留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of Wetland Vegetation on Soil Microbial Composition: A Case Study in Tumen River Basin, Northeast China

QIN Lei JIANG Ming TIAN Wei ZHANG Jian ZHU Weihong

QIN Lei, JIANG Ming, TIAN Wei, ZHANG Jian, ZHU Weihong. Effects of Wetland Vegetation on Soil Microbial Composition: A Case Study in Tumen River Basin, Northeast China[J]. 中国地理科学, 2017, 27(2): 239-247. doi: 10.1007/s11769-017-0853-2
引用本文: QIN Lei, JIANG Ming, TIAN Wei, ZHANG Jian, ZHU Weihong. Effects of Wetland Vegetation on Soil Microbial Composition: A Case Study in Tumen River Basin, Northeast China[J]. 中国地理科学, 2017, 27(2): 239-247. doi: 10.1007/s11769-017-0853-2
QIN Lei, JIANG Ming, TIAN Wei, ZHANG Jian, ZHU Weihong. Effects of Wetland Vegetation on Soil Microbial Composition: A Case Study in Tumen River Basin, Northeast China[J]. Chinese Geographical Science, 2017, 27(2): 239-247. doi: 10.1007/s11769-017-0853-2
Citation: QIN Lei, JIANG Ming, TIAN Wei, ZHANG Jian, ZHU Weihong. Effects of Wetland Vegetation on Soil Microbial Composition: A Case Study in Tumen River Basin, Northeast China[J]. Chinese Geographical Science, 2017, 27(2): 239-247. doi: 10.1007/s11769-017-0853-2

Effects of Wetland Vegetation on Soil Microbial Composition: A Case Study in Tumen River Basin, Northeast China

doi: 10.1007/s11769-017-0853-2
基金项目: Under the auspices of National Natural Science Foundation of China (No. 41361015, 41271106, 41271107, 41501105), Open Fund of the State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University (No. 130028630)
详细信息
    通讯作者:

    ZHU Weihong.E-mail:whzhu@ybu.edu.cn

Effects of Wetland Vegetation on Soil Microbial Composition: A Case Study in Tumen River Basin, Northeast China

