留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Evaluation of Spectral Scale Effects in Estimation of Vegetation Leaf Area Index Using Spectral Indices Methods

DU Huishi JIANG Hailing ZHANG Lifu MAO Dehua WANG Zongming

DU Huishi, JIANG Hailing, ZHANG Lifu, MAO Dehua, WANG Zongming. Evaluation of Spectral Scale Effects in Estimation of Vegetation Leaf Area Index Using Spectral Indices Methods[J]. 中国地理科学, 2016, 26(6): 731-744. doi: 10.1007/s11769-016-0833-y
引用本文: DU Huishi, JIANG Hailing, ZHANG Lifu, MAO Dehua, WANG Zongming. Evaluation of Spectral Scale Effects in Estimation of Vegetation Leaf Area Index Using Spectral Indices Methods[J]. 中国地理科学, 2016, 26(6): 731-744. doi: 10.1007/s11769-016-0833-y
DU Huishi, JIANG Hailing, ZHANG Lifu, MAO Dehua, WANG Zongming. Evaluation of Spectral Scale Effects in Estimation of Vegetation Leaf Area Index Using Spectral Indices Methods[J]. Chinese Geographical Science, 2016, 26(6): 731-744. doi: 10.1007/s11769-016-0833-y
Citation: DU Huishi, JIANG Hailing, ZHANG Lifu, MAO Dehua, WANG Zongming. Evaluation of Spectral Scale Effects in Estimation of Vegetation Leaf Area Index Using Spectral Indices Methods[J]. Chinese Geographical Science, 2016, 26(6): 731-744. doi: 10.1007/s11769-016-0833-y

Evaluation of Spectral Scale Effects in Estimation of Vegetation Leaf Area Index Using Spectral Indices Methods

doi: 10.1007/s11769-016-0833-y
基金项目: Under the auspices of National Natural Science Foundation of China (No.41401002), Jilin Province Science Foundation for Youths (No. 20160520077JH)
详细信息
    通讯作者:

    WANG Zongming.E-mail:zongmingwang@iga.ac.cn

Evaluation of Spectral Scale Effects in Estimation of Vegetation Leaf Area Index Using Spectral Indices Methods

