留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Equality Testing for Soil Grid Unit Resolutions to Polygon Unit Scales with DNDC Modeling of Regional SOC Pools

Yu Dongsheng Pan Yue Zhang Haidong Wang Xiyang Ni Yunlong Zhang Liming Shi Xue­zheng

Yu Dongsheng, Pan Yue, Zhang Haidong, Wang Xiyang, Ni Yunlong, Zhang Liming, Shi Xue­zheng. Equality Testing for Soil Grid Unit Resolutions to Polygon Unit Scales with DNDC Modeling of Regional SOC Pools[J]. 中国地理科学, 2017, 27(4): 552-568. doi: 10.1007/s11769-017-0887-5
引用本文: Yu Dongsheng, Pan Yue, Zhang Haidong, Wang Xiyang, Ni Yunlong, Zhang Liming, Shi Xue­zheng. Equality Testing for Soil Grid Unit Resolutions to Polygon Unit Scales with DNDC Modeling of Regional SOC Pools[J]. 中国地理科学, 2017, 27(4): 552-568. doi: 10.1007/s11769-017-0887-5
Yu Dongsheng, Pan Yue, Zhang Haidong, Wang Xiyang, Ni Yunlong, Zhang Liming, Shi Xuezheng. Equality Testing for Soil Grid Unit Resolutions to Polygon Unit Scales with DNDC Modeling of Regional SOC Pools[J]. Chinese Geographical Science, 2017, 27(4): 552-568. doi: 10.1007/s11769-017-0887-5
Citation: Yu Dongsheng, Pan Yue, Zhang Haidong, Wang Xiyang, Ni Yunlong, Zhang Liming, Shi Xuezheng. Equality Testing for Soil Grid Unit Resolutions to Polygon Unit Scales with DNDC Modeling of Regional SOC Pools[J]. Chinese Geographical Science, 2017, 27(4): 552-568. doi: 10.1007/s11769-017-0887-5

Equality Testing for Soil Grid Unit Resolutions to Polygon Unit Scales with DNDC Modeling of Regional SOC Pools

doi: 10.1007/s11769-017-0887-5
基金项目: Under the auspices of Special Project of National Key Research and Development Program (No. 2016YFD0200301), National Natural Science Foundation of China (No. 41571206), Special Project of National Science and Technology Basic Work (No. 2015FY110700-S2)

Equality Testing for Soil Grid Unit Resolutions to Polygon Unit Scales with DNDC Modeling of Regional SOC Pools

