留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Evaluation of Intensive Urban Land Use Based on an Artificial Neural Network Model:A Case Study of Nanjing City, China

QIAO Weifeng GAO Junbo LIU Yansui QIN Yueheng LU Cheng JI Qingqing

QIAO Weifeng, GAO Junbo, LIU Yansui, QIN Yueheng, LU Cheng, JI Qingqing. Evaluation of Intensive Urban Land Use Based on an Artificial Neural Network Model:A Case Study of Nanjing City, China[J]. 中国地理科学, 2017, 27(5): 735-746. doi: 10.1007/s11769-017-0905-7
引用本文: QIAO Weifeng, GAO Junbo, LIU Yansui, QIN Yueheng, LU Cheng, JI Qingqing. Evaluation of Intensive Urban Land Use Based on an Artificial Neural Network Model:A Case Study of Nanjing City, China[J]. 中国地理科学, 2017, 27(5): 735-746. doi: 10.1007/s11769-017-0905-7
QIAO Weifeng, GAO Junbo, LIU Yansui, QIN Yueheng, LU Cheng, JI Qingqing. Evaluation of Intensive Urban Land Use Based on an Artificial Neural Network Model:A Case Study of Nanjing City, China[J]. Chinese Geographical Science, 2017, 27(5): 735-746. doi: 10.1007/s11769-017-0905-7
Citation: QIAO Weifeng, GAO Junbo, LIU Yansui, QIN Yueheng, LU Cheng, JI Qingqing. Evaluation of Intensive Urban Land Use Based on an Artificial Neural Network Model:A Case Study of Nanjing City, China[J]. Chinese Geographical Science, 2017, 27(5): 735-746. doi: 10.1007/s11769-017-0905-7

Evaluation of Intensive Urban Land Use Based on an Artificial Neural Network Model:A Case Study of Nanjing City, China

doi: 10.1007/s11769-017-0905-7
基金项目: Under the auspices of Special Financial Grant and General Financial Grant from the China Postdoctoral Science Foundation (No.2015T80127,2014M561040),National Natural Science Foundation of China (No.41371172,41401171,41471143),A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (No.164320H101)
详细信息
    通讯作者:

    LIU Yansui,E-mail:liuys@igsnrr.ac.cn

Evaluation of Intensive Urban Land Use Based on an Artificial Neural Network Model:A Case Study of Nanjing City, China

