留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An Uncertain Programming Model for Land Use Structure Optimization to Promote Effectiveness of Land Use Planning

LI Xin MA Xiaodong

LI Xin, MA Xiaodong. An Uncertain Programming Model for Land Use Structure Optimization to Promote Effectiveness of Land Use Planning[J]. 中国地理科学, 2017, 27(6): 974-988. doi: 10.1007/s11769-017-0896-4
引用本文: LI Xin, MA Xiaodong. An Uncertain Programming Model for Land Use Structure Optimization to Promote Effectiveness of Land Use Planning[J]. 中国地理科学, 2017, 27(6): 974-988. doi: 10.1007/s11769-017-0896-4
LI Xin, MA Xiaodong. An Uncertain Programming Model for Land Use Structure Optimization to Promote Effectiveness of Land Use Planning[J]. Chinese Geographical Science, 2017, 27(6): 974-988. doi: 10.1007/s11769-017-0896-4
Citation: LI Xin, MA Xiaodong. An Uncertain Programming Model for Land Use Structure Optimization to Promote Effectiveness of Land Use Planning[J]. Chinese Geographical Science, 2017, 27(6): 974-988. doi: 10.1007/s11769-017-0896-4

An Uncertain Programming Model for Land Use Structure Optimization to Promote Effectiveness of Land Use Planning

doi: 10.1007/s11769-017-0896-4
基金项目: Under the auspices of National Natural Science Foundation of China (No. 41401627, 41471144), Foundation Research Project of Jiangsu Province (No. BK20140236)
详细信息
    通讯作者:

    MA Xiaodong.E-mail:xiaodgma@163.com

An Uncertain Programming Model for Land Use Structure Optimization to Promote Effectiveness of Land Use Planning