Funds: Under the auspices of Special Project of National Key Research and Development Program (No. 2016YFD0200301), National Natural Science Foundation of China (No. 41571206), Special Project of National Science and Technology Basic Work (No. 2015FY110700-S2)
  • 摘要: Matching soil grid unit resolutions with polygon unit map scales is important to minimize the uncertainty of regional soil organic carbon (SOC) pool simulation due to their strong influences on the modeling. A series of soil grid units at varying cell sizes was derived from soil polygon units at six map scales, namely, 1:50 000 (C5), 1:200 000 (D2), 1:500 000 (P5), 1:1 000 000 (N1), 1:4 000 000 (N4) and 1:14 000 000 (N14), in the Taihu Region of China. Both soil unit formats were used for regional SOC pool simulation with a DeNitrification-DeComposition (DNDC) process-based model, which spans the time period from 1982 to 2000 at the six map scales. Four indices, namely, soil type number (STN), area (AREA), average SOC density (ASOCD) and total SOC stocks (SOCS) of surface paddy soils that were simulated by the DNDC, were distinguished from all these soil polygon and grid units. Subjecting to the four index values (IV) from the parent polygon units, the variations in an index value (VIV, %) from the grid units were used to assess its dataset accuracy and redundancy, which reflects the uncertainty in the simulation of SOC pools. Optimal soil grid unit resolutions were generated and suggested for the DNDC simulation of regional SOC pools, matching their respective soil polygon unit map scales. With these optimal raster resolutions, the soil grid units datasets can have the same accuracy as their parent polygon units datasets without any redundancy, when VIV < 1% was assumed to be a criterion for all four indices. A quadratic curve regression model, namely, y =-0.8×10-6x2 + 0.0228x + 0.0211 (R2 = 0.9994, P < 0.05), and a power function model = 10.394?0.2153 (R2 = 0.9759, P < 0.05) were revealed, which describe the relationship between the optimal soil grid unit resolution (y, km) and soil polygon unit map scale (1:10 000x), the ratio (?, %) of the optimal soil grid size to average polygon patch size (?, km2) and the ?, with the highest R2 among different mathematical regressions, respectively. This knowledge may facilitate the grid partitioning of regions during the investigation and simulation of SOC pool dynamics at a certain map scale, and be referenced to other landscape polygon patches' mesh partition.
  • [1] Batjes N H, 2000. Effects of mapped variation in soil conditions on estimates of soil carbon and nitrogen stocks for South American. Geoderma, 97: 135-144.
    [2] Bouwman A F, Boumans L J M, Batjes N H, 2002. Modeling global annual N2O and NO emissions from fertilized fields. Global Biogeochemical Cycle, 16(4): GB1080. doi: 10.1029/2001GB001812
    [3] Cai Z C, Sawamoto T, Li C S et al., 2003. Field validation of the DNDC model for greenhouse gas emissions in East Asian cropping systems. Global Biogeochemical Cycle, 17(4): GB1107. doi: 10.1029/2003GB002046
    [4] Davidson E A, Janssens I A, 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440: 165-73.
    [5] FAO/ⅡASA/ISRIC/ISSCAS/JRC, 2009. Harmonized World Soil Database (version 1.1). FAO, Rome, Italy and ⅡASA, Laxenburg, Austria, 1-38.
    [6] Fu B J, Chen L D, Ma K M et al., 2011. Landscape ecology: Principles and Applications (Second Edition). Beijing: Science Press, 1-396. (in Chinese)
    [7] Giltrap D L, Li C S, Saggar S, 2010. DNDC: a process-based model of greenhouse gas fluxes from agricultural soils. Agriculture, Ecosystems & Environment, 136: 292-300.
    [8] Huang Y, Zhang W, Zheng X, 2004. Modeling methane emission from rice paddies with various agricultural practices. Journal of Geophysics Research, 109: D08113, doi:10.1029/2003 JD004401.
    [9] Lal R, 2004. Soil carbon sequestration tomitigate climate change. Geoderma, 123 (2): 1-22.
    [10] Levy P E, Mobbs D C, Jones S K et al., 2007. Simulation of fluxes of greenhouse gases from European grasslands using the DNDC model. Agriculture, Ecosystems and Environment, 121: 186-192.
    [11] Li C S, 2007. Quantifying greenhouse gas emissions from soils: Scientific basis and modeling approach. Soil Scicence and Plant Nutrient, 53: 344-352.
    [12] Li C S, Frolking S, Frolking T A, 1992a. A model of nitrous oxide evolution from soil driven by rainfall events: I. Model structure and sensitivity. Journal of Geophysics Research, 97 (D9): 9759-9776.
    [13] Li C S, Frolking S, Frolking T A, 1992b. A model of nitrous oxide evolution from soil driven by rainfall events: Ⅱ. Model applications, Journal of Geophysics Reserch, 97(D9): 9777-9783.
    [14] Li C S, Frolking S, Xiao X M, 2005. Modeling impacts of farming management alternatives on CO2, CH4, and N2O emissions: a case study for water management of rice agriculture of China. Global Biogeochemical Cycle, 19: GB3010. doi: 10.1029/2004GB002341