Funds: Under the auspices of Special Financial Grant and General Financial Grant from the China Postdoctoral Science Foundation (No.2015T80127,2014M561040),National Natural Science Foundation of China (No.41371172,41401171,41471143),A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (No.164320H101)
More Information
    Corresponding author: LIU Yansui,E-mail:liuys@igsnrr.ac.cn
  • 摘要: In this paper, the artificial neural network (ANN) model was used to evaluate the degree of intensive urban land use in Nanjing City, China. The construction and application of the ANN model took into account the comprehensive, spatial and complex nature of urban land use. Through a preliminary calculation of the degree of intensive land use of the sample area, representative sample area selection and using the back propagation neural network model to train, the intensive land use level of each evaluation unit is finally determined in the study area. Results show that the method can effectively correct the errors caused by the limitations of the model itself and the determination of the ideal value and weights when the multifactor comprehensive evaluation is used alone. The ANN model can make the evaluation results more objective and practical. The evaluation results show a tendency of decreasing land use intensity from the core urban area to the periphery and the industrial functional area has relatively low land use intensity compared with other functional areas. Based on the evaluation results, some suggestions are put forward, such as transforming the mode of urban spatial expansion, strengthening the integration and potential exploitation of the land in the urban built-up area, and strengthening the control of the construction intensity of protected areas.
  • [1] Ahn B S, Cho S S, Kim C Y, 2000. The integrated methodology of rough set theory and artificial neural network for business failure prediction. Expert Systems with Applications, 18(2):65–74. doi:  10.1016/S0957-4174(99)00053-6
    [2] Almeida C M, Gleriani J M, Castejon E F et al., 2008. Using neural networks and cellular automata for modelling intra-urban land-use dynamics. International Journal of Geographical Information Science, 22(9): 943–963. doi: 10.1080/ 13658810701731168
    [3] Bai X M, Shi P J, Liu Y S, 2014. Society: Realizing China's urban dream. Nature, 509(7499): 158–160. doi: 10.1038/509158a
    [4] Di Xianghong, Hou Xiyong, Wang Yuandong et al., 2015. Spatial-temporal characteristics of land use intensity of coastal zone in China during 2000–2010. Chinese geographical science, 25(1): 51–61. doi:  10.1007/s11769-014-0707-0
    [5] Erb K H, Haberl H, Jepsen M R et al., 2013. A conceptual framework for analysing and measuring land-use intensity. Current Opinion in Environmental Sustainability, 5(5): 464– 470. doi:  10.1016/j.cosust.2013.07.010
    [6] Estoque R C, Murayama Y, 2015. Intensity and spatial pattern of urban land changes in the megacities of Southeast Asia. Land Use Policy, 48: 213–222. doi: 10.1016/j.landusepol.2015.05. 017
    [7] Ferdous N, Bhat R C, 2013. A spatial panel ordered-response model with application to the analysis of urban land-use development intensity patterns. Journal of Geographical Systems, 15(1): 1–29. doi:  10.1007/s10109-012-0165-0
    [8] Gevrey M, Dimopoulos I, Lek S, 2003. Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecological Modelling, 160(3):249–264. doi:  10.1016/S0304-3800(02)00257-0
    [9] Gong J Z, Chen W L, Liu Y S, 2014. The intensity change of urban development land: Implications for the city master plan of Guangzhou, China. Land Use Policy, 40: 91–100. doi: 10.1016/j.landusepol.2013.05.001
    [10] Guresen E, Kayakutlu G, Daim T U, 2011. Using artificial neural network models in stock market index prediction. Expert Systems with Applications, 38(8): 10389–10397. doi: 10.1016/j. eswa.2011.02.068
    [11] Hui E C M, Wu Y Z, Deng L J et al., 2015. Analysis on coupling relationship of urban scale and intensive use of land in China. Cities, 42: 63–69. doi:  10.1016/j.cities.2014.09.002
    [12] Jiang Hai, Qu Futian, Ou Minghao et al., 2008. Evaluation methods and application of regional Land-use intensity. Transactions of the Chinese Society of Agricultural Engineering, 24(1): 117–123. (in Chinese)
    [13] Khan J, Wei J S, Ringner M et al., 2001. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine, 7(6): 673–679. doi:  10.1038/89044
    [14] Kuemmerle T, Erb K, Meyfroidt P et al., 2013. Challenges and opportunities in mapping land use intensity globally. Current Opinion in Environmental Sustainability, 5(5): 484–493. doi: 10.1016/j.cosust.2013.06.002
    [15] Levers C, Butsic V, Verburg P, 2016. Drivers of changes in agricultural intensity in Europe. Land Use Policy, 58(15):380–393. doi. 10.1016/j.landusepol.2016.08.013