Funds: Under the auspices of National Natural Science Foundation of China (No. 41401627, 41471144), Foundation Research Project of Jiangsu Province (No. BK20140236)
More Information
    Corresponding author: MA Xiaodong.E-mail:xiaodgma@163.com
  • 摘要: Land use structure optimization (LUSO) is an important issue for land use planning. In order for land use planning to have reasonable flexibility, uncertain optimization should be applied for LUSO. In this paper, the researcher first expounded the uncertainties of LUSO. Based on this, an interval programming model was developed, of which interval variables were to hold land use uncertainties. To solve the model, a heuristics based on Genetic Algorithm was designed according to Pareto Optimum principle with a confidence interval under given significance level to represent LUSO result. Proposed method was applied to a real case of Yangzhou, an eastern city in China. The following conclusions were reached. 1) Different forms of uncertainties ranged from certainty to indeterminacy lay in the five steps of LUSO, indicating necessary need of comprehensive approach to quantify them. 2) With regards to trade-offs of conflicted objectives and preferences to uncertainties, our proposed model displayed good ability of making planning decision process transparent, therefore providing an effective tool for flexible land use planning compiling. 3) Under uncertain conditions, land use planning effectiveness can be primarily enhanced by flexible management with reserved space to percept and hold uncertainties in advance.
  • [1] Berke P, Kaiser E J, 2006. Urban Land Use Planning (5th Edition). Urbana, US:University of Illinois Press, 45-168.
    [2] Brown J D, 2004. Knowledge, uncertainty and physical geography:towards the development of methodologies for questioning belief. Transactions of the Institute of British Geographers, 29(3):367-381. doi: 10.1111/j.0020-2754.2004.00342.x
    [3] Cao K, Huang B, Wang S W et al., 2012. Sustainable land use optimization using Boundary-based Fast Genetic Algorithm.Computers Environment and Urban Systems, 36(3):257-269.doi: 10.1016/j.compenvurbsys.2011.08.001
    [4] Cheng S, Chan C W, Huang G H, 2003. An integrated multi-criteria decision analysis and inexact mixed integer linear programming approach for solid waste management. Engineering Applications of Artificial Intelligence, 16(5-6):543-554. doi: 10.1016/s0952-1976(03)00069-1
    [5] Chuai X W, Huang X J, Lai L et al., 2013. Land use structure optimization based on carbon storage in several regional terrestrial ecosystems across China. Environmental Science & Policy, 25(25):50-61. doi: 10.1016/j.envsci.2012.05.005
    [6] Costanza R, R D Groot, P Sutton et al., 2014. Changes in the global value of ecosystem services. Global Environmental Change, 26(1):152-158. doi:10.1016/j.gloenvcha.2014.04. 002
    [7] Dong C, Huang G H, Tan Q et al., 2014. Coupled planning of water resources and agricultural landuse based on an inexact-stochastic programming model. Frontiers of Earth Science, 8(1):70-80. doi: 10.1007/s11707-013-0388-5
    [8] Gao Q Z, Kang M Y, Xu H M et al., 2010. Optimization of land use structure and spatial pattern for the semi-arid loess hilly-gully region in China. Catena, 81(3):196-202. doi: 10.1016/j.catena.2010.03.002
    [9] Jiangsu Statistics Bureau, 2007-2014. Jiangsu Statistical Yearbook 2007-2014. Beijing:China Statistics Press. (in Chinese)
    [10] Li M, Guo P, Fang S Q et al., 2013. An inexact fuzzy parameter two-stage stochastic programming model for irrigation water allocation under uncertainty. Stochastic Environmental Research and Risk Assessment, 27(6):1441-1452. doi:10.1007/s 00477-012-0681-y
    [11] Li Xin, Ou Minghao, Liu Jiansheng et al., 2014. Regional land use structure optimization under uncertain theory. Transactions of the Chinese Society of Agricultural Engineering, 30(4):176-184. (in Chinese)
    [12] Li Xin, Ou Minghao, Yan Siqi et al., 2013. Calculation of elastic interval of land use structure based on interval optimization model. Transactions of the Chinese Society of Agricultural Engineering, 29(17):240-247. (in Chinese)
    [13] Li Y P, Huang G H, Chen X, 2011. Planning regional energy system in association with greenhouse gas mitigation under uncertainty. Applied Energy, 88(3):599-611. doi: 10.1016/j.apenergy.2010.07.037
    [14] Linkov I, Satterstrom F K, Kiker G et al., 2006. From comparative risk assessment to multi-criteria decision analysis and adaptive management:recent developments and applications.Environment International, 32(8):1072-1093. doi: 10.1016/j.envint.2006.06.013
    [15] Liu B D, 2015. Uncertainty Theory (4th Edition). Berlin, Heidelberg:Springer Berlin Heidelberg Press, 15-20.
