留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of Water Level Fluctuations on Wintering Goose Abundance in Poyang Lake Wetlands of China

XIA Shaoxia LIU Yu CHEN Bin JIA Yifei ZHANG Huan LIU Guanhua YU Xiubo

XIA Shaoxia, LIU Yu, CHEN Bin, JIA Yifei, ZHANG Huan, LIU Guanhua, YU Xiubo. Effect of Water Level Fluctuations on Wintering Goose Abundance in Poyang Lake Wetlands of China[J]. 中国地理科学, 2017, 27(2): 248-258. doi: 10.1007/s11769-016-0840-z
引用本文: XIA Shaoxia, LIU Yu, CHEN Bin, JIA Yifei, ZHANG Huan, LIU Guanhua, YU Xiubo. Effect of Water Level Fluctuations on Wintering Goose Abundance in Poyang Lake Wetlands of China[J]. 中国地理科学, 2017, 27(2): 248-258. doi: 10.1007/s11769-016-0840-z
XIA Shaoxia, LIU Yu, CHEN Bin, JIA Yifei, ZHANG Huan, LIU Guanhua, YU Xiubo. Effect of Water Level Fluctuations on Wintering Goose Abundance in Poyang Lake Wetlands of China[J]. Chinese Geographical Science, 2017, 27(2): 248-258. doi: 10.1007/s11769-016-0840-z
Citation: XIA Shaoxia, LIU Yu, CHEN Bin, JIA Yifei, ZHANG Huan, LIU Guanhua, YU Xiubo. Effect of Water Level Fluctuations on Wintering Goose Abundance in Poyang Lake Wetlands of China[J]. Chinese Geographical Science, 2017, 27(2): 248-258. doi: 10.1007/s11769-016-0840-z

Effect of Water Level Fluctuations on Wintering Goose Abundance in Poyang Lake Wetlands of China

doi: 10.1007/s11769-016-0840-z
基金项目: Under the auspices of National Natural Science Foundation of China (No.41171030, 41471088)
详细信息
    通讯作者:

    YU Xiubo.E-mail:yuxb@igsnrr.ac.cn

Effect of Water Level Fluctuations on Wintering Goose Abundance in Poyang Lake Wetlands of China

