留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of Vegetation Restoration on Soil Organic Carbon in China: A Meta-analysis

GONG Li LIU Guohua WANG Meng YE Xin WANG Hao LI Zongshan

GONG Li, LIU Guohua, WANG Meng, YE Xin, WANG Hao, LI Zongshan. Effects of Vegetation Restoration on Soil Organic Carbon in China: A Meta-analysis[J]. 中国地理科学, 2017, 27(2): 188-200. doi: 10.1007/s11769-017-0858-x
引用本文: GONG Li, LIU Guohua, WANG Meng, YE Xin, WANG Hao, LI Zongshan. Effects of Vegetation Restoration on Soil Organic Carbon in China: A Meta-analysis[J]. 中国地理科学, 2017, 27(2): 188-200. doi: 10.1007/s11769-017-0858-x
GONG Li, LIU Guohua, WANG Meng, YE Xin, WANG Hao, LI Zongshan. Effects of Vegetation Restoration on Soil Organic Carbon in China: A Meta-analysis[J]. Chinese Geographical Science, 2017, 27(2): 188-200. doi: 10.1007/s11769-017-0858-x
Citation: GONG Li, LIU Guohua, WANG Meng, YE Xin, WANG Hao, LI Zongshan. Effects of Vegetation Restoration on Soil Organic Carbon in China: A Meta-analysis[J]. Chinese Geographical Science, 2017, 27(2): 188-200. doi: 10.1007/s11769-017-0858-x

Effects of Vegetation Restoration on Soil Organic Carbon in China: A Meta-analysis

doi: 10.1007/s11769-017-0858-x
基金项目: Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA05060104)
详细信息
    通讯作者:

    LIU Guohua.E-mail:ghliu@rcees.ac.cn

Effects of Vegetation Restoration on Soil Organic Carbon in China: A Meta-analysis