Funds: Under the auspices of National Natural Science Foundation of China (No. 41361015, 41271106, 41271107, 41501105), Open Fund of the State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University (No. 130028630)
More Information
    Corresponding author: 10.1007/s11769-017-0853-2
  • 摘要: Hydrology plays a dominant role in wetland plant distribution and microbial composition, but few studies explicitly attempted to relate the linkage between wetland vegetation and microbial community. The present study consisted of five wetland plant communities along three adjacent flood gradients zones (zone 1 dominated by Carex appendiculat, zone 2 dominated by Eleocharis ovate, and zone 3 dominated by Phragmites australis/Bidens pilosa/Calamagrostis angustifolia, which formed separate, monoculture patches). Gram negative and arbuscular mycorrhizal fungal phospholipid fatty acid (PLFA) are more abundant in the site with short flooding period (zone 3) than in the site with long flooding period (zone 1), and they are also different in the P. australis, B. spilosa and C. angustifolia of zone 3. Principle Component Analysis (PCA) showed that the flooding period could explain 92.4% of variance in microbial composition. Redundancy Analysis (RDA) showed that available nitrogen (AN), total nitrogen (TN) and soil organic matter (SOM) could explain the 79.5% of variance in microbial composition among E. ovata, P. australis, B. pilosa and C. angustifolia. Results demonstrated that flooding period was the main factor in driving the microbial composition and plant-derived resources could influence soil microbial composition in the seasonally flooded zones.
  • [1] Bach L H, Grytnes J A, Halvorsen R et al., 2010. Tree influence on soil microbial community structure. Soil Biology and Bio-chemistry, 42(11):1934-1943. doi:10.1016/j.soilbio.2010. 07.002
    [2] Bai Junhong. 2003. Biogeochemical processes of nitrogen in marsh soils from Xianghai wetland, China. Changchun, China:PhD Thesis, Northeast Institute of Geography and Agroecolo-gy, Chinese Academy of Sciences. (in Chinese)
    [3] Bai J H, Yang H O, Deng W et al., 2005. Spatial distribution characteristics of organic matter and total nitrogen of marsh soils in river marginal wetlands. Geoderma, 124(1-2):181-192. doi: 10.1016/j.gE.ovataderma.2004.04.012
    [4] Balasooriya W K, Denef K, Peters J et al., 2008. Vegetation composition and soil microbial community structural changes along a wetland hydrological gradient. Hydrology and Earth System Sciences, 12(1):277-291. doi: 10.5194/hess-12-277-2008
    [5] Bardgett R D, Shine A, 1999. Linkages between plant litter diver-sity, soil microbial biomass and ecosystem function in temperate grasslands. Soil Biology and Biochemistry, 31(2):317-321. doi: 10.1016/S0038-0717(98)00121-7
    [6] Bruland G L, Richardson C J, 2004. Wetland soils:Hydrologic gradients and topsoil additions affect soil properties of virgin-iacerated wetlands. Soil Science Society of America Journal, 68(6):2069-2077. doi: 10.2136/sssaj2004.2069
    [7] Colin W B, Shinichi A, Francisco C et al., 2015. Plant nitrogen uptake drives rhizosphere bacterial community assembly during plant growth. Soil Biology and Biochemistry, 85:1701-82. doi:10. 1016/j.soilbio.2015.03.006
    [8] Djukic I, Zehetner F, Mentler A et al., 2010. Microbial community composition and activity in different Alpine vegetation zones. Soil Biology and Biochemistry, 42(2):155-161. doi:10.1016/j.soilbio. 2009.10.006
    [9] Frostegard A, Tunlid A, Baath E, 1991. Microbial biomass meas-ured as total lipid phosphate in soils of different organic content. Journal of Microbiological Methods, 14(3):151-163. doi:10. 1016/0167-7012(91)90018-L
    [10] Gutknecht J L M, Goodman R M, Balser T C, 2006. Linking soil processes and microbial ecology in freshwater wetland eco-systems. Plant Soil, 289(1-2):17-34. doi: 10.1007/s11104-006-9105-4
    [11] Han X M, Wang R Q, Liu J et al., 2007. Effects of vegetation type on soil microbial community structure and catabolic diversity assessed by polyphasic methods in North China. Journal of Environmental Sciences, 19(10):1228-1234. doi:10.1016/S 1001-0742(07)60200-9.
    [12] Houlahan J E, Keddy P A, Makkay K et al., 2006. The effects of adjacent land use on wetland species richness and community composition. Wetlands, 26(1):79-96. doi:10.1672/0277-5212 (2006)[97:JE.OVATAALU]2.0.CO;2
    [13] Ingham E R, Wilson M V, 1999. The mycorrhizal colonization of six wetland plant species at sites differing in land use history. Mycorrhiza, 9(4):233-235. doi: 10.1007/s005720050272
    [14] Jaatinen K, Fritze H, Laine J et al., 2007. Effects of short-and long-term water-level drawdown on the populations and activity of aerobic decomposers in a boreal peatland. Global Change Biology, 13(2):491-510. doi:10.111/j.1365-2486. 2006.01312.x
    [15] Jaatinen K, Tuittila E S, Laine J et al., 2005. Methane-oxidizing bacteria (MOB) in a Finnish raised mire complex:Effects of site fertility and drainage. Microbial Ecology, 50(3):429-439. doi: 10.1007/s00248-004-0219-z
    [16] Jackson M B, Armstrong W, 1999. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biology, 1(3):274-287. doi: 10.1111/j.1438-8677.1999.tb00253.x