Funds: Under the auspices of National Natural Science Foundation of China (No.41171030, 41471088)
More Information
    Corresponding author: 10.1007/s11769-016-0840-z
  • 摘要: The Poyang Lake is a Ramsar site and is the important over-wintering site for migratory waterbirds along the East Asian-Australasian Fly way. Examining the effects of water level fluctuations on waterbird abundance and analyzing the influencing mechanism is critical to waterbird protection in the context of hydrological alteration. In this study, the effect of water level regime on wintering goose abundance was examined and the influencing mechanism was interpreted. Synchronous waterbirds survey data, hydrological data, Moderate Resolution Imaging Spectroradiometer-Normalized Difference Vegetation Index (MODIS-NDVI) data and habitat data derived from Landsat TM/ETM data and HJ/CCD data were combined. The satellite-derived Green Wave Index (GWI) based on MODIS-NDVI dataset was applied to detect changes in goose food resources. It was found that habitat size and vegetation conditions are key factors determining goose abundance. Geese numbers were positively correlated with habitat area, while intermediate range of vegetation productivity might benefit the goose abundance. Water level affects goose abundance by changing available habitat areas and vegetation conditions. We suggested that matching hydrological regime and exposed meadows time to wintering geese dynamics was crucial in the Poyang Lake wetlands. Our study could provide sound scientific information for hydrological management in the context of waterbird conservation.
  • [1] Armitage A R, Jensen S M, Yoon J E et al., 2007. Wintering shorebird assemblages and behavior in restored tidal wetlands in southern California. Restoration Ecology, 15(1):139-148. doi: 10.1111/j.1526-100X.2006.00198.x
    [2] Bancroft G T, Gawlik D E, Rutchey K, 2002. Distribution of wading birds relative to vegetation and water depths in the northern Everglades of Florida, USA. Waterbirds, 25(3):265-277.
    [3] Barter M, Cao L, Chen L et al., 2005. Results of a survey for waterbirds in the lower Yangtze floodplain, China, in Janu-ary-February 2004. Forktail, 21:1-7.
    [4] Beck P S A, Wang T J, Skidmore A K et al., 2008.Displaying remotely sensed vegetation dynamics along natural gradients for ecological studies. International Journal of Remote Sensing, 29(14):4277-4283. doi:10.1080/01431160802104 942
    [5] Bunn S E, Arthington A H, 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management, 30(4):492-507. doi: 10.1007/s00267-002-2737-0
    [6] Cao L, Barter M, Lei G, 2008. New Anatidae population estimates for eastern China:Implications for current flyway estimates. Biological Conservation, 141(9):2301-2309. doi:10.1016/j. biocon.2008.06.022
    [7] Casanova M T, Brock M A, 2000. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecology, 147(2):237-250. doi:10. 1023/A:1009875226637
    [8] Clausen P, 2000. Modelling water level influence on habitat choice and food availability for Zostera feeding Brent Geese Branta bernicla in non-tidal areas. Wildlife Biology, 6(2):75-88.
    [9] Cong P, Wang X, Cao L et al., 2012. Within-winter shifts in Lesser White-fronted Goose Anser erythropus distribution at East Dongting Lake, China. Ardea, 100(1):5-11. doi:10. 5253/078.100.0103
    [10] Cumming G S, Paxton M, King J et al., 2012. Foraging guild membership explains variation in waterbird responses to the hydrological regime of an arid-region flood-pulse river in Na-mibia. Freshwater Biology, 57(6):1202-1213. doi:10.1111/j. 1365-2427.2012.02789.x
    [11] Deng F, Wang X L, Cai X B et al., 2014. Analysis of the rela-tionship between inundation frequency and wetland vegetation in Dongting Lake using remote sensing data. Ecohydrology, 7(2):717-726.doi: 10.1002/eco.1393
    [12] Ding T S, Yuan H W, Geng S et al., 2006, Macro-scale bird spe-cies richness patterns of the East Asian mainland and islands:Energy, area and isolation. Journal of Biogeography, 33(4):683-693. doi: 10.1111/j.1365-2699.2006.01419.x
    [13] Doiron M, Legagneux P, Gauthier G et al., 2013. Broad-scale satellite Normalized Difference Vegetation Index data predict plant biomass and peak date of nitrogen concentration in Arctic tundra vegetation. Applied Vegetation Science, 16(2):343-351. doi: 10.1111/j.1654-109X.2012.01219.x
    [14] Dronova I, Gong P, Wang L, 2011. Object-based analysis and change detection of major wetland cover types and their clas-sification uncertainty during the low water period at Poyang Lake, China. Remote Sensing of Environment, 115(12):3220-3236. doi: 10.1016/j.rse.2011.07.006
    [15] Euliss N H, Labaugh J W, Fredrickson L H et al., 2004.The wet-land continuum:A conceptual framework for interpreting bio-logical studies. Wetlands, 24(2):448-458. doi: 10.1672/0277-5212(2004)024
    [16] Faragó S, Hangya K, 2012. Effects of water level on waterbird abundance and diversity along the middle section of the Danube River. Hydrobiologia, 697(1):15-21. doi:10.1007/s 10750-012-1166-1
    [17] Fox A D, Cao L, Zhang Y et al., 2011. Declines in the tu-ber-feeding waterbird guild at Shengjin Lake National Nature Reserve, China-A barometer of submerged macrophyte col-lapse.Aquatic Conservation Marine and Freshwater Ecosys-tems, 21(1):82-91. doi: 10.1002/aqc.1154
    [18] Gawlik D E, 2002. The effects of prey availability on the numerical response of wading birds. Ecological Monographs, 72(3):329-346. doi: 10.1890/0012-9615(2002)072
    [19] Gbogbo F, Oduro W, Oppong S K et al., 2010. Response of wa-terbird species to fluctuating water levels in tropical coastal wetlands. African Journal of Ecology, 48(3):637-643. doi:10. 1111/j.1365-2028.2009.01156.x
    [20] González-Gajardo A, Sepúlveda P V, Schlatter R, 2009. Waterbird assemblages and habitat characteristics in wetlands:Influence of temporal variability on species-habitat relationships. Waterbirds, 32(2):225-233. doi: http://dx.doi.org/10.1675/063.032.0203