    [16] Li Guangdong, Fang Chuanglin, Pang Bo, 2014. Quantitative measuring and influencing mechanism of urban and rural land intensive use in China. Journal of Geographical Sciences, 24(5): 858–874. doi:  10.1007/s11442-014-1125-z
    [17] Li Kongqing, Chen Yinrong, 2013. Evaluation on the intensity of urban land use based on low-carbon concept: a case study of Nanjing City. China Land Sciences, 27(1): 61–66. (in Chinese)
    [18] Li X, Yeh A G O, 2002. Neural-network-based cellular automata for simulating multiple land use changes using GIS. International Journal of Geographical Information Science, 16(4):323–343. doi:  10.1080/13658810210137004
    [19] Liu X D, Gao J, 2011. Discussion on the index system of intensive land use evaluation in development area. Asian Agricultural Research, 3(2): 91–96.
    [20] Luo H C, Li X M, Zheng S J et al., 2012. Study on synthesis evaluation of intensive land use and growth pattern transfor-mation of towns. Journal of Computers, 7(8): 1959-1966. doi:10.4304/jcp.7. 8.1959–1966
    [21] Meng Y, Zhang F R, An P L et al., 2008. Industrial land-use efficiency and planning in Shunyi, Beijing. Landscape and Urban Planning, 85(1): 40–48. doi: 10.1016/j.landurbplan.2007.09. 004
    [22] Pijanowski B C, Brown D G, Shellito B A et al., 2002. Using neural networks and GIS to forecast land use changes: a land transformation model. Computers, Environment and Urban Systems, 26(6): 553–575. doi:  10.1016/S0198-9715(01)00015-1
    [23] Pradhan B, Lee S, 2009. Landslide risk analysis using artificial neural network model focussing on different training sites. International Journal of Physical Sciences, 4(1): 1–15.
    [24] Pradhan B, Lee S, 2010. Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environmental Earth Sciences, 60(5): 1037–1054. doi:  10.1007/s12665-009-0245-8
    [25] Qiao Weifeng, 2013. Study on Urban Spatial Multidimensional Expansion of Nanjing Based on Land Use Perspective. Nanjing: Nanjing Normal University. (in Chinese)
    [26] Recknagel F, 1997. ANNA: Artificial Neural Network model for predicting species abundance and succession of blue-green algae. Hydrobiologia, 349(1): 47–57. doi: 10.1023/A:100304142 7672
    [27] Salomon R, Hemmen J, 1996. Accelerating back propagation through dynamic self-adaptation. Neural Networks, 9(4), 589–601. doi:  10.1016/0893-6080(95)00144-1
    [28] Shao Xiaomei, Wang Jing, 2008. Appraisal of intensive land use of development zones in small towns: a case study of Cixi in Zhejiang Province. Progress in Geography, 27(1): 75–81. (in Chinese)
    [29] Shi Y S, Huang Y C, 2013. Relationship between morphological characteristics and land-use intensity: empirical analysis of shanghai development zones. Journal of Urban Planning and Development, 139(1): 49–61. doi:  10.1061/(ASCE)UP.1943-5444.0000134
    [30] Sluisa T, Pedrolia B, Kristensen S, 2016. Changing land use intensity in Europe: recent processes in selected case studies. Land Use Policy, 57(30): 777–785. doi: 10.1016/j.landusepol. 2014.12.005
    [31] Taleai M, Sharifi A, Sliuzas R, 2007. Evaluating the compatibility of multi-functional and intensive urban land uses. International Journal of Applied Earth Observation and Geoinformation, 9(4): 375–391. doi: 10.1016/j.jag.2006.12.002
    [32] Temme A J A M, Verburg P H, 2011. Mapping and modeling of changes in agricultural intensity in Europe. Agriculture, Ecosystems and Environment, 140(1–2): 46–56. doi: 10.1016/j. agee.2010.11.010
    [33] Wang F, Antipova A, Porta S, 2011. Street centrality and land use intensity in Baton Rouge, Louisiana. Journal of Transport Geography, 19(2): 285–293. doi:10.1016/j.jtrangeo.2010.01. 004
    [34] Wang J, Chen Y, Shao X et al., 2012. Land-use changes and policy dimension driving forces in China: present, trend and future. Land Use Policy, 29(4): 737–749. doi:  10.1016/j.landusepol.2011.11.010
    [35] Wang Mingshu, Zhu Ming, 2012. Evaluating intensive land use situation of development zone based on cloud models. Transaction of the Chinese Society of Agricultural Engineering, 28(10): 247–252. (in Chinese)
    [36] Xie Hualin, He Yafen, Zou Jinlang et al., 2016. Spatio-temporal difference analysis of cultivated land use intensity based on emergy in the Poyang Lake Eco-economic Zone of China. Journal of Geographical Sciences, 26(10): 1412–1430. doi: 10.1007/s11442-016-1335-7
    [37] Yang J Y, Yang Y, Tang W, 2012. Development of evaluation model for intensive land use in urban centers. Frontiers of Architectural Research, 1(4): 405–410. doi: 10.1016/j.foar. 2012.07.006
    [38] Zhang Y D, Wu L N, 2009. Stock market prediction of S&P 500 via combination of improved BCO approach and BP neural network. Expert Systems with Applications, 36(5): 8849–8854. doi:  10.1016/j.eswa.2008.11.028