    [15] Li C S, Mosier A, Wassmann R et al., 2004. Modeling greenhouse gas emissions from rice-based production systems: Sensitivity and upscaling. Global Biogeochemical Cycle, 18: GB1043. doi: 10.1029/2003GB002045
    [16] Li C S, Qiu J J, Frolking S et al., 2002. Reduced methane emissions from large-scale changes in water management in China's rice paddies during 1980-2000. Geophysical Research Letter, 29(20): 1972. doi:10.1029/2002 GL015370
    [17] Li C S, Salas W, DeAngelo B et al., 2006. Assessing alternatives for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next twenty years. Journal of Environment Quality, 35: 1554-1565.
    [18] Li C S, Zhuang Y H, Frolking S et al., 2003. Modeling soil organic carbon change in croplands of China. Ecological Applications, 13: 327-336.
    [19] Li H, Qiu J J, Wang L G et al., 2010. Modelling impacts of alternative farming management practices on greenhouse gas emissions from a winter wheat-maize rotation system in China. Agriculture, Ecosystems and Environment, 135: 24-33.
    [20] Li Qinkue, 1992. Paddy Soil of China. Beijing: Science Press, 1-680. (in Chinese)
    [21] Liu Z P, Shao M A, Wang Y Q, 2011. Effect of environmental factors on regional soil organic carbon stocks across the Loess Plateau region, China. Agriculture, Ecosystems and Environment, 142: 184-194.
    [22] Ni J, 2001. Carbon storage in terrestrial ecosystems of China: estimates at different spatial resolutions and their responses to climate change. Climate change, 49: 339-358.
    [23] Pathak H, Li C S, Wassmann R, 2005. Greenhouse gas emissions from Indian rice fields: calibration and upscaling using the DNDC model. Biogeosciences, 2: 113-123.
    [24] Pogson M, Smith P, 2015. Effect of spatial data resolution on uncertainty. Environmental Modelling & Software, 63: 87-96.
    [25] Qin Falyu, Shi Xuezheng, Xu Shengxiang et al., 2015. Zonal differences in correlation patterns between soil organic carbon and climate factors at multi-extent. Chinese Geographical Science, 25(5): 537-548. doi: 10.1007/s11769-015-0736-3
    [26] Qiu Jianjun, Wang Ligang, Tang Junhua et al., 2004. Studies on the situation of soil organic carbon storage in croplands in northeast of China. Scientia Agricultura Sinica, 37 (8): 1166-1171. (in Chinese)
    [27] Rüth B, Lennartz B, 2008. Spatial variability of soil properties and rice yield along two catenas in southeast China. Pedosphere, 18(4): 409-420.
    [28] Schlesinger W H, 1997. Biogeochemistry: An Analysis of Global Change. San Diego: Academic Press, 1-102.
    [29] Schmidt K, Behrens T, Scholten T, 2008. Instance selection and classification tree analysis for large spatial datasets in digital soil mapping. Geoderma, 146: 138-146.
    [30] Shen Yu, Huang Yao, Zong Lianggang et al., 2003. Simulation and prediction of soil organic carbon dynamics in Jiangsu province based on model and GIS techniques. Scientia Agricultura Sinica, 36 (11): 1312-1317. (in Chinese)
    [31] Shi X Z, Yang R W, Weindorf D C et al., 2010. Simulation of organic carbon dynamics at regional scale for paddy soils in China. Climatic Change, 102: 579-593.
    [32] Shi X Z, Yu D S, Warner E D et al., 2006. Cross-reference system for translating between genetic soil classification of China and Soil Taxonomy. Soil Scicence Society of America Journal, 70: 78-83.
    [33] Smith K A, Dobbie K E, 2001. The impact of sampling frequency and sampling times on chamber-based measurements of N2O emissions from fertilized soils. Global Change Biology, 7(8): 933-945. doi: 10.1046/j.1354-1013.2001.00450.x
    [34] Soil Survey Staff, 1994. Keys to Soil Taxonomy (6th edition). Washington, DC: United States Goverment Printing Office, 1-437.
    [35] Su S L, Zhang Z G, Xiao R et al., 2012. Geospatial assessment of agroecosystem health: development of an integrated index based on catastrophe theory. Stoch Environment Research and Risk Assessement, 26: 321-334.
    [36] Sun W J, Huang Y, Zhang W et al., 2010. Carbon sequestration and its potential in agricultural soils of China. Global Biogeochemical Cycle, 24: GB3001. doi:10.1029/2009GB 003484
    [37] Tang H, Qiu J, Eric V R et al., 2006. Estimations of soil organic carbon storage in cropland of China based on DNDC model. Geoderma, 134: 200-206.
    [38] Tonitto C, David M B, Li C S et al., 2007. Application of the DNDC model to tile-drained Illinois agroecosystems: model comparison of conventional and diversified rotations. Nutrient Cycling in Agroecosystems, 78(1): 65-81. doi:10.1007/s 10705-006-9074-2
    [39] Valade A, Ciais P, Vuichard N et al., 2014. Modeling sugarcane yield with a process-based model from site to continental scale: uncertainties arising from model structure and parameter values. Geoscientific Model Development, 7: 1225-1245.
    [40] Wan Y F, Lin E D, Xiong W et al., 2011. Modeling the impact of climate change on soil organic carbon stocks in upland soils in the 21st century in China. Agriculture, Ecosystems and Environment, 141: 23-31.