    [21] Guan L, Wen L, Feng D et al., 2014. Delayed flood recession in central Yangtze floodplains can cause significant food shortages for wintering geese:results of inundation experiment. Environmental Management, 54(6):1331-1341. doi: 10.1007/s00267-014-0350-7
    [22] Hattori A, Mae S, 2001. Habitat use and diversity of waterbirds in a coastal lagoon around Lake Biwa, Japan. Ecological Re-search, 16(3):543-553. doi: 10.1046/j.1440-1703.2001.00416.x
    [23] HovesJ G, Bakewell D, 1989. Shore Birds Studies Manual.Kuala Lumpur:AWB Publication, 1.
    [24] Hu Q, Feng S, Guo H et al., 2007. Interactions of the Yangtze River flow and hydrologic processes of the Poyang Lake, China. Journal of Hydrology, 347(1):90-100. doi:10. 1016/j.jhydrol.2007.09.005
    [25] Ito T Y, Miura N, Lhagvasuren B et al., 2006. Satellite tracking of Mongolian gazelles (Procapr agutturosa) and habitat shifts in their seasonal ranges. Journal of Zoology, 269(3):291-298. doi: 10.1111/j.1469-7998.2006.00077.x
    [26] Ji W, Zeng N, Wang Y et al., 2007. Analysis on the waterbirds community survey of Poyang Lake in winter. Geographic In-formation Sciences, 13(1-2):51-64. doi:10.1080/1082400070 9480632
    [27] Johnsgard P A, 1956. Effects of water fluctuation and vegetation change on bird populations, particularly waterfowl. Ecology, 37(4):689-701.doi: 10.2307/1933059
    [28] Kingsford R T, Jenkins K M, Porter J L, 2004. Imposed hy-drological stability on lakes in arid Australia and effects on waterbirds. Ecology, 85(9):2478-2492. doi: 10.1890/03-0470
    [29] Klaassen R H G, Nolet B A, Bankert D, 2006. Movement of for-aging tundra swans explained by spatial pattern in cryptic food densities. Ecology, 87(9):2244-2254. doi:10.1890/0012-9658 (2006)87
    [30] Kushlan J A, 1986. Responses of wading birds to seasonally fluctuating water levels:Strategies and their limits. Colonial Waterbirds, 9:155-162.
    [31] Li J, 2009. Chinascientists line up against dam that would alter protected wetlands. Science, 326(5952):508-509. doi:10. 1126/science.326_508
    [32] LIU Chenglin, TAN Yinjing, LIN Liansheng et al., 2011. The wetland water level process and habitat of migratory birds in Lake Poyang. Journal of Lake Sciences, 23(1):129-135. (in Chinese)
    [33] Møller A P, Rubolini D, Lehikoinen E, 2008. Populations of mi-gratory bird species that did not show a phenological response to climate change are declining. Proceedings of the National Academy of Sciences, 105(42):16195-16200.doi: 10.1073/pnas.0803825105
    [34] Mueller T, Olson K A, Fuller T K et al., 2008. In search of forage:Predicting dynamic habitats of Mongolian gazelles using sat-ellite-based estimates of vegetation productivity. Journal of Applied Ecology, 45(2):649-658. doi:10.1111/j.1365-2664. 2007.01371.x
    [35] Najafabadi M S, Darvishzadeh R, Skidmore A K et al., 2015. Satellite-versus temperature-derived green wave indices for predicting the timing of spring migration of avian herbivores. Ecological Indicators, 58:322-331. doi:10.1016/j.ecolind. 2015.06.005
    [36] Nolet B A, Fuld V N, Van Rijswijk M E C, 2006. Foraging costs and accessibility as determinants of giving-up densities in a swan-pondweed system. Oikos, 112(2):353-362. doi:10. 1111/j.0030-1299.2006.13463.x
    [37] Paracuellos M, 2006.How can habitat selection affect the use of a wetland complex by waterbirds? Biodiversity &Conservation, 15(14):4569-4582.doi: 10.1007/s10531-005-5820-z
    [38] Pettorelli N, Mysterud A, Yoccoz N G et al., 2005. Importance of climatological downscaling and plant phenology for red deer in heterogeneous landscapes. Proceedings of the Royal Society of London B:Biological Sciences, 272(1579):2357-2364. doi: 10.1098/rspb.2005.3218
    [39] QI Shuhua, ZHANG Qiming, JIANG Feng et al., 2014. Studyon the effects on the landscape spatial pattern of the wintering birds' habitat from lake level in Poyang. Journal of Natural Resources, 29(8):1345-1355. (in Chinese)
    [40] Schwartz M D, 1998.Green-wave phenology. Nature, 394(6696):839-840.
    [41] Sebastián-González E, Green A J, 2014.Habitat use by waterbirds in relation to pond size, water depth, and isolation:lessons from a restoration in southern Spain. Restoration Ecology, 22(3):311-318. doi: 10.1111/Rec.12078
    [42] Shariatinajafabadi M, Wang T, Skidmore A K et al., 2014. Mi-gratory herbivorous waterfowl track satellite-derived green wave index. Plos One, 9(9):e108331-e108331. doi: 10.1371/journal.pone.0108331
    [43] Sun Z, Huang Q, Opp C et al., 2012. Impacts and implications of major changes caused by the Three Gorges Dam in the middle reaches of the Yangtze River, China. Water Resources Man-agement, 26(12):3367-3378. doi: 10.1007/s11269-012-0076-3
    [44] Wang X, Fox A D, Cong P et al., 2013. Food constraints explain the restricted distribution of wintering Lesser White-fronted Geese. Anser erythropus in China. Ibis, 155(3):576-592.doi: 10.1111/ibi.12039
    [45] Wang Y, JiaY, Guan L et al., 2013. Optimising hydrological con-ditions to sustain wintering waterbird populations in Poyang Lake National Natural Reserve:Implications for dam opera-tions. Freshwater Biology, 58(11):2366-2379. doi: 10.1111/fwb.12216
    [46] Wang Y, Yu X, Li W et al., 2011.Potential influence of water level changes on energy flows in a lake food web. Chinese Science Bulletin, 56(26):2794-2802. doi: 10.1007/s11434-011-4649-y
    [47] White M A, Thornton P E, Running S W, 1997. A continental phenology model for monitoring vegetation responses to in-terannual climatic variability. Global Biogeochemical Cycles, 11:217-234.
    [48] Wu X, Lv M, Jin Z et al., 2014. Normalized difference vegetation index dynamic and spatiotemporal distribution of migratory birds in the Poyang Lake wetland, China. Ecological Indicators, 47:219-230. doi: 10.1016/j.ecolind.2014.01.041
    [49] Xia Shaoxia, Yu Xiubo, Fan Na, 2010. The wintering habitats of migrant birds and their relationship with water level in Poyang Lake, China. Resources Science, 32(11):2072-2078. (in Chi-nese).