    [17] James F D, Nicolas C, Hélène F et al., 2004. Sensing and signal-ling during plant flooding. Plant Physiology and Biochemistry, 42(4):273-282. doi: 10.1016/j.plaphy.2004.02.003
    [18] Jing J Y, Martijn B T, Van der Putten W H, 2015. Interspecific competition of early successional plant species in ex-arable fields as influenced by plant-soil feedback. Basic and Applied and Ecology, 16(2):112-119. doi: 10.1016/j.baae.2015.01.001
    [19] Kardol P, Bezemer T M, Van der Putten W H, 2006. Temporal variation in plant-soil feedback controls succession. Ecology Letters, 9(9):1080-1088. doi:10.1111/j.1461-0248.2006. 00953.x
    [20] Kardol P, De Deyn G B, Laliberte E et al., 2013. Biotic plant-soil feedbacks across temporal scales. Journal of Ecology, 101(2):309-315. doi: 10.1111/1365-2745.12046
    [21] Knops J M H, Bradley K L, Wedin D A, 2002. Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecology Letters, 5(3):454-466. doi: 10.1111/j.1461-0248.2008.01209.x
    [22] Kulmatiski A, Beard K H, Stevens J R et al., 2008. Plant-soil feedbacks:a meta-analytical review. Ecology letters, 11(9):980-912. doi: 10.1111/j.1461-0248.2008.01209.x
    [23] Lanchlan H, Fraser Tara E, Miletti, 2008. Effects of minor water depth treatments on competitive effect and response of eight wetland plants. Plant Ecology, 195(1):33-43. doi:10.1007/s 11258-007-9296-7
    [24] Liu Guangsong, 1996. Analysis of Soil Physical and Chemical Properties and Description of Soil Profiles. Bejing:Chinese Standard Press.
    [25] Lou Y Y, Wang G P, Lu X G et al., 2013. Zonation of plant cover and environmental factors in wetlands of the Sanjiang Plain, northeast China. Nordic Journal of Botany, 31(6):748-756. doi: 10.1111/j.1756-1051.2013.01721.x
    [26] Massaccesi L, Bardgett R D, Agnelli A et al., 2015. Impact of plant species evenness, dominant species identity and spatial arrangement on the structure and functioning of soil microbial communities in a model grassland. Oecologia, 177(3):747-759. doi: 10.1007/s00442-014-3135-z
    [27] Miller S P, Bever J D, 1999. Distribution of arbuscular mycorrhi-zal fungi in stands of the wetland grass Panicum hemitomon along a wide hydrologic gradient. Oecologia, 119(4):586-592. doi: 10.1007/s004420050823
    [28] Mitchell R J, Hester A J, Campbell C D et al., 2012. Explaining the variation in the soil microbial community:do vegetation composition and soil chemistry explain the same or different parts of the microbial variation? Plant Soil, 351(1-2):355-362. doi: 10.1007/s11104-011-0968-7
    [29] Moche M, Gutknecht J, Schulz E et al., 2015. Monthly dynamics of microbial community structure and their controlling factors in three floodplain soils. Soil Biology and Biochemistry, 90:169-178. doi: 10.1016/j.soilbio.2015.07.006
    [30] Reddy K R, Patrick J, 1975. Effect of alternate aerobic and an-aerobic conditions on redox potential, organic matter decom-position and nitrogen loss in a flooded soil. Soil Biology and Biochemistry, 7(2):87-94. doi: 10.1016/0038-0717(75)90004-8
    [31] Reynolds H L, Packer A, Bever J D et al., 2003.Grassroots exol-ogy:plant-microbe-soil interactions as drivers of plant com-munity structure and dynamics. Ecology Letters, 84(9):2281-2291. doi: http://dx.doi.org/10.1890/02-0298
    [32] Rickerl D H, Sancho S O, Anath S, 1994.Vesicular-arbuscular endomycorrhizal colonization of wetland plants. Journal of Environmental Quality, 23(5):913-916. doi:10.2134/jeq1994. 00472425002300050010x
    [33] Schlatter D C, Bakker M G, Bradeen J M et al., 2015. Plant community richness and microbial interactions structure bac-terial community in soil. Ecology, 96(1):134-142. doi:10. 1890/13-1648.1
    [34] Van Eck W H J M, Van De Steeg H M, Blom C P W P M et al., 2004. Is tolerance to summer flooding correlated with distri-bution patterns in river floodplains? A comparative study of 20 terrestrial grassland species. Okios, 107(2):393-405. doi: 10.1111/j.0030-1299.2004.13083.x
    [35] Wang X, Van Nostrand J D, Deng Y et al., 2015. Scale-dependent effects of climate and geographic distance on bacterial diversity patterns across northern China's grasslands. FEMS Micro-biology Ecology, 91(12):1-9. doi: http://dx.doi.org/10.1093/femsec/fiv133
    [36] Wardle D A, Bardgett R D, Klironomos J N et al., 2004. Ecolog-ical linkages between aboveground and belowground biota. Science, 34(5677):1620-1633. doi: 10.1126/science.1094875
    [37] Weand M P, Arthur M A, Lovett G M et al., 2010. Effects of tree species and N additions on forest floor microbial communities and extracellular enzyme activities. Soil Biology and Bio-chemistry, 42(12):2161-2173. doi:10.1016/j.soilbio.2010. 08.012
    [38] Wyatt H H, Curtis J R, Rytas V et al., 2008. Environmental and anthropogenic controls over bacterial communities in wetland soils. Proceedings of the National Academy of Science of the United States of America, 105(46):17842-17847. doi:10. 1073/pnas.0808254105
    [39] Yang Guisheng, Song Changchun, Wang Li et al., 2010. Influence of water level gradient on marsh soil microbial activity of Cala-magrostis angustifolia. Environment Science, 31:444-449. (in Chinese)
    [40] Zhao J, Wang X L, Shao Y H et al., 2011. Effects of vegetation removal on soil properties and decomposer organisms. Soil Biology and Biochemistry, 43(5):954-960. doi:10.1016/j. soilbio.2011.01.010