    [41] Wang S H, Shi X Z, Zhao Y C et al., 2011. Regional simulation of soil organic carbon dynamics for dry farmland in east China by Coupling a 1:500 000 soil database with the Century model. Pedosphere, 21(3): 277-287.
    [42] Wu Y, Liu S, Tan Z, 2015. Quantitative attribution of major driving forces on soil organic carbon dynamics. Journal of Advances in Modeling Earth Systtems, 7: 21-34. doi: 10.1002/2014MS000361
    [43] Xu Qi, Lu Yanchun, Liu Yuanchang et al., 1980. Paddy Soil of Taihu Region in China. Shanghai: Science Press, 1-68. (in Chinese)
    [44] Xu S X, Shi X Z, Zhao Y C et al., 2011. Modeling carbon dynamics in Paddy soil in Jiangsu Province of China with soil databases differing in spatial resolution. Pedosphere, 21(6): 696-705.
    [45] Xu S X, Shi X Z, Zhao Y C et al., 2012. Spatially explicit simulation of soil organic carbon dynamics in China's paddy soils. Catena, 92: 113-121.
    [46] Xu S X, Zhao Y C, Shi X Z et al., 2013. Map scale effects of soil databases on modeling organic carbon dynamics for paddy soils of China. Catena, 104: 67-76.
    [47] Yang Ruwei, Xu Qi, Shi Xuezheng et al., 2009. The research of paddy soil organic carbon simulation at regional scale. Anhui Agricultural Science Bulletin, 15(13): 126-128. (in Chinese)
    [48] Yu D S, Ni Y L, Shi X Z et al., 2014. Optimal soil raster unit resolutions in estimation of soil organic carbon pool at different map scales. Soil Science Society of America Journal, 78(3): 1079-1086. doi:10.2136/sssaj 2013.07. 0262
    [49] Yu D S, Shi X Z, Wang H J et al., 2007a. National scale analysis of soil organic carbon stocks in China based on Chinese soil taxonomy. Pedosphere, 17(1): 11-18.
    [50] Yu D S, Shi X Z, Wang H J et al., 2007b. Regional patterns of soil organic carbon stocks in China. Journal of Environment Management, 85: 680-689.
    [51] Yu D S, Yang H, Shi X Z et al., 2011. Effects of soil spatial resolution on quantifying CH4 and N2O emissions from rice fields in the Taihu Region of China by DNDC model. Global Biogeochemical Cycle, 25: GBC2004. doi:10.1029/2010 GB003825
    [52] Yu D S, Zhang L M, Shi X Z et al., 2013. Soil assessment unit scale affects quantifying CH4 emissions from rice fields. Soil Science Society of America Journal, 77(2): 664-672.
    [53] Yu Dongsheng, Shi Xuezheng, Sun Weixia et al., 2005. Estimation of China soil organic carbon storage and density based on 1:1 000 000 soil database. Chinese Journal of Applied Ecology, 16: 2279-2283. (in Chinese)
    [54] Yu Y Q, Huang Y, Zhang W, 2012. Modeling soil organic carbon change in croplands of China, 1980-2009. Global and Planetary Change, 82-83: 115-128.
    [55] Yu Yongqiang, Huang Yao, Zhang Wen et al., 2007c. Modeling farmland soil organic carbon dynamics in eastern China: spatio-temporal pattern. Geography and Geo-Information Science, 23(1): 97-100. (in Chinese)
    [56] Zhang L M, Yu D S, Shi X Z et al., 2009a. Quantifying methane emissions from rice fields in the Taihu Lake region, China by coupling a detailed soil database with biogeochemical model. Biogeosciences, 6: 739-749. doi: 10.5194/bg-6-739-2009
    [57] Zhang L M, Yu D S, Shi X Z et al., 2009b. Simulation of global warming potential (GWP) from rice fields in the Tai-Lake region, China by coupling 1:50 000 soil database with DNDC model. Atmospheric Environment, 43: 2737-2746.
    [58] Zhang L M, Yu D S, Shi X Z et al., 2012. Simulation soil organic carbon change in China's Tai-Lake paddy soils. Soil & Tillage Research, 121: 1-9.
    [59] Zhang L M, Yu D S, Shi X Z et al., 2014a. Effects of soil data and dimulation unit resolution on quantifying changes of soil organic carbon at regional scale with a biogeochemical process model. PLoS ONE, 9(2): e88622. doi:10.1371/journal.pone. 0088622
    [60] Zhang W, Zhang Q, Huang Y et al., 2014b. Uncertainties in estimating regional methane emissions from rice paddies due to data scarcity in the modeling approach. Geoscicentific Model Development, 7: 1211-1224. doi: 10.5194/gmd-7-1211-2014
    [61] Zhao Y C, Shi X Z, Weindorf D C et al., 2006. Map scale effects on soil organic carbon stock estimation in north China. Soil Science Society of America Journal, 70: 1377-1386.
    [62] Zhu Q, Zhuang Q, 2014. Parameterization and sensitivity analysis of a process-based terrestrial ecosystem model using adjoint method. Journal of Advances in Modeling Earth Systtems, 6: 315-331. doi: 10.1002/2013MS000241
  • [1] Qianjin CHE, Min LI, Zhongsheng ZHANG.  Effects of Biochar Application on Soil Organic Carbon in Degraded Saline-sodic Wetlands of Songnen Plain, Northeast China . Chinese Geographical Science, 2021, 31(5): 877-887. doi: 10.1007/s11769-021-1232-6
    [2] Liupeng JIANG, Jinghai ZHU, Wei CHEN, Yuanman HU, Jing YAO, Shuai YU, Guangliang JIA, Xingyuan HE, Anzhi WANG.  Identification of Suitable Hydrologic Response Unit Thresholds for Soil and Water Assessment Tool Streamflow Modelling . Chinese Geographical Science, 2021, 31(4): 696-710. doi: 10.1007/s11769-021-1218-4