    [16] Liu S F, Lin Y, 2006. Grey Prediction. London, UK:Springer London Press, 275-314.
    [17] Liu Y F, Ming D P, Yan J Y, 2002. Optimization of land use structure based on ecological GREEN equivalent. Geo-spatial Information Science, 5(4):60-67. doi: 10.1007/BF02826478
    [18] Liu Y, Qin X, Guo H et al., 2007. ICCLP:an inexact chanceconstrained linear programming model for land-use management of lake areas in urban fringes. Environmental management, 40(6):966-980. doi: 10.1007/s00267-007-9013-2
    [19] Liu Y, Yu Y J, Guo H C et al., 2009. Optimal land-use management for surface source water protection under uncertainty:a case study of Songhuaba watershed (Southwestern China).Water Resources Management, 23(10):2069-2083. doi: 10.1007/s11269-008-9370-5
    [20] Lu S S, Guan X L, Zhou M et al., 2014. Land resources allocation strategies in an urban area involving uncertainty:a case study of Suzhou, in the Yangtze River Delta of China. Environmental management, 53(5):894-912. doi: 10.1007/s00267-014-0247-5
    [21] Lu S S, Zhou M, Guan X L et al., 2015. An integrated GIS-based interval-probabilistic programming model for land-use planning management under uncertainty:a case study at Suzhou, China. Environmental Science and Pollution Research International, 22(6):4281-4296. doi: 10.1007/s11356-014-3659-0
    [22] Luo B, Li J B, Huang G H et al., 2006. A simulation-based interval two-stage stochastic model for agricultural nonpoint source pollution control through land retirement. Science of the Total Environment, 361(1-3):38-56. doi:10.1016/j.scitotenv.2005. 09.053
    [23] Matott L S, Babendreier J E, Purucker S T, 2009. Evaluating uncertainty in integrated environmental models:a review of concepts and tools. Water Resources Research, 45(6):735-742. doi: 10.1029/2008wr007301
    [24] Messina V, Bosetti V, 2003. Uncertainty and option value in land allocation problems. Annals of Operations Research, 124(1):165-181. doi: 10.1023/B:ANOR.0000004767.84402.b3
    [25] Nie X H, Huang G H, Wang D et al., 2008. Robust optimisation for inexact water quality management under uncertainty. Civil Engineering and Environmental Systems, 25(25):167-184.doi: 10.1080/10286600801908964
    [26] Polasky S, Carpenter S R, Folke C et al., 2011. Decision-making under great uncertainty:environmental management in an era of global change. Trends in Ecology & Evolution, 26(8):398-404. doi: 10.1016/j.tree.2011.04.007
    [27] Qiu B K, Lu S S, Zhou M et al., 2015. A hybrid inexact optimization method for land-use allocation in association with environmental/ecological requirements at a watershed level. Sustainability, 7(4):4643-4667. doi: 10.3390/su7044643
    [28] Refsgaard J C, van der Sluijs J P, Højberg A L et al., 2007. Uncertainty in the environmental modelling process:a framework and guidance. Environmental Modelling and Software, 22(11):1543-1556. doi: 10.1016/j.envsoft.2007.02.004
    [29] Sadeghi S H R, Jalili K, Nikkami D, 2009. Land use optimization in watershed scale. Land Use Policy, 26(2):186-193. doi: 10.1016/j.landusepol.2008.02.007
    [30] Singh K, 1999. Sustainable development:some reflections. Indian Journal of Agricultural Economics, 54:6-41.
    [31] Verburg P H, Tabeau A, Hatna E, 2013. Assessing spatial uncertainties of land allocation using a scenario approach and sensitivity analysis:a study for land use in Europe. Journal of Environmental Management, 127(S3):132-144. doi: 10.1016/j.jenvman.2012.08.038
    [32] Walker W E, Harremoës P, Rotmans J et al., 2003. Defining uncertainty:a conceptual basis for uncertainty management in model-based decision support. Integrated Assessment, 4(1):5-17. doi: 10.1076/iaij.4.1.5.16466
    [33] Wang Hongrui, Gao Yuanyuan, Liu Qiong et al., 2010. Land use allocation based on interval multi-objective linear programming model:A case study of Pi County in Sichuan Province.Chinese Geographical Science, 20(2):176-183. doi:10.1007/s 11769-010-0176-z
    [34] Wang W Y, Zeng W H, 2013. Optimizing the regional industrial structure based on the environmental carrying capacity:an inexact fuzzy multi-objective programming model. Sustainability, 5(12):5391-5415. doi: 10.3390/su5125391
    [35] Wang X H, Yu S, Huang G H, 2004. Land allocation based on integrated GIS-optimization modeling at a watershed level.Landscape and Urban Planning, 66(2):61-74. doi: 10.1016/S0169-2046(03)00095-1
    [36] Yangzhou Statistics Bureau, 2007-2014. Yangzhou Statistical Yearbook 2007-2014. Beijing:China Statistics Press. (in Chinese)
    [37] Zhong T Y, Mitchell B, Huang X J, 2014. Success or failure:Evaluating the implementation of China's National General Land Use Plan (1997-2010). Habitat International, 44:93-101. doi: 10.1016/j.habitatint.2014.05.003