Funds: Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA05060104)
More Information
    Corresponding author: 10.1007/s11769-017-0858-x
  • 摘要: Vegetation restoration has been proposed as an effective method for increasing both plant biomass and soil carbon (C) stocks. In this study, 204 publications (733 observations) were analyzed, focusing on the effects of vegetation restoration on soil organic carbon (SOC) in China. The results showed that SOC was increased by 45.33%, 24.43%, 30.29% and 27.98% at soil depths of 0-20 cm, 20-40 cm, 40-60 cm and > 60 cm after vegetation restoration, respectively. Restoration from both cropland and non-cropland increased the SOC content. The conversion of non-cropland was more efficient in SOC accumulation than the conversion of cropland did, especially in >40 cm layers. In addition, the conversion to planted forest led to greater SOC accumulation than that to other land use did. Conversion period and initial SOC content extended more influence on soil C accumulation as the main factors after vegetation restoration than temperature and precipitation did. The SOC content significantly increased with restoration period after long-term vegetation restoration (>40 yr), indicating a large potential for further accumulation of carbon in the soil, which could mitigate climate change in the near future.
  • [1] Bai Wenjuan, Jiao Juying, Ma Xianghua et al., 2005. Soil envi-ronmental effects of artificial woods in abandoned croplands in the Loess hilly gullied region. Journal of Arid Land Resources and Environment, 19(s1):135-141. (in Chinese)
    [2] Bashkin M A, Binkley D, 1998. Changes in soil carbon following afforestation in Hawaii. Ecology, 79(3):828-833. doi: 10.1890/0012-9658(1998)079
    [3] Benayas J M R, Newton A C, Diaz A et al., 2009. Enhancement of biodiversity and ecosystem services by ecological restoration:a meta-analysis. Science, 325(5944):1121-1124. doi: 10.1126/science.1172460
    [4] Beniston J W, Dupont S T, Glover J D et al., 2014. Soil organic carbon dynamics 75 years after land-use change in perennial grassland and annual wheat agricultural systems. Biogeo-chemistry, 120(1):37-49. doi: 10.1007/s10533-014-9980-3
    [5] Chai Hua, Yu Guirui, He Nianpeng et al., 2015. Vertical Distribution of Soil Carbon, Nitrogen, and Phosphorus in Typical Chinese Terrestrial Ecosystems. Chinese Geographical Science, 25(5):549-560. doi: 10.1007/s11769-015-0756-z
    [6] Chang R Y, Fu B J, Liu G H et al., 2011. Soil carbon sequestration potential for ‘Grain for Green’ Project in Loess Plateau, China. Environmental Management, 48(6):1158-1172. doi: 10.1007/s00267-011-9682-8
    [7] Conant R T, Paustian K, Elliott E T et al., 2001. Grassland man-agement and conversion into grassland:Effects on soil carbon. Ecological Applications, 11(2):343-355. doi: 10.1890/1051-0761(2001)
    [8] Cook R L, Dan B, Mendes J C T et al., 2014. Soil carbon stocks and forest biomass following conversion of pasture to broadleaf and conifer plantations in southeastern Brazil. Forest Ecology and Management, 324(5):37-45. doi:10.1016/j. foreco.2014.03.019
    [9] Cooper H, Hedges L V, 1994. The Handbook of Research Synthe-sis. New York:Russell Sage Foundation, 29-38.
    [10] Curtis P S, Wang X Z, 1998. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia, 113(3):299-313. doi: 10.1007/s004420050381
    [11] Deng L, Liu G B, Shangguan Z P, 2014. Land use conversion and changing soil carbon stocks in China's Grain-for-Green' Pro-gram:a synthesis. Global Change Biology, 20(11):3544-3556. doi: 10.1111/gcb12508
    [12] Deng L, Wang K B, Chen M L et al., 2013. Soil organic carbon storage capacity positively related to forest succession on the Loess Plateau, China. Catena, 110(11):1-7. doi: 10.1016/j.catena.2013.06.016
    [13] Don A, Schumacher J, Freibauer A, 2011. Impact of tropical land-use change on soil organic carbon stocks-a meta-analysis. Global Change Biology, 17(4):1658-1670. doi: 10.1111/j.1365-2486.2010.02336.x
    [14] Foley J A, Ruth D, Asner G P et al., 2005. Global consequences of land use. Science, 309:570-574. doi:10.1126/science. 1111772.
    [15] Guo L B, Gifford R M, 2002. Soil carbon stocks and land use change:a meta-analysis. Global Change Biology, 8(4):345-360. doi: 10.1046/j.1354-1013.2002.00486.x
    [16] Guo, L B, Wang M B, Gifford R M et al., 2007. The change of soil carbon stocks and fine root dynamics after land use change from a native pasture to a pine plantation. Plant and Soil, 299(1-2):251-262. doi: 10.1007/s11104-007-9381-7