  • [1] MA Shifa, ZHAO Yabo, TAN Xiaohong.  Exploring Smart Growth Boundaries of Urban Agglomeration with Land Use Spatial Optimization: A Case Study of Changsha- Zhuzhou-Xiangtan City Group, China . Chinese Geographical Science, 2020, 30(4): 665-676. doi: 10.1007/s11769-020-1140-1
    [2] LI Xin, MA Xiaodong.  An Uncertain Programming Model for Land Use Structure Optimization to Promote Effectiveness of Land Use Planning . Chinese Geographical Science, 2017, 27(6): 974-988. doi: 10.1007/s11769-017-0896-4
    [3] SHI Lifeng, ZHANG Zengxiang, LIU Fang, ZHAO Xiaoli, WANG Xiao, LIU Bin, HU Shunguang, WEN Qingke, ZUO Lijun, YI Ling, XU Jinyong.  City Size Distribution and Its Spatiotemporal Evolution in China . Chinese Geographical Science, 2016, 26(6): 703-714. doi: 10.1007/s11769-016-0832-z
    [4] LU Yi, CAO Min, ZHANG Lei.  A Vector-based Cellular Automata Model for Simulating Urban Land Use Change . Chinese Geographical Science, 2015, 25(1): 74-84. doi: 10.1007/s11769-014-0719-9
    [5] WANG Bo, ZHEN Feng, WEI Zongcai, GUO Shu, CHEN Tingting.  A Theoretical Framework and Methodology for Urban Activity Spatial Structure in E-society: Empirical Evidence for Nanjing City, China . Chinese Geographical Science, 2015, 25(6): 672-683. doi: 10.1007/s11769-015-0751-4
    [6] ZHAO Rongqin, HUANG Xianjin, LIU Ying, ZHONG Taiyang, DING Minglei, CHUAI Xiaowei.  Carbon Emission of Regional Land Use and Its Decomposition Analysis: Case Study of Nanjing City, China . Chinese Geographical Science, 2015, 25(2): 198-212. doi: 10.1007/s11769-014-0714-1
    [7] ZHANG Runsen, PU Lijie, ZHU Ming.  Impacts of Transportation Arteries on Land Use Patterns in Urbanrural Fringe:A Comparative Gradient Analysis of Qixia District, Nanjing City, China . Chinese Geographical Science, 2013, 23(3): 378-388. doi: 10.1007/s11769-012-0582-5
    [8] ZHANG Ying, ZHANG Hongqi, NI Dongying, SONG Wei.  Agricultural Land Use Optimal Allocation System in Developing Area: Application to Yili Watershed, Xinjiang Region . Chinese Geographical Science, 2012, 22(2): 232-244.
    [9] HUANG Daquan, WAN Wei, DAI Teqi, LIANG Jinshe.  Assessment of Industrial Land Use Intensity: A Case Study of Beijing Economic-technological Development Area . Chinese Geographical Science, 2011, 21(2): 222-229.
    [10] CHEN Liding, QI Xin, ZHANG Xinyu, LI Qi, ZHANG Yanyan.  Effect of Agricultural Land Use Changes on Soil Nutrient Use Efficiency in an Agricultural Area, Beijing, China . Chinese Geographical Science, 2011, 21(4): 392-402.
    [11] ZHEN Feng, WEI Zongcai.  Influence of Information Technology on Social Spatial Behaviors of Urban Residents——Case of Nanjing City in China . Chinese Geographical Science, 2008, 18(4): 316-322. doi: 10.1007/s11769-008-0316-x
    [12] XU Jiangang, LIAO Banggu, SHEN Qing, ZHANG Feng, MEI Anxin.  Urban Spatial Restructuring in Transitional Economy——Changing Land Use Pattern in Shanghai . Chinese Geographical Science, 2007, 17(1): 19-27. doi: 10.1007/s11769-007-0019-8
    [13] CAO Kang, GUAN Hua.  Brownfield Redevelopment Toward Sustainable Urban Land Use in China . Chinese Geographical Science, 2007, 17(2): 127-134. doi: 10.1007/s11769-007-0127-5
    [14] ZHANG Xiu-ying, FENG Xue-zhi, DENG Hui.  LAND-COVER DENSITY-BASED APPROACH TO URBAN LAND USE MAPPING USING HIGH-RESOLUTION IMAGERY . Chinese Geographical Science, 2005, 15(2): 162-167.
    [15] SHI Chun, Philip JAMES, GUO Zhong-yang.  APPLICATION OF ARTIFICIAL NEURAL NETWORK IN COMPLEX SYSTEMS OF REGIONAL SUSTAINABLE DEVELOPMENT . Chinese Geographical Science, 2004, 14(1): 1-8.
    [16] WANG Xie-kang, HUANG Er, CUI Peng.  SIMULATION AND PREDICTION OF DEBRIS FLOW USING ARTIFICIAL NEURAL NETWORK . Chinese Geographical Science, 2003, 13(3): 262-266.
    [17] LIAO Chi-mei, LI Lan, YAN Zhi-qiang, PENG Ding-xin.  SUSTAINABLE USE OF LAND RESOURCE AND ITS EVALUATION IN COUNTY AREA—A Case of Guangxi Zhuang Autonomous Region, China . Chinese Geographical Science, 2002, 12(1): 61-67.
    [18] ZHANG Xin-chang, PAN Qiong, ZHAO Ling-ling, YE Shen-tao.  GIS-BASED ANALYSIS OF URBAN LAND-USE CHANGES—A Case Study of Haizhu District of Guangzhou City,China . Chinese Geographical Science, 2002, 12(4): 339-345.
    [19] YE Bao-ying, HUANG Fang, ZHANG Shu-wen, ZHANG Yang-zhen.  THE DRIVING FORCES OF LAND USE/COVER CHANGE INTHE UPSTREAM AREA OF THE NENJIANG RIVER . Chinese Geographical Science, 2001, 11(4): 377-381.
    [20] CAO Xiao-shu, YANG Fan, YAN Xiao-Pei.  STUDY ON THE URBAN TRANSPORT AND LAND-USE OF GUANGZHOU . Chinese Geographical Science, 2000, 10(2): 144-150.
  • 加载中
计量
  • 文章访问数:  145
  • HTML全文浏览量:  1
  • PDF下载量:  505
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-09
  • 修回日期:  2017-05-04
  • 刊出日期:  2017-10-27