    [41] Zedler J B, Kercher S, 2005. Wetland resources:status, trends, ecosystem services, and restorability. Annual Review of Envi-ronment and Resources, 30:39-74. doi:10.1146/annurev. energy.30.050504.144248
  • [1] JIN Yinghua, ZHANG Yingjie, XU Zhiwei, GU Xiaonan, XU Jiawei, TAO Yan, HE Hongshi, WANG Ailin, LIU Yuxia, NIU Liping.  Soil Microbial Community and Enzyme Activity Responses to Herbaceous Plant Expansion in the Changbai Mountains Tundra, China . Chinese Geographical Science, 2019, 29(6): 985-1000. doi: 10.1007/s11769-019-1067-6
    [2] GAO Chao, RUAN Tian.  Bibliometric Analysis of Global Research Progress on Coastal Flooding 1995-2016 . Chinese Geographical Science, 2018, 28(6): 998-1008. doi: 10.1007/s11769-018-0996-9
    [3] WANG Peijiang, ZHENG Haifeng, REN Zhibin, ZHANG Dan, ZHAI Chang, MAO Zhixia, TANG Ze, HE Xingyuan.  Effects of Urbanization, Soil Property and Vegetation Configuration on Soil Infiltration of Urban Forest in Changchun, Northeast China . Chinese Geographical Science, 2018, 28(3): 482-494. doi: 10.1007/s11769-018-0953-7
    [4] GONG Li, LIU Guohua, WANG Meng, YE Xin, WANG Hao, LI Zongshan.  Effects of Vegetation Restoration on Soil Organic Carbon in China: A Meta-analysis . Chinese Geographical Science, 2017, 27(2): 188-200. doi: 10.1007/s11769-017-0858-x
    [5] XU Xiuli, ZHANG Qi, TAN Zhiqiang, LI Yunliang, WANG Xiaolong.  Effects of Water-table Depth and Soil Moisture on Plant Biomass, Diversity, and Distribution at a Seasonally Flooded Wetland of Poyang Lake, China . Chinese Geographical Science, 2015, 25(6): 739-756. doi: 10.1007/s11769-015-0774-x
    [6] XIONG Dingpeng, SHI Peili, SUN Yinliang, WU Jianshuang, ZHANG Xianzhou.  Effects of Grazing Exclusion on Plant Productivity and Soil Carbon, Nitrogen Storage in Alpine Meadows in Northern Tibet, China . Chinese Geographical Science, 2014, 0(4): 488-498. doi: 10.1007/s11769-014-0697-y
    [7] ZHANG Yubin, CAO Ning, XU Xiaohong, ZHANG Feng, YAN Fei, ZHANG Xinsheng, TANG Xinlong.  Relationship Between Soil and Water Conservation Practices and Soil Conditions in Low Mountain and Hilly Region of Northeast China . Chinese Geographical Science, 2014, 0(2): 147-162. doi: 10.1007/s11769-013-0620-y
    [8] ZHANG Shujie, ZHU Axing, LIU Wenliang, LIU Jing, YANG Lin.  Mapping Detailed Soil Property Using Small Scale Soil Type Maps and Sparse Typical Samples . Chinese Geographical Science, 2013, 23(6): 680-691. doi: 10.1007/s11769-013-0632-7
    [9] WU Lezhi, CAI Zucong.  Key Variables Explaining Soil Organic Carbon Content Variations in Croplands and Non-Croplands in Chinese Provinces . Chinese Geographical Science, 2012, 22(3): 255-263.
    [10] CHEN Liding, QI Xin, ZHANG Xinyu, LI Qi, ZHANG Yanyan.  Effect of Agricultural Land Use Changes on Soil Nutrient Use Efficiency in an Agricultural Area, Beijing, China . Chinese Geographical Science, 2011, 21(4): 392-402.
    [11] FU Yao, LIN Changcun, MA Jianjun, ZHU Tingcheng.  Effects of Plant Types on Physico-chemical Properties of Reclaimed Mining Soil in Inner Mongolia, China . Chinese Geographical Science, 2010, 20(4): 309-317. doi: 10.1007/s11769-010-0403-7
    [12] TANG Yanling, ZHANG Guangxin, YANG Yuesuo, GAO Yingzhi.  Identifying Key Environmental Factors Influencing Spatial Variation of Water Quality in Upper Shitoukoumen Reservoir Basin in Jilin Province, China . Chinese Geographical Science, 2009, 19(4): 365-374. doi: 10.1007/s11769-009-0365-9
    [13] XIE Zhonglei, CHEN Zhuo, SUN Wentian, GUO Xiaojing, YIN Bo, WANG Jinghua.  Distribution of Aluminum and Fluoride in Tea Plant and Soil of Tea Garden in Central and Southwest China . Chinese Geographical Science, 2007, 17(4): 376-382. doi: 10.1007/s11769-007-0376-3
    [14] YUAN Zhao-hua, LU Xian-guo, ZHOU Jia.  CUMULATIVE EFFECTS OF DIFFERENT CULTIVATING PATTERNS ON PROPERTIES OF ALBIC SOIL IN SANJIANG PLAIN . Chinese Geographical Science, 2006, 16(2): 133-140.
    [15] XIONG Dong-hong, ZHOU Hong-yi, YANG Zhong, ZHANG Xin-bao.  SLOPE LITHOLOGIC PROPERTY, SOIL MOISTURE CONDITION AND REVEGETATION IN DRY-HOT VALLEY OF JINSHA RIVER . Chinese Geographical Science, 2005, 15(2): 186-192.
    [16] WANG Ning, ZHANG Hong-yan, WANG Hui-lian, ZHANG Zheng-xiang.  SPATIAL ANALYSIS OF SOIL EROSION AND NON-POINT SOURCE POLLUTION BASED ON GIS IN ERLONG LAKE WATERSHED, JILIN PROVINCE . Chinese Geographical Science, 2004, 14(4): 355-360.
    [17] WANG Ya-qin, WANG Ji-hong.  EFFECT OF ELECTRIC FERTILIZER ON SOIL PROPERTIES . Chinese Geographical Science, 2004, 14(1): 71-74.
    [18] GAO Jun-feng, LI Chang-feng, ZHANG Hong-hui.  SOIL SPATIAL ANALYSIS AND AGRICULTURAL LAND USE OPTIMIZATION BY USING GIS . Chinese Geographical Science, 2003, 13(1): 25-29.
    [19] GU Feng-xue, ZHANG Yuan-dong, CHU Yu, SHI Qing-dong, PAN Xiao-ling.  PRIMARY ANALYSIS ON GROUNDWATER, SOIL MOISTURE AND SALINITY IN FUKANG OASIS OF SOUTHERN JUNGGAR BASIN . Chinese Geographical Science, 2002, 12(4): 333-338.
    [20] 尚金城, 龙爱民, 李斌, 姜建祥.  THE CORRESPONDING ANALYSIS OF HEAVY-METAL POLLUTION OF SOIL IN ZHUZHOU CITY . Chinese Geographical Science, 1996, 6(2): 177-184.
  • 加载中
计量
  • 文章访问数:  344
  • HTML全文浏览量:  2
  • PDF下载量:  928
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-02
  • 修回日期:  2016-01-11
  • 刊出日期:  2017-04-27