    [17] Hopkins D W, Waite I S, Mcnicol J W et al., 2009. Soil organic carbon contents in long-term experimental grassland plots in the UK (Palace Leas and Park Grass) have not changed consistently in recent decades. Global Change Biology, 15(7):1739-1754. doi: 10.1111/j.1365-2486.2008.01809.x
    [18] Houghton R A, Hackler J L, 1999. Emissions of carbon from forestry and land-use change in tropical Asia. Global Change Biology, 5(4):481-492. doi: 10.1046/j.1365-2486.1999.00244.x.
    [19] Johnson D W, Curtis P S, 2001. Effects of forest management on soil C and N storage:meta-analysis. Forest Ecology and Management, 140(2-3):227-238. doi:10.1016/S0378-1127 (00)00282-6
    [20] Karhu K, Wall A, Vanhala P et al., 2011. Effects of afforestation and deforestation on boreal soil carbon stocks:comparison of measured C stocks with Yasso07 model results. Geoderma, 164(1):33-45. doi: 10.1016/j.geoderma.2011.05.008
    [21] Knorr M, Frey S D, Curtis P S, 2005. Nitrogen additions and litter decomposition:a meta-analysis. Ecology, 86(12):3252-3257. doi: 10.1890/05-0150
    [22] Laganière J, Angers D A, Pare' D et al., 2010. Carbon accumula-tion in agricultural soils after afforestation:a meta-analysis. Global Change Biology, 16(1):439-453. doi: 10.1111/j.1365-2486.2009.01930.x
    [23] Lal R, 2002. Soil carbon sequestration in China through agricul-tural intensification, and restoration of degraded and decertified ecosystems. Land Degradation and Development, 13(6):469-478. doi: 10.1002/Ldr.531
    [24] Lal R, 2004. Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677):1623-1627. doi: 10.1126/science.1097396
    [25] Li D, Niu S, Luo Y, 2012. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation:a meta analysis. New Phytologist, 195(1):172-181. doi: 10.1111/j.1469-8137.2012.04150.x
    [26] Li Yingnian, Guan Dingguo, Zhao Liang et al., 2005. Seasonal frozen soil and its effect on vegetation production in Haibei alpine meadow. Journal of Glaciology and Geoceyology, 27(3):311-319. (in Chinese)
    [27] Liu H, Blagodatsky S, Giese M et al., 2016. Impact of herbicide application on soil erosion and induced carbon loss in a rubber plantation of Southwest China. Catena, 145:180-192. doi: 10.1016/j.catena.2016.06.007
    [28] Ma W, Li Z, Ding K et al., 2016, Soil erosion, organic carbon and nitrogen dynamics in planted forests:a case study in a hilly catchment of Hunan Province, China. Soil and Tillage Re-search, 155:69-77. doi: 10.1016/j.still.2015.07.007
    [29] Mao R, Zeng D H, Hu Y L et al., 2010. Soil organic carbon and nitrogen stocks in an age-sequence of poplar stands planted on marginal agricultural land in Northeast China. Plant and Soil, 332(1):277-287. doi: 10.1007/s11104-010-0292-7
    [30] Muf K, Guo L B, Gifford R M, 2008. Observed and modelled soil carbon and nitrogen changes after planting a Pinus radiata stand onto former pasture. Soil Biology and Biochemistry, 40(1):247-257. doi: 10.1016/j.soilbio.2007.08.021
    [31] Ni K, Ding W, Cai Z et al., 2012. Soil carbon dioxide emission from intensively cultivated black soil in northeast china:ni-trogen fertilization effect. Journal of Soils and Sediments, 12(7):1007-1018. doi: 10.1007/s11368-012-0529-6
    [32] Nouvellon Y, Epron D, Marsden C et al., 2012. Age-related changes in litter input sex plain annual trends in soil CO2 ef-fluxes over a full Eucalyptus rotation after afforestation of a tropical savannah. Biogeochemistry, 111(1):515-533. doi: 10.1007/s10533-011-9685-9
    [33] Olson K R, Al-Kaisi M, Lal R et al., 2016. Impact of soil erosion on soil organic carbon stocks. Journal of Soil and Water Con-servation, 71(3):61A-67A. doi: 10.2489/jswc.71.3.61A
    [34] Oudenhoven A P E V, Veerkamp C J, Alkemade R et al., 2015. Effects of different management regimes on soil erosion and surface runoff in semi-arid to sub-humid rangelands. Journal of Arid Environments, 121:100-111. doi:10.1016/j.jaridenv. 2015.05.015
    [35] Paul K I, Polglase P J, Nyakuengama J G et al., 2002. Change in soil carbon following afforestation. Forest Ecology and Man-agement, 168(1-3):241-257. doi:10.1016/S0378-1127(01) 00740-X
    [36] Persson M, Moberg J, Ostwald M et al., 2013. The Chinese grain for green programme:assessing the carbon sequestered vialand reform. Journal of Environmental Management, 126(14):142-146. doi: 10.1016/j.jenvman.2013.02.045
    [37] Post W M, Kwon K C, 2000. Soil carbon sequestration and land-use change:processes and potential. Global Change Bi-ology, 6(3):317-327. doi: 10.1046/j.1365-2486.2000.00308.x