    [38] Zhou M, 2015. An interval fuzzy chance-constrained programming model for sustainable urban land-use planning and land use policy analysis. Land Use Policy, 42(42):479-491. doi: 10.1016/j.landusepol.2014.09.002
    [39] Zhou Min, Cai Yunlong, Guan Xingliang et al., 2014. A hybrid inexact optimization model for land-use allocation of China.Chinese Geographical Science, 25(1):62-73. doi:10.1007/s 11769-014-0708-z
  • [1] MA Shifa, ZHAO Yabo, TAN Xiaohong.  Exploring Smart Growth Boundaries of Urban Agglomeration with Land Use Spatial Optimization: A Case Study of Changsha- Zhuzhou-Xiangtan City Group, China . Chinese Geographical Science, 2020, 30(4): 665-676. doi: 10.1007/s11769-020-1140-1
    [2] SERASINGHE PATHIRANAGE Inoka Sandamali, Lakshmi N. KANTAKUMAR, SUNDARAMOORTHY Sivanantharajah.  Remote Sensing Data and SLEUTH Urban Growth Model: As Decision Support Tools for Urban Planning . Chinese Geographical Science, 2018, 28(2): 274-286. doi: 10.1007/s11769-018-0946-6
    [3] ZHOU Min, CAI Yunlong, GUAN Xingliang, TAN Shukui, LU Shasha.  A Hybrid Inexact Optimization Model for Land-use Allocation of China . Chinese Geographical Science, 2015, 25(1): 62-73. doi: 10.1007/s11769-014-0708-z
    [4] SONG Wei, CHEN Baiming, ZHANG Ying.  Land Use Regionalization of Rural Settlements in China . Chinese Geographical Science, 2013, 23(4): 421-434. doi: 10.1007/s11769-013-0592-y
    [5] ZHANG Ying, ZHANG Hongqi, NI Dongying, SONG Wei.  Agricultural Land Use Optimal Allocation System in Developing Area: Application to Yili Watershed, Xinjiang Region . Chinese Geographical Science, 2012, 22(2): 232-244.
    [6] Artigas Durán, Héctor Morrás, Guillermo Studdert, LIU Xiaobing.  Distribution, Properties, Land Use and Management of Mollisols in South America . Chinese Geographical Science, 2011, 21(5): 511-.
    [7] LIU Miao, HU Yuanman, ZHANG Wei, et al..  Application of Land-use Change Model in Guiding Regional Planning: A Case Study in Hun-Taizi River Watershed, Northeast China . Chinese Geographical Science, 2011, 21(5): 609-.
    [8] DAI Junliang, WANG Kaiyong, GAO Xiaolu.  Spatial Structure and Land Use Control in Extended Metropolitan Region of Zhujiang River Delta, China . Chinese Geographical Science, 2010, 20(4): 298-308. doi: 10.1007/s11769-010-0402-8
    [9] LIU Dianwei, WANG Zongming, SONG Kaishan, ZHANG Bai, HU Liangjun, HUANG Ni, ZHANG Sumei, LUO Ling, ZHANG Chunhua, JIANG Guangjia.  Land Use/Cover Changes and Environmental Consequences in Songnen Plain, Northeast China . Chinese Geographical Science, 2009, 19(4): 299-305. doi: 10.1007/s11769-009-0299-2
    [10] CAO Kang, GUAN Hua.  Brownfield Redevelopment Toward Sustainable Urban Land Use in China . Chinese Geographical Science, 2007, 17(2): 127-134. doi: 10.1007/s11769-007-0127-5
    [11] XIAO Sisi, HUANG Xianjin, PENG Buzhuo.  Coordinative Development Between Land Use Change and Regional Population-Resources-Environment-Development System—A Case Study of Jiangsu Province . Chinese Geographical Science, 2007, 17(4): 289-296. doi: 10.1007/s11769-007-0289-1
    [12] SHAO Jing-an, WEI Chao-fu, XIE De-ti.  AN INSIGHT ON DRIVERS OF LAND USE CHANGE AT REGIONAL SCALE . Chinese Geographical Science, 2006, 16(2): 176-182.
    [13] WU Yingmei, SU Yufang, ZHANG Lei.  Economic Structure Transformation and Land Use Change of the Changjiang River Basin . Chinese Geographical Science, 2006, 16(4): 289-293.
    [14] SHAO Jing-an, WEI Chao-fu, XIE De-ti.  SUSTAINABLE LAND USE PLANNING BASED ON ECOLOGICAL HEALTH——Case Study of Beiwenquan Town, Chongqing, China . Chinese Geographical Science, 2005, 15(2): 137-144.
    [15] GAO Jun-feng, LI Chang-feng, ZHANG Hong-hui.  SOIL SPATIAL ANALYSIS AND AGRICULTURAL LAND USE OPTIMIZATION BY USING GIS . Chinese Geographical Science, 2003, 13(1): 25-29.
    [16] ZHANG Yan, SHANG Jin-cheng, YU Xiang-yi.  STRATEGIC ENVIRONMENT ASSESSMENT ON LAND-USE PLANNING-A Case Study of Changchun Economic and Technological Zone . Chinese Geographical Science, 2002, 12(3): 262-267.
    [17] DING Cheng-ri.  THE BENCHMARK LAND PRICE SYSTEM AND URBANLAND USE EFFICIENCY IN CHINA . Chinese Geographical Science, 2001, 11(4): 306-314.
    [18] CHEN Fu, PENG Bu-zhuo.  THE EFFECT OF LAND USE CHANGES ON SOIL CONDITIONS IN ARID REGION . Chinese Geographical Science, 2000, 10(3): 226-230.
    [19] CAO Xiao-shu, YANG Fan, YAN Xiao-Pei.  STUDY ON THE URBAN TRANSPORT AND LAND-USE OF GUANGZHOU . Chinese Geographical Science, 2000, 10(2): 144-150.
    [20] 孙鸿烈, 胡鞍钢, 傅伯杰.  THE EXPERIENCES AND MODELS OF LAND RESOURCES USE IN CHINA . Chinese Geographical Science, 1991, 1(4): 293-305.
  • 加载中
计量
  • 文章访问数:  240
  • HTML全文浏览量:  7
  • PDF下载量:  889
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-26
  • 修回日期:  2017-02-20
  • 刊出日期:  2017-12-27

