chinese Geographical Science, 2013, 23(3): 353-364. doi: 10.1007/s11769-012-0569-2
    [13] WANG Bei, LIU Weidong, LU Dadao, ZHANG Jianbo.  Spatial Disparity and Efficiency of Science and Technology Resources in China . Chinese Geographical Science, 2012, 22(6): 730-741.
    [14] Liu Jiyuan Zhang Qian Hu Yunfeng.  Regional Differences of China’s Urban Expansion from the Late 20th to the Early 21st Century -- Based on Remote Sensing Information . Chinese Geographical Science, 2012, 22(1): 1-14.
    [15] WANG Kaiyong, GAO Xiaolu, CHEN Tian.  Influencing Factors for Formation of Urban and Rural Spatial Structure in Metropolis Fringe Area——Taking Shuangliu County of Chengdu in China as a Case . Chinese Geographical Science, 2008, 18(3): 224-234. doi: 10.1007/s11769-008-0224-0
    [16] SUN Yifei, WANG Hongyang.  Spatial Strategy for Quality Labor in Rural Development——A Case Study of Jiangsu Province, China . Chinese Geographical Science, 2007, 17(2): 117-126. doi: 10.1007/s11769-007-0117-7
    [17] FANG Chuanglin, SONG Jitao, SONG Dunjiang.  Stability of Spatial Structure of Urban Agglomeration in China Based on Central Place Theory . Chinese Geographical Science, 2007, 17(3): 193-202. doi: 10.1007/s11769-007-0193-8
    [18] LIU Chen, Kuninori OTSUBO, WANG Qinxue, Toshiaki ICHINOSE, Sadao ISHIMURA.  Spatial and Temporal Changes of Floating Population in China Between 1990 and 2000 . Chinese Geographical Science, 2007, 17(2): 99-109. doi: 10.1007/s11769-007-0099-5
    [19] ZHU Xiao-hua, Patel NILANCHAL, ZUO Wei, YANG Xiu-chun.  FRACTAL ANALYSIS APPLIED TO SPATIAL STRUCTURE OF CHINA'S VEGETATION . Chinese Geographical Science, 2006, 16(1): 48-55.
    [20] 李小建.  HONG KONG DIRECT INVESTMENT IN CHINA'S MAINLAND:A SPATIAL STUDY WITH SPECIAL REFERENCE TO THE LOCATIONAL BEHAVIOUR OF INVESTORS . Chinese Geographical Science, 1996, 6(4): 289-303.
  • 加载中
计量
  • 文章访问数:  823
  • HTML全文浏览量:  3
  • PDF下载量:  607
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-10
  • 修回日期:  2017-09-08
  • 刊出日期:  2018-04-27

Multi-scale Spatial Patterns and Influencing Factors of Rural Poverty: A Case Study in the Liupan Mountain Region, Gansu Province, China

doi: 10.1007/s11769-018-0943-9
    基金项目:  Under the auspices of National Natural Science Foundation of China (No. 41401204, 41471462), Fundamental Research Funds for the Central Universities (No. lzujbky-2013-128)
    通讯作者: MA Zhenbang.E-mail:zbma@lzu.edu.cn

摘要: The important role of spatial scale in exploring the geography of poverty as well as its policy implications has been noticed but with limited knowledge. To improve such limited understanding, we mainly investigated the spatial patterns and influencing factors of rural poverty (indicated by poor population and poverty incidence) at three different administrative levels in the Liupan Mountain Region, one of the fourteen poorest regions in China. Our results show that from a global perspective, poor areas are clustered significantly at the county-, township-, and village-level, and more greatly at a lower level. Locally, there is spatial mismatch among poverty hotspots detected not only by the same indicator at different levels but also by different indicators at the same level. A scale effect can be found in the influencing factors of rural poverty. That is, the number of significant factors increases, but the degree of their association with poverty incidence decreases at a lower level. Such scale effect indicates that poverty incidence at lower levels may be affected by more complex factors, including not only the new local ones but also the already appeared non-local ones at higher levels. However, the natural conditions tend to play a scale-independent role to poverty incidence. In response to such scale-dependent patterns and factors, anti-poverty policies can be 1) a multilevel monitoring system to reduce incomplete or even misleading single-level information and understanding; 2) the village-based targeting strategy to increase the targeting efficiency and alleviate the mentioned spatial mismatch; 3) more flexible strategies responding to the local impoverishing factors, and 4) different task emphasises for multilevel policymakers to achieve the common goal of poverty reduction.

English Abstract

MA Zhenbang, CHEN Xingpeng, CHEN Huan. Multi-scale Spatial Patterns and Influencing Factors of Rural Poverty: A Case Study in the Liupan Mountain Region, Gansu Province, China[J]. 中国地理科学, 2018, 28(2): 296-312. doi: 10.1007/s11769-018-0943-9
引用本文: MA Zhenbang, CHEN Xingpeng, CHEN Huan. Multi-scale Spatial Patterns and Influencing Factors of Rural Poverty: A Case Study in the Liupan Mountain Region, Gansu Province, China[J]. 中国地理科学, 2018, 28(2): 296-312. doi: 10.1007/s11769-018-0943-9
MA Zhenbang, CHEN Xingpeng, CHEN Huan. Multi-scale Spatial Patterns and Influencing Factors of Rural Poverty: A Case Study in the Liupan Mountain Region, Gansu Province, China[J]. Chinese Geographical Science, 2018, 28(2): 296-312. doi: 10.1007/s11769-018-0943-9
Citation: MA Zhenbang, CHEN Xingpeng, CHEN Huan. Multi-scale Spatial Patterns and Influencing Factors of Rural Poverty: A Case Study in the Liupan Mountain Region, Gansu Province, China[J]. Chinese Geographical Science, 2018, 28(2): 296-312. doi: 10.1007/s11769-018-0943-9
参考文献 (71)

目录

    /

    返回文章
    返回