    [38] Qiu L, Wei X, Zhang X et al., 2012, Soil organic carbon losses due to land use change in a semiarid grassland. Plant and Soil, 355(1):299-309. doi: 10.1007/s11104-011-1099-x
    [39] Richter D D, Markewitz D, Trumbore S E et al., 1999. Rapid accumulation and turnover of soil carbon in are-establishing forest. Nature, 400(6739):56-58. doi: 10.1038/21867
    [40] Schulp C J E, Verburg P H, 2009. Effect of land use history and site factors on spatial variation of soil organic carbon across a physiographic region. Agriculture Ecosystems and Environ-ment, 133(1-2):86-97. doi: 10.1016/j.agee.2009.05.005
    [41] Shi S, Zhang W, Zhang P, et al., 2013. A synthesis of change in deep soil organic carbon stores with afforestation of agricultural soils. Forest Ecology & Management, 296(3):53-63. doi: 10.1016/j.foreco.2013.01.026
    [42] Smal H, Olszewska M, 2008. The effect of afforestation with Scots pine (Pinus silvestris L.) of sandy post-arable soils on their selected properties. II. Reaction, carbon, nitrogen and phosphorus. Plant and Soil, 305(1):171-187. doi:10.1007/s 11104-008-9538-z
    [43] Smith P, 2008. Land use change and soil organic carbon dynamics. Nutrient Cycling in Agroecosystems. 81(2):169-178. doi: 10.1007/s10705-007-9138-y
    [44] Song X, Peng C, Jiang H et al., 2013. Direct and indirect effects of UV-B radiation on litter decomposition:a meta-analysis. Plos One, 8(6):e68858. doi:10.1371/journal. pone. 0068858
    [45] Song X, Peng C, Zhou G et al., 2014. Chinese Grain for Green Program led to highly increased soil organic carbon levels:a meta-analysis. Scientific Reports, 4(3):528-528. doi:10. 1038/srep04460
    [46] State Forestry Administration, China, 2013. China Forestry Sta-tistical Yearbook (2012). Beijing:China Forestry Press, 38-45.
    [47] Turner J, Lambert M J, Johnson D W, 2006. Experience with patterns of change in soil carbon resulting from forest plantation establishment in eastern Australia. Forest Ecology and Management, 220(1):259-269. doi:10.1016/j.foreco.2005. 08.025
    [48] Van K C, Venterea R, Six J et al., 2013.Climate, duration, and N placement determine N2O emissions in reduced tillage systems:a meta-analysis. Global Change Biology 19(1):33-44. doi: 10.1111/j.1365-2486.2012.02779.x
    [49] Vesterdal L, Ritter E, Gundersen P, 2002. Change in soil organic carbon following afforestation of former arable land. Forest Ecology and Management, 169(1-2):137-147. doi: 10.1016/S0378-1127(02)00304-3
    [50] Wang R, Filley T R, Xu Z et al., 2014. Coupled response of soil carbon and nitrogen pools and enzyme activities to itrogen and water addition in a semi-arid grassland of Inner Mongolia. Plant and Soil, 381(1):323-336. doi: 10.1007/s11104-014-2129-2n
    [51] Xiao L, Liu G B, Xue S et al., 2013. Soil microbial community composition during natural recovery in the Loess Plateau, China. Journal of Integrative Agriculture, 12(10):1872-1883. doi: 10.1016/S2095-3119(13)60399-8
    [52] Yang Y H, Luo Y Q, Finzi A C, 2011. Carbon and nitrogen dy-namics during forest stand development:a global synthesis. New Phyologist, 190(4):977-989. doi:10.1111/j.1469-8137. 2011.03645.x
    [53] Zhang J H, Wang Y, Li F C, 2015. Soil organic carbon and nitro-gen losses due to soil erosion and cropping in a sloping terrace landscape. Soil Research, 53(1):87-96. doi:10.1016/j. cate-na.2016.06.007
    [54] Zhang K, Dang H, Tan S et al., 2010. Change in soil organic car-bon following the ‘Grain-for-Green’ programme in China. Land Degradation and Development, 21(1):13-23. doi:10. 1002/Ldr.954
    [55] Zhou G Y, Liu S G, Li Z et al., 2006. Old-growth forests can ac-cumulate carbon in soils. Science, 314(5804):1417-1417. doi: 10.1126/science.1130168
    [56] Zinn Y L, Lal R, Resck D V S et al., 2005. Changes in soil organic carbon stocks under agriculture in Brazil. Soil and Tillage Research, 84(1):28-40. doi: 10.1016/j.still.2004.08.007
  • [1] ZHANG Suwen, LI Chenggu, MA Zuopeng, LI Xin.  Influences of Different Transport Routes and Road Nodes on Industrial Land Conversion: A Case Study of Changchun City of Jilin Province, China . Chinese Geographical Science, 2020, 30(3): 544-556. doi: 10.1007/s11769-020-1126-z
    [2] QU Lulu, HUANG Yunxin, YANG Lingfan, LI Yurui.  Vegetation Restoration in Response to Climatic and Anthropogenic Changes in the Loess Plateau, China . Chinese Geographical Science, 2020, 30(1): 89-100. doi: 10.1007/s11769-020-1093-4