    [3] Xiaoyu LIU, Yongcun ZHAO, Xuezheng SHI, Shihang WANG, Xiang FENG, Fang YAN.  Spatio-temporal Changes and Associated Uncertainties of CENTURY-modelled SOC for Chinese Upland Soils, 1980−2010 . Chinese Geographical Science, 2021, 31(1): 126-136. doi: 10.1007/s11769-021-1179-7
    [4] ZHANG Guangliang, BAI Junhong, JIA Jia, WANG Xin, WANG Wei, ZHAO Qingqing, ZHANG Shuai.  Soil Organic Carbon Contents and Stocks in Coastal Salt Marshes with Spartina alterniflora Following an Invasion Chronosequence in the Yellow River Delta, China . Chinese Geographical Science, 2018, 28(3): 374-385. doi: 10.1007/s11769-018-0955-5
    [5] HUO Lili, ZOU Yuanchun, LYU Xianguo, ZHANG Zhongsheng, WANG Xuehong, AN Yi.  Effect of Wetland Reclamation on Soil Organic Carbon Stability in Peat Mire Soil Around Xingkai Lake in Northeast China . Chinese Geographical Science, 2018, 28(2): 325-336. doi: 10.1007/s11769-018-0939-5
    [6] SONG Xiaodong, LIU Feng, JU Bing, ZHI Junjun, LI Decheng, ZHAO Yuguo, ZHANG Ganlin.  Mapping Soil Organic Carbon Stocks of Northeastern China Using Expert Knowledge and GIS-based Methods . Chinese Geographical Science, 2017, 27(4): 516-528. doi: 10.1007/s11769-017-0869-7
    [7] GONG Li, LIU Guohua, WANG Meng, YE Xin, WANG Hao, LI Zongshan.  Effects of Vegetation Restoration on Soil Organic Carbon in China: A Meta-analysis . Chinese Geographical Science, 2017, 27(2): 188-200. doi: 10.1007/s11769-017-0858-x
    [8] WANG Dandan, YAN Yechao, LI Xinhui, SHI Xuezheng, ZHANG Zhongqi, David C WEINDORF, WANG Hongjie, XU Shengxiang.  Influence of Climate on Soil Organic Carbon in Chinese Paddy Soils . Chinese Geographical Science, 2017, 27(3): 351-361. doi: 10.1007/s11769-017-0868-8
    [9] WU Qiulan, LIANG Yong, LI Ying, WANG Xizhi, YANG Lei, WANG Xiaotong.  Factors Acquisition and Content Estimation of Farmland Soil Organic Carbon Based upon Internet of Things . Chinese Geographical Science, 2017, 27(3): 431-440. doi: 10.1007/s11769-017-0875-9
    [10] QIN Falyu, SHI Xuezheng, XU Shengxiang, YU Dongsheng, WANG Dandan.  Zonal Differences in Correlation Patterns Between Soil Organic Carbon and Climate Factors at Multi-extent . Chinese Geographical Science, 2016, 26(5): 670-678. doi: 10.1007/s11769-015-0736-3
    [11] FANG Xiangmin, WANG Qingli, ZHOU Wangming, ZHAO Wei, WEI Yawei, NIU Lijun, DAI Limin.  Land Use Effects on Soil Organic Carbon, Microbial Biomass and Microbial Activity in Changbai Mountains of Northeast China . Chinese Geographical Science, 2014, 0(3): 297-306. doi: 10.1007/s11769-014-0670-9
    [12] ZENG Xinhua, ZHANG Wanjun, LIU Xiuping, CAO Jiansheng, SHEN Huitao, ZHAO Xin, ZHANG Nannan, BAI Yuru, Yi Mei.  Change of Soil Organic Carbon after Cropland Afforestation in ‘Beijing- Tianjin Sandstorm Source Control’ Program Area in China . Chinese Geographical Science, 2014, 0(4): 461-470. doi: 10.1007/s11769-014-0701-6
    [13] LI Taijun, LIU Guobin.  Age-related Changes of Carbon Accumulation and Allocation in Plants and Soil of Black Locust Forest on Loess Plateau in Ansai County, Shaanxi Province of China . Chinese Geographical Science, 2014, 0(4): 414-422. doi: 10.1007/s11769-014-0704-3
    [14] XIONG Dingpeng, SHI Peili, SUN Yinliang, WU Jianshuang, ZHANG Xianzhou.  Effects of Grazing Exclusion on Plant Productivity and Soil Carbon, Nitrogen Storage in Alpine Meadows in Northern Tibet, China . Chinese Geographical Science, 2014, 0(4): 488-498. doi: 10.1007/s11769-014-0697-y
    [15] LUO Shanghua, MAO Qizheng, MA Keming.  Comparison on Soil Carbon Stocks Between Urban and Suburban Topsoil in Beijing, China . Chinese Geographical Science, 2014, 0(5): 551-561. doi: 10.1007/s11769-014-0709-y
    [16] LIU Yong, WANG Cheng, YUE Wenze, HU Yanyan.  Storage and Density of Soil Organic Carbon in Urban Topsoil of Hilly Cities: A Case Study of Chongqing Municipality of China . Chinese Geographical Science, 2013, 23(1): 26-34.
    [17] WU Lezhi, CAI Zucong.  Key Variables Explaining Soil Organic Carbon Content Variations in Croplands and Non-Croplands in Chinese Provinces . Chinese Geographical Science, 2012, 22(3): 255-263.
    [18] ZHANG Guilan.  Changes of Soil Labile Organic Carbon in Different Land Uses in Sanjiang Plain, Heilongjiang Province . Chinese Geographical Science, 2010, 20(2): 139-143. doi: 10.1007/s11769-010-0139-4
    [19] CHENG Shu-lan, OUYANG Hua, NIU Hai-shan, WANG Lin, ZHANG Feng, GAO Jun-qin, TIAN Yu-qiang.  SPATIAL AND TEMPORAL DYNAMICS OF SOIL ORGANIC CARBON IN RESERVED DESERTIFICATION AREA——A Case Study in Yulin City, Shaanxi Province, China . Chinese Geographical Science, 2004, 14(3): 245-250.
    [20] ZHANG Xue-ping, Zhang Si-cong, HUANG Chu-long.  EFFECTS OF SOIL FAUNA ON LITTER DECOMPOSITION . Chinese Geographical Science, 2001, 11(3): 283-288.
  • 加载中
计量
  • 文章访问数:  168
  • HTML全文浏览量:  0
  • PDF下载量:  474
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-23
  • 修回日期:  2017-03-11
  • 刊出日期:  2017-08-27