Effects of Wetland Vegetation on Soil Microbial Composition: A Case Study in Tumen River Basin, Northeast China

doi: 10.1007/s11769-017-0853-2
    基金项目:  Under the auspices of National Natural Science Foundation of China (No. 41361015, 41271106, 41271107, 41501105), Open Fund of the State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University (No. 130028630)
    通讯作者: ZHU Weihong.E-mail:whzhu@ybu.edu.cn

摘要: Hydrology plays a dominant role in wetland plant distribution and microbial composition, but few studies explicitly attempted to relate the linkage between wetland vegetation and microbial community. The present study consisted of five wetland plant communities along three adjacent flood gradients zones (zone 1 dominated by Carex appendiculat, zone 2 dominated by Eleocharis ovate, and zone 3 dominated by Phragmites australis/Bidens pilosa/Calamagrostis angustifolia, which formed separate, monoculture patches). Gram negative and arbuscular mycorrhizal fungal phospholipid fatty acid (PLFA) are more abundant in the site with short flooding period (zone 3) than in the site with long flooding period (zone 1), and they are also different in the P. australis, B. spilosa and C. angustifolia of zone 3. Principle Component Analysis (PCA) showed that the flooding period could explain 92.4% of variance in microbial composition. Redundancy Analysis (RDA) showed that available nitrogen (AN), total nitrogen (TN) and soil organic matter (SOM) could explain the 79.5% of variance in microbial composition among E. ovata, P. australis, B. pilosa and C. angustifolia. Results demonstrated that flooding period was the main factor in driving the microbial composition and plant-derived resources could influence soil microbial composition in the seasonally flooded zones.