Evaluation of Intensive Urban Land Use Based on an Artificial Neural Network Model:A Case Study of Nanjing City, China

doi: 10.1007/s11769-017-0905-7
    基金项目:  Under the auspices of Special Financial Grant and General Financial Grant from the China Postdoctoral Science Foundation (No.2015T80127,2014M561040),National Natural Science Foundation of China (No.41371172,41401171,41471143),A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (No.164320H101)
    通讯作者: LIU Yansui,E-mail:liuys@igsnrr.ac.cn

摘要: In this paper, the artificial neural network (ANN) model was used to evaluate the degree of intensive urban land use in Nanjing City, China. The construction and application of the ANN model took into account the comprehensive, spatial and complex nature of urban land use. Through a preliminary calculation of the degree of intensive land use of the sample area, representative sample area selection and using the back propagation neural network model to train, the intensive land use level of each evaluation unit is finally determined in the study area. Results show that the method can effectively correct the errors caused by the limitations of the model itself and the determination of the ideal value and weights when the multifactor comprehensive evaluation is used alone. The ANN model can make the evaluation results more objective and practical. The evaluation results show a tendency of decreasing land use intensity from the core urban area to the periphery and the industrial functional area has relatively low land use intensity compared with other functional areas. Based on the evaluation results, some suggestions are put forward, such as transforming the mode of urban spatial expansion, strengthening the integration and potential exploitation of the land in the urban built-up area, and strengthening the control of the construction intensity of protected areas.

English Abstract

QIAO Weifeng, GAO Junbo, LIU Yansui, QIN Yueheng, LU Cheng, JI Qingqing. Evaluation of Intensive Urban Land Use Based on an Artificial Neural Network Model:A Case Study of Nanjing City, China[J]. 中国地理科学, 2017, 27(5): 735-746. doi: 10.1007/s11769-017-0905-7
引用本文: QIAO Weifeng, GAO Junbo, LIU Yansui, QIN Yueheng, LU Cheng, JI Qingqing. Evaluation of Intensive Urban Land Use Based on an Artificial Neural Network Model:A Case Study of Nanjing City, China[J]. 中国地理科学, 2017, 27(5): 735-746. doi: 10.1007/s11769-017-0905-7
QIAO Weifeng, GAO Junbo, LIU Yansui, QIN Yueheng, LU Cheng, JI Qingqing. Evaluation of Intensive Urban Land Use Based on an Artificial Neural Network Model:A Case Study of Nanjing City, China[J]. Chinese Geographical Science, 2017, 27(5): 735-746. doi: 10.1007/s11769-017-0905-7
Citation: QIAO Weifeng, GAO Junbo, LIU Yansui, QIN Yueheng, LU Cheng, JI Qingqing. Evaluation of Intensive Urban Land Use Based on an Artificial Neural Network Model:A Case Study of Nanjing City, China[J]. Chinese Geographical Science, 2017, 27(5): 735-746. doi: 10.1007/s11769-017-0905-7
参考文献 (38)

目录

    /

    返回文章
    返回