    [50] Zedler J B, 2000. Progress in wetland restoration ecology. Trends in Ecology & Evolution, 15(10):402-407. doi: 10.1016/S0169-5347(00)01959-5
    [51] Zhang L, Yin J, Jiang Y et al., 2012. Relationship between the hydrological conditions and the distribution of vegetation communities within the Poyang Lake National Nature Reserve, China. Ecological Informatics, 11:65-75. doi:10.1016/j. ecoinf.2012.05.006
    [52] Zhang Q, Ye X, Werner A D et al., 2014. An investigation of en-hanced recessions in Poyang Lake:comparison of Yangtze River and local catchment impacts. Journal of Hydrology, 517:425-434. doi: 10.1016/j.jhydrol.2014.05.051
    [53] ZhaoM, Cong P, Barter M et al., 2012. The changing abundance and distribution of greater white-fronted geese Anser albifrons in the Yangtze River floodplain:Impacts of recent hydrological changes. Bird Conservation International, 22(2):135-143. doi: 10.1017/S0959270911000542
  • [1] Shan YU, Wala DU, Xiang ZHANG, Ying HONG, Yang LIU, Mei HONG, Siyu CHEN.  Spatiotemporal Changes in NDVI and Its Driving Factors in the Kherlen River Basin . Chinese Geographical Science, 2023, 33(2): 377-392. doi: 10.1007/s11769-023-1337-1
    [2] Hao WANG, Zongshan LI, Weijuan ZHANG, Xin YE, Xianfeng LIU.  A Modified Temperature-Vegetation Dryness Index (MTVDI) for Assessment of Surface Soil Moisture Based on MODIS Data . Chinese Geographical Science, 2022, 32(4): 592-605. doi: 10.1007/s11769-022-1288-y
    [3] Jing PU, Kaishan SONG, Ge LIU, Zhidan WEN, Chong FANG, Junbing HOU, Yunfeng LV.  Differentiation of Algal Blooms and Aquatic Vegetation in Chinese Lakes Using Modified Vegetation Presence Frequency Index Method . Chinese Geographical Science, 2022, 32(5): 792-807. doi: 10.1007/s11769-022-1301-5
    [4] Jinjian LI, Shu WANG, Ningsheng QIN, Xisheng LIU, Liya JIN.  Vegetation Index Reconstruction and Linkage with Drought for the Source Region of the Yangtze River Based on Tree-ring Data . Chinese Geographical Science, 2021, 31(4): 684-695. doi: 10.1007/s11769-021-1217-5
    [5] WANG Hao, LIU Guohua, LI Zongshan, YE Xin, FU Bojie, LV Yihe.  Impacts of Drought and Human Activity on Vegetation Growth in the Grain for Green Program Region, China . Chinese Geographical Science, 2018, 28(3): 470-481. doi: 10.1007/s11769-018-0952-8
    [6] TIAN Yichao, BAI Xiaoyong, WANG Shijie, QIN Luoyi, LI Yue.  Spatial-temporal Changes of Vegetation Cover in Guizhou Province, Southern China . Chinese Geographical Science, 2017, 27(1): 25-38. doi: 10.1007/s11769-017-0844-3
    [7] DU Huishi, JIANG Hailing, ZHANG Lifu, MAO Dehua, WANG Zongming.  Evaluation of Spectral Scale Effects in Estimation of Vegetation Leaf Area Index Using Spectral Indices Methods . Chinese Geographical Science, 2016, 26(6): 731-744. doi: 10.1007/s11769-016-0833-y
    [8] HUANG Farong, MO Xingguo, LIN Zhonghui, HU Shi.  Dynamics and Responses of Vegetation to Climatic Variations in Ziya-Daqing Basins, China Daqing Basins, China . Chinese Geographical Science, 2016, 26(4): 478-494. doi: 10.1007/s11769-016-0807-0
    [9] ZHU Guofeng, QIN Dahe, TONG Huali, LIU Yuanfeng, LI Jiafang, CHEN Dongdong, WANG Kai, HU Pengfei.  Variation of Thornthwaite Moisture Index in Hengduan Mountains, China . Chinese Geographical Science, 2016, 26(5): 687-702. doi: 10.1007/s11769-016-0820-3
    [10] WANG Chunling, ZHAO Hongyan, WANG Guoping.  Vegetation Development and Water Level Changes in Shenjiadian Peatland in Sanjiang Plain, Northeast China . Chinese Geographical Science, 2015, 25(4): 451-461. doi: 10.1007/s11769-015-0768-8
    [11] MAO Dehua, WANG Zongming, WU Changshan, SONG Kaishan, REN Chunying.  Examining Forest Net Primary Productivity Dynamics and Driving Forces in Northeastern China During 1982-2010 . Chinese Geographical Science, 2014, 0(6): 631-646. doi: 10.1007/s11769-014-0662-9
    [12] LIU Qinping, YANG Yongchun, TIAN Hongzhen, ZHANG Bo, GU Lei.  Assessment of Human Impacts on Vegetation in Built-up Areas in China Based on AVHRR, MODIS and DMSP_OLS Nighttime Light Data, 1992-2010 . Chinese Geographical Science, 2014, 0(2): 231-244. doi: 10.1007/s11769-013-0645-2
    [13] WEN Zhaofei, ZHANG Ce, ZHANG Shuqing, et al.  Effects of Normalized Difference Vegetation Index and Related wavebands′ Characteristics on Detecting Spatial Heterogeneity Using Variogram-based Analysis . Chinese Geographical Science, 2012, 22(2): 188-195.
    [14] ZHANG Shengwei, LEI Yuping, WANG Liping, et al..  Crop Classification Using MODIS NDVI Data Denoised by Wavelet: A Case Study in Hebei Plain, China . Chinese Geographical Science, 2011, 21(3): 322-333.
    [15] CUI Baoshan, HUA Yanyan, WANG Chongfang, LIAO Xiaolin, TAN Xuejie, TAO Wendong.  Estimation of Ecological Water Requirements Based on Habitat Response to Water Level in Huanghe River Delta, China . Chinese Geographical Science, 2010, 20(4): 318-329. doi: 10.1007/s11769-010-0404-6
    [16] HUANG Fang, WANG Ping.  Vegetation Change of Ecotone in West of Northeast China Plain Using Time-series Remote Sensing Data . Chinese Geographical Science, 2010, 20(2): 167-175. doi: 10.1007/s11769-010-0167-0
    [17] CAO Yun-gang, LIU Chuang.  NORMALIZED DIFFERENCE SNOW INDEX SIMULATION FOR SNOW-COVER MAPPING IN FOREST BY GEOSAIL MODEL . Chinese Geographical Science, 2006, 16(2): 171-175.
    [18] WANG Ling, LI Xiu-zhen, HU Yuan-man, GUO Du-fa.  ANALYSIS OF HABITAT PATTERN CHANGE OF RED-CROWNED CRANES IN THE LIAO HE DELTA USING SPATIAL DIVERSITY INDEX . Chinese Geographical Science, 2003, 13(2): 164-170.
    [19] 王协康, 方铎, 曹叔尤.  A NEW INDEX OF QUANTITATIVE STUDY ON THE DRAINAGE GEOMORPHY SYSTEM . Chinese Geographical Science, 1999, 9(3): 279-283.
    [20] 刘天仇.  STUDIES ON WATER STAGE FLUCTUATION OF YAMZHO LAKE IN XIZANG . Chinese Geographical Science, 1995, 5(4): 344-354.
  • 加载中
计量
  • 文章访问数:  444
  • HTML全文浏览量:  4
  • PDF下载量:  962
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-17
  • 修回日期:  2016-05-15
  • 刊出日期:  2017-04-27