    [3] HE Qingsong, TAN Shukui, XIE Peng, LIU Yaolin, LI Jing.  Re-assessing Vegetation Carbon Storage and Emissions from Land Use Change in China Using Surface Area . Chinese Geographical Science, 2019, 20(4): 601-613. doi: 10.1007/s11769-019-1058-7
    [4] WANG Liyan, ANNA Herzberger, ZHANG Liyun, XIAO Yi, WANG Yaqing, XIAO Yang, LIU Jianguo, OUYANG Zhiyun.  Spatial and Temporal Changes of Arable Land Driven by Urbanization and Ecological Restoration in China . Chinese Geographical Science, 2019, 20(5): 809-819. doi: 10.1007/s11769-018-0983-1
    [5] ZHOU Jian, ZHANG Fengrong, XU Yan, GAO Yang, XIE Zhen.  Evaluation of Land Reclamation and Implications of Ecological Restoration for Agro-pastoral Ecotone:Case Study of Horqin Left Back Banner in China . Chinese Geographical Science, 2017, 27(5): 772-783. doi: 10.1007/s11769-017-0907-5
    [6] ZHANG Shaoliang, JIANG Lili, LIU Xiaobing, ZHANG Xingyi, FU Shicong, DAI Lin.  Soil Nutrient Variance by Slope Position in a Mollisol Farmland Area of Northeast China . Chinese Geographical Science, 2016, 26(4): 508-517. doi: 10.1007/s11769-015-0737-2
    [7] LI Xiaosong, WANG Hongyan, ZHOU Shufang, SUN Bin, GAO Zhihai.  Did Ecological Engineering Projects Have a Significant Effect on Large-scale Vegetation Restoration in Beijing-Tianjin Sand Source Region, China? A Remote Sensing Approach . Chinese Geographical Science, 2016, 26(2): 216-228. doi: 10.1007/s11769-016-0801-6
    [8] NING Jia, LIU Jiyuan, ZHAO Guosong.  Spatio-temporal Characteristics of Disturbance of Land Use Change on Major Ecosystem Function Zones in China . Chinese Geographical Science, 2015, 25(5): 523-536. doi: 10.1007/s11769-015-0776-8
    [9] SONG Wei, CHEN Baiming, ZHANG Ying.  Land-use Change and Socio-economic Driving Forces of Rural Settlement in China from 1996 to 2005 . Chinese Geographical Science, 2014, 0(5): 511-524. doi: 10.1007/s11769-013-0633-6
    [10] LI Taijun, LIU Guobin.  Age-related Changes of Carbon Accumulation and Allocation in Plants and Soil of Black Locust Forest on Loess Plateau in Ansai County, Shaanxi Province of China . Chinese Geographical Science, 2014, 0(4): 414-422. doi: 10.1007/s11769-014-0704-3
    [11] LUO Shanghua, MAO Qizheng, MA Keming.  Comparison on Soil Carbon Stocks Between Urban and Suburban Topsoil in Beijing, China . Chinese Geographical Science, 2014, 0(5): 551-561. doi: 10.1007/s11769-014-0709-y
    [12] HU Chanjuan, LIU Guohua, FU Bojie, CHEN Liding, LYU Yihe, GUO Lei.  Soil Carbon Stock and Flux in Plantation Forest and Grassland Ecosystems in Loess Plateau, China . Chinese Geographical Science, 2014, 0(4): 423-435. doi: 10.1007/s11769-014-0700-7
    [13] SONG Wei, CHEN Baiming, ZHANG Ying.  Land Use Regionalization of Rural Settlements in China . Chinese Geographical Science, 2013, 23(4): 421-434. doi: 10.1007/s11769-013-0592-y
    [14] LIU Dianwei, WANG Zongming, SONG Kaishan, ZHANG Bai, HU Liangjun, HUANG Ni, ZHANG Sumei, LUO Ling, ZHANG Chunhua, JIANG Guangjia.  Land Use/Cover Changes and Environmental Consequences in Songnen Plain, Northeast China . Chinese Geographical Science, 2009, 19(4): 299-305. doi: 10.1007/s11769-009-0299-2
    [15] YAN Jianzhong, ZHANG Yili, ZHANG Liping, WU Yingying.  Livelihood Strategy Change and Land Use Change——Case of Danzam Village in Upper Dadu River Watershed, Tibetan Plateau of China . Chinese Geographical Science, 2009, 19(3): 231-240. doi: 10.1007/s11769-009-0231-9
    [16] ZHONG Taiyang, ZHANG Xiuying, HUANG Xianjin.  Impact of Labor Transfer on Agricultural Land Use Conversion at Rural Household Level Based on Logit Model . Chinese Geographical Science, 2008, 18(4): 300-307. doi: 10.1007/s11769-008-0300-5
    [17] DU Guoqing.  Development Mechanism of Urban System in Rapidly Changing Period in China . Chinese Geographical Science, 2007, 17(1): 10-18. doi: 10.1007/s11769-007-0010-4
    [18] ZHU Xiao-hua, Patel NILANCHAL, ZUO Wei, YANG Xiu-chun.  FRACTAL ANALYSIS APPLIED TO SPATIAL STRUCTURE OF CHINA'S VEGETATION . Chinese Geographical Science, 2006, 16(1): 48-55.
    [19] YU Bohua, LU Changhe.  Change of Cultivated Land and Its Implications on Food Security in China . Chinese Geographical Science, 2006, 16(4): 299-305.
    [20] XU Xin-liang, ZENG Lan, ZHUANG Da-fang.  ANALYSIS ON LAND-USE CHANGE AND SOCIO-ECONOMIC DRIVING FACTORS IN HAINAN ISLAND DURING 50 YEARS FROM 1950 TO 1999 . Chinese Geographical Science, 2002, 12(3): 193-198.
  • 加载中
计量
  • 文章访问数:  318
  • HTML全文浏览量:  1
  • PDF下载量:  1268
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-12
  • 修回日期:  2016-11-17
  • 刊出日期:  2017-04-27