Equality Testing for Soil Grid Unit Resolutions to Polygon Unit Scales with DNDC Modeling of Regional SOC Pools

doi: 10.1007/s11769-017-0887-5
    基金项目:  Under the auspices of Special Project of National Key Research and Development Program (No. 2016YFD0200301), National Natural Science Foundation of China (No. 41571206), Special Project of National Science and Technology Basic Work (No. 2015FY110700-S2)

摘要: Matching soil grid unit resolutions with polygon unit map scales is important to minimize the uncertainty of regional soil organic carbon (SOC) pool simulation due to their strong influences on the modeling. A series of soil grid units at varying cell sizes was derived from soil polygon units at six map scales, namely, 1:50 000 (C5), 1:200 000 (D2), 1:500 000 (P5), 1:1 000 000 (N1), 1:4 000 000 (N4) and 1:14 000 000 (N14), in the Taihu Region of China. Both soil unit formats were used for regional SOC pool simulation with a DeNitrification-DeComposition (DNDC) process-based model, which spans the time period from 1982 to 2000 at the six map scales. Four indices, namely, soil type number (STN), area (AREA), average SOC density (ASOCD) and total SOC stocks (SOCS) of surface paddy soils that were simulated by the DNDC, were distinguished from all these soil polygon and grid units. Subjecting to the four index values (IV) from the parent polygon units, the variations in an index value (VIV, %) from the grid units were used to assess its dataset accuracy and redundancy, which reflects the uncertainty in the simulation of SOC pools. Optimal soil grid unit resolutions were generated and suggested for the DNDC simulation of regional SOC pools, matching their respective soil polygon unit map scales. With these optimal raster resolutions, the soil grid units datasets can have the same accuracy as their parent polygon units datasets without any redundancy, when VIV < 1% was assumed to be a criterion for all four indices. A quadratic curve regression model, namely, y =-0.8×10-6x2 + 0.0228x + 0.0211 (R2 = 0.9994, P < 0.05), and a power function model = 10.394?0.2153 (R2 = 0.9759, P < 0.05) were revealed, which describe the relationship between the optimal soil grid unit resolution (y, km) and soil polygon unit map scale (1:10 000x), the ratio (?, %) of the optimal soil grid size to average polygon patch size (?, km2) and the ?, with the highest R2 among different mathematical regressions, respectively. This knowledge may facilitate the grid partitioning of regions during the investigation and simulation of SOC pool dynamics at a certain map scale, and be referenced to other landscape polygon patches' mesh partition.