Effect of Water Level Fluctuations on Wintering Goose Abundance in Poyang Lake Wetlands of China

doi: 10.1007/s11769-016-0840-z
    基金项目:  Under the auspices of National Natural Science Foundation of China (No.41171030, 41471088)
    通讯作者: YU Xiubo.E-mail:yuxb@igsnrr.ac.cn

摘要: The Poyang Lake is a Ramsar site and is the important over-wintering site for migratory waterbirds along the East Asian-Australasian Fly way. Examining the effects of water level fluctuations on waterbird abundance and analyzing the influencing mechanism is critical to waterbird protection in the context of hydrological alteration. In this study, the effect of water level regime on wintering goose abundance was examined and the influencing mechanism was interpreted. Synchronous waterbirds survey data, hydrological data, Moderate Resolution Imaging Spectroradiometer-Normalized Difference Vegetation Index (MODIS-NDVI) data and habitat data derived from Landsat TM/ETM data and HJ/CCD data were combined. The satellite-derived Green Wave Index (GWI) based on MODIS-NDVI dataset was applied to detect changes in goose food resources. It was found that habitat size and vegetation conditions are key factors determining goose abundance. Geese numbers were positively correlated with habitat area, while intermediate range of vegetation productivity might benefit the goose abundance. Water level affects goose abundance by changing available habitat areas and vegetation conditions. We suggested that matching hydrological regime and exposed meadows time to wintering geese dynamics was crucial in the Poyang Lake wetlands. Our study could provide sound scientific information for hydrological management in the context of waterbird conservation.