Effects of Vegetation Restoration on Soil Organic Carbon in China: A Meta-analysis

doi: 10.1007/s11769-017-0858-x
    基金项目:  Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA05060104)
    通讯作者: LIU Guohua.E-mail:ghliu@rcees.ac.cn

摘要: Vegetation restoration has been proposed as an effective method for increasing both plant biomass and soil carbon (C) stocks. In this study, 204 publications (733 observations) were analyzed, focusing on the effects of vegetation restoration on soil organic carbon (SOC) in China. The results showed that SOC was increased by 45.33%, 24.43%, 30.29% and 27.98% at soil depths of 0-20 cm, 20-40 cm, 40-60 cm and > 60 cm after vegetation restoration, respectively. Restoration from both cropland and non-cropland increased the SOC content. The conversion of non-cropland was more efficient in SOC accumulation than the conversion of cropland did, especially in >40 cm layers. In addition, the conversion to planted forest led to greater SOC accumulation than that to other land use did. Conversion period and initial SOC content extended more influence on soil C accumulation as the main factors after vegetation restoration than temperature and precipitation did. The SOC content significantly increased with restoration period after long-term vegetation restoration (>40 yr), indicating a large potential for further accumulation of carbon in the soil, which could mitigate climate change in the near future.

English Abstract

GONG Li, LIU Guohua, WANG Meng, YE Xin, WANG Hao, LI Zongshan. Effects of Vegetation Restoration on Soil Organic Carbon in China: A Meta-analysis[J]. 中国地理科学, 2017, 27(2): 188-200. doi: 10.1007/s11769-017-0858-x
引用本文: GONG Li, LIU Guohua, WANG Meng, YE Xin, WANG Hao, LI Zongshan. Effects of Vegetation Restoration on Soil Organic Carbon in China: A Meta-analysis[J]. 中国地理科学, 2017, 27(2): 188-200. doi: 10.1007/s11769-017-0858-x
GONG Li, LIU Guohua, WANG Meng, YE Xin, WANG Hao, LI Zongshan. Effects of Vegetation Restoration on Soil Organic Carbon in China: A Meta-analysis[J]. Chinese Geographical Science, 2017, 27(2): 188-200. doi: 10.1007/s11769-017-0858-x
Citation: GONG Li, LIU Guohua, WANG Meng, YE Xin, WANG Hao, LI Zongshan. Effects of Vegetation Restoration on Soil Organic Carbon in China: A Meta-analysis[J]. Chinese Geographical Science, 2017, 27(2): 188-200. doi: 10.1007/s11769-017-0858-x
参考文献 (56)

目录

    /

    返回文章
    返回