An Uncertain Programming Model for Land Use Structure Optimization to Promote Effectiveness of Land Use Planning

doi: 10.1007/s11769-017-0896-4
    基金项目:  Under the auspices of National Natural Science Foundation of China (No. 41401627, 41471144), Foundation Research Project of Jiangsu Province (No. BK20140236)
    通讯作者: MA Xiaodong.E-mail:xiaodgma@163.com

摘要: Land use structure optimization (LUSO) is an important issue for land use planning. In order for land use planning to have reasonable flexibility, uncertain optimization should be applied for LUSO. In this paper, the researcher first expounded the uncertainties of LUSO. Based on this, an interval programming model was developed, of which interval variables were to hold land use uncertainties. To solve the model, a heuristics based on Genetic Algorithm was designed according to Pareto Optimum principle with a confidence interval under given significance level to represent LUSO result. Proposed method was applied to a real case of Yangzhou, an eastern city in China. The following conclusions were reached. 1) Different forms of uncertainties ranged from certainty to indeterminacy lay in the five steps of LUSO, indicating necessary need of comprehensive approach to quantify them. 2) With regards to trade-offs of conflicted objectives and preferences to uncertainties, our proposed model displayed good ability of making planning decision process transparent, therefore providing an effective tool for flexible land use planning compiling. 3) Under uncertain conditions, land use planning effectiveness can be primarily enhanced by flexible management with reserved space to percept and hold uncertainties in advance.

English Abstract

LI Xin, MA Xiaodong. An Uncertain Programming Model for Land Use Structure Optimization to Promote Effectiveness of Land Use Planning[J]. 中国地理科学, 2017, 27(6): 974-988. doi: 10.1007/s11769-017-0896-4
引用本文: LI Xin, MA Xiaodong. An Uncertain Programming Model for Land Use Structure Optimization to Promote Effectiveness of Land Use Planning[J]. 中国地理科学, 2017, 27(6): 974-988. doi: 10.1007/s11769-017-0896-4
LI Xin, MA Xiaodong. An Uncertain Programming Model for Land Use Structure Optimization to Promote Effectiveness of Land Use Planning[J]. Chinese Geographical Science, 2017, 27(6): 974-988. doi: 10.1007/s11769-017-0896-4
Citation: LI Xin, MA Xiaodong. An Uncertain Programming Model for Land Use Structure Optimization to Promote Effectiveness of Land Use Planning[J]. Chinese Geographical Science, 2017, 27(6): 974-988. doi: 10.1007/s11769-017-0896-4
参考文献 (39)

目录

    /

    返回文章
    返回