English Abstract

XIA Shaoxia, LIU Yu, CHEN Bin, JIA Yifei, ZHANG Huan, LIU Guanhua, YU Xiubo. Effect of Water Level Fluctuations on Wintering Goose Abundance in Poyang Lake Wetlands of China[J]. 中国地理科学, 2017, 27(2): 248-258. doi: 10.1007/s11769-016-0840-z
引用本文: XIA Shaoxia, LIU Yu, CHEN Bin, JIA Yifei, ZHANG Huan, LIU Guanhua, YU Xiubo. Effect of Water Level Fluctuations on Wintering Goose Abundance in Poyang Lake Wetlands of China[J]. 中国地理科学, 2017, 27(2): 248-258. doi: 10.1007/s11769-016-0840-z
XIA Shaoxia, LIU Yu, CHEN Bin, JIA Yifei, ZHANG Huan, LIU Guanhua, YU Xiubo. Effect of Water Level Fluctuations on Wintering Goose Abundance in Poyang Lake Wetlands of China[J]. Chinese Geographical Science, 2017, 27(2): 248-258. doi: 10.1007/s11769-016-0840-z
Citation: XIA Shaoxia, LIU Yu, CHEN Bin, JIA Yifei, ZHANG Huan, LIU Guanhua, YU Xiubo. Effect of Water Level Fluctuations on Wintering Goose Abundance in Poyang Lake Wetlands of China[J]. Chinese Geographical Science, 2017, 27(2): 248-258. doi: 10.1007/s11769-016-0840-z
参考文献 (53)

目录

    /

    返回文章
    返回