English Abstract

Yu Dongsheng, Pan Yue, Zhang Haidong, Wang Xiyang, Ni Yunlong, Zhang Liming, Shi Xue­zheng. Equality Testing for Soil Grid Unit Resolutions to Polygon Unit Scales with DNDC Modeling of Regional SOC Pools[J]. 中国地理科学, 2017, 27(4): 552-568. doi: 10.1007/s11769-017-0887-5
引用本文: Yu Dongsheng, Pan Yue, Zhang Haidong, Wang Xiyang, Ni Yunlong, Zhang Liming, Shi Xue­zheng. Equality Testing for Soil Grid Unit Resolutions to Polygon Unit Scales with DNDC Modeling of Regional SOC Pools[J]. 中国地理科学, 2017, 27(4): 552-568. doi: 10.1007/s11769-017-0887-5
Yu Dongsheng, Pan Yue, Zhang Haidong, Wang Xiyang, Ni Yunlong, Zhang Liming, Shi Xuezheng. Equality Testing for Soil Grid Unit Resolutions to Polygon Unit Scales with DNDC Modeling of Regional SOC Pools[J]. Chinese Geographical Science, 2017, 27(4): 552-568. doi: 10.1007/s11769-017-0887-5
Citation: Yu Dongsheng, Pan Yue, Zhang Haidong, Wang Xiyang, Ni Yunlong, Zhang Liming, Shi Xuezheng. Equality Testing for Soil Grid Unit Resolutions to Polygon Unit Scales with DNDC Modeling of Regional SOC Pools[J]. Chinese Geographical Science, 2017, 27(4): 552-568. doi: 10.1007/s11769-017-0887-5
参考文献 (62)

目录

    /

    返回文章
    返回