English Abstract

QIN Lei, JIANG Ming, TIAN Wei, ZHANG Jian, ZHU Weihong. Effects of Wetland Vegetation on Soil Microbial Composition: A Case Study in Tumen River Basin, Northeast China[J]. 中国地理科学, 2017, 27(2): 239-247. doi: 10.1007/s11769-017-0853-2
引用本文: QIN Lei, JIANG Ming, TIAN Wei, ZHANG Jian, ZHU Weihong. Effects of Wetland Vegetation on Soil Microbial Composition: A Case Study in Tumen River Basin, Northeast China[J]. 中国地理科学, 2017, 27(2): 239-247. doi: 10.1007/s11769-017-0853-2
QIN Lei, JIANG Ming, TIAN Wei, ZHANG Jian, ZHU Weihong. Effects of Wetland Vegetation on Soil Microbial Composition: A Case Study in Tumen River Basin, Northeast China[J]. Chinese Geographical Science, 2017, 27(2): 239-247. doi: 10.1007/s11769-017-0853-2
Citation: QIN Lei, JIANG Ming, TIAN Wei, ZHANG Jian, ZHU Weihong. Effects of Wetland Vegetation on Soil Microbial Composition: A Case Study in Tumen River Basin, Northeast China[J]. Chinese Geographical Science, 2017, 27(2): 239-247. doi: 10.1007/s11769-017-0853-2
参考文献 (41)

目录

    /

    返回文章
    返回