Funds: Under the auspices of National Natural Science Foundation of China (No.41401002), Jilin Province Science Foundation for Youths (No. 20160520077JH)
More Information
    Corresponding author: WANG Zongming.E-mail:zongmingwang@iga.ac.cn
  • 摘要: Spectral index methodology has been widely used in Leaf Area Index (LAI) retrieval at different spatial scales. There are differences in the spectral response of different remote sensors and thus spectral scale effect generated during the use of spectral indices to retrieve LAI. In this study, PROSPECT, leaf optical properties model and Scattering by Arbitrarily Inclined Layers (SAIL) model, were used to simulate canopy spectral reflectance with a bandwidth of 5 nm and a Gaussian spectral response function was employed to simulate the spectral data at six bandwidths ranging from 10 to 35 nm. Additionally, for bandwidths from 5 to 35 nm, the correlation between the spectral index and LAI, and the sensitivities of the spectral index to changes in LAI and bandwidth were analyzed. Finally, the reflectance data at six bandwidths ranging from 40 to 65 nm were used to verify the spectral scale effect generated during the use of the spectral index to retrieve LAI. Results indicate that Vegetation Index of the Universal Pattern Decomposition (VIUPD) had the highest accuracy during LAI retrieval. Followed by Normalized Difference Vegetation Index (NDVI), Modified Simple Ratio Indices (MSRI) and Triangle Vegetation Index (TVI), although the coefficient of determination R2 was higher than 0.96, the retrieved LAI values were less than the actual value and thus lacked validity. Other spectral indices were significantly affected by the spectral scale effect with poor retrieval results. In this study, VIUPD, which exhibited a relatively good correlation and sensitivity to LAI, was less affected by the spectral scale effect and had a relatively good retrieval capability. This conclusion supports a purported feature independent of the sensor of this model and also confirms the great potential of VIUPD for retrieval of physicochemical parameters of vegetation using multi-source remote sensing data.
  • [1] Bannari A, Morin D, Bonn F et al., 1995. A review of vegetation indices. Remote Sensing Reviews, 13(1):95-120. doi: 10.1080/02757259509532298
    [2] Bicheron P, Leroy M, 1999. A method of biophysical parameter retrieval at global scale by inversion of a vegetation reflectance model. Remote Sensing of Environment, 67(3):251-266. doi: 10.1016/S0034-4257(98)00083-2
    [3] Broge N H, Leblanc E, 2001. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Geochimica Et Cosmochimica Acta, 76(2):156-172. doi: 10.1016/S0034-4257(00)00197-8
    [4] Cho M A, Skidmore A K, 2006. A new technique for extracting the red edge position from hyperspectral data:the linear ex-trapolation method. Remote Sensing of Environment, 101(2):181-193. doi: 10.1016/j.rse.2005.12.011
    [5] Danson F M, Plummer S E, 1995. Red-edge response to forest leaf area index. International Journal of Remote Sensing, 16(1):183-188. doi: 10.1080/01431169508954387
    [6] Darvishzadeh R, Skidmore A, Schlerf M et al., 2008a. Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland. Remote Sensing of Environment, 112(5):2592-2604. doi: 10.1016/j.rse.2007.12.003
    [7] Darvishzadeh R, Skidmore A, Schlerf M et al., 2008 b. LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements. Isprs Journal of Photogrammetry & Remote Sensing, 63(4):409-426. Doi: 10.1016/j.isprsjprs.2008.01.001
    [8] Daughtry C S T, Walthall C L, Kim M S et al., 2000. Estimating corn leaf chlorophyll concentration from leaf and canopy re-flectance. Remote Sensing of Environment, 74(2):229-239. doi: 10.1016/S0034-4257(00)00113-9
    [9] Delegido J, Verrelst J, Rivera J P et al., 2015. Brown and green, lai mapping through spectral indices. International Journal of Applied Earth Observation & Geoinformation, 35(Part B):350-358. doi: 10.1016/j.jag.2014.10.001
    [10] Elvidge C D, Chen Z, 1995. Comparison of broad-band and nar-row-band red and near-infrared vegetation indices. Remote Sensing of Environment, 54(1):38-48. doi: 10.1016/0034-4257(95)00132-K
    [11] Everitt J H, Yang C, 2007. Mapping broom snakeweed through image analysis of color-infrared photography and digital im-agery. Environmental Monitoring & Assessment, 134(1-3):287-92. doi: 10.1007/s10661-007-9619-0
    [12] Feret J B, François C, Asner G P et al., 2008. Prospect-4 and 5:advances in the leaf optical properties model separating pho-tosynthetic pigments. Remote Sensing of Environment, 112(6):3030-3043. doi: 10.1016/j.rse.2008.02.012
    [13] Filella I, 1994. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. Interna-tional Journal of Remote Sensing, 15(7):1459-1470. doi: 10.1080/01431169408954177
    [14] Goel N S, Thompson R L, 1984. Inversion of vegetation canopy reflectance models for estimating agronomic variables. v. es-timation of leaf area index and average leaf angle using meas-ured canopy reflectances. Remote Sensing of Environment, 16(1):69-85. doi: 10.1016/0034-4257(84)90028-2
    [15] Haboudane D, Miller J R, Pattey E et al., 2004. Hyperspectral vegetation indices and novel algorithms for predicting green lai of crop canopies:modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3):337-352. doi: 10.1016/j.rse.2003.12.013
    [16] Haboudane D, Miller J R, Tremblay N et al., 2002. Integrated narrow-band vegetation indices for prediction of crop chloro-phyll content for application to precision agriculture. Remote Sensing of Environment, 81(2-3):416-426. doi: 10.1016/S0034-4257(02)00018-4
    [17] Houborg R, Soegaard H, Boegh E, 2007. Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using terra and aqua modis reflectance data. Remote Sensing of Environment, 106(1):39-58. doi: 10.1016/j.rse.2006.07.016
    [18] Jacquemoud S, Baret F, 1990. PROSPECT:a model of leaf optical properties spectra. Remote sensing of Environment, 34(2):75-91. doi: 10.1016/0034-4257(90)90100-Z
    [19] Jacquemoud S, Baret F, Andrieu B et al., 1995. Extraction of vegetation biophysical parameters by inversion of the prospect+sail models on sugar beet canopy reflectance data:application to tm and aviris sensors. Remote Sensing of Environment, 52(3):163-172. doi: 10.1016/0034-4257(95)00018-V
    [20] Kim H O, Yeom J M, 2014. Effect of red-edge and texture features for object-based paddy rice crop classification using rapideye multi-spectral satellite image data. International Journal of Remote Sensing, 35(19):7046-7068. doi: 10.1080/01431161.2014.965285
    [21] Li F, Miao Y X, Feng G H et al., 2014. Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices. Field Crops Research, 157(2):111-123. doi: 10.1016/j.fcr.2013.12.018
    [22] Lin Sen, Liu Ronggao, 2016. A simple method to extract tropical monsoon forests using NDVI based on MODIS data:a case study in South Asia and Peninsula Southeast Asia. Chinese Geographical Science, 26(1):22-34. doi: 10.1007/s11769-015-0789-3
    [23] Marceau D J, Hay G J, 1999. Remote sensing contributions to the scale issue. Canadian Journal of Remote Sensing Journal Canadien De Télédétection, 25(4):357-366. doi: 10.1080/07038992.1999.10874735
    [24] Moody A, Woodcock C E, 1995. The influence of scale and the spatial characteristics of landscapes on land-cover mapping using remote sensing. Landscape Ecology, 10(6):363-379. doi: 10.1007/BF00130213
    [25] Nguy-Robertson A L, 2013. The mathematical identity of two vegetation indices:mcari2 and mtvi2. International Journal of Remote Sensing, 34(34):7504-7507. doi: 10.1080/01431161.2013.823525
    [26] Paul J C, Edward J M, 1983. The relationships between the chlo-rophyll concentration, LAI and reflectance of a simple vegeta-tion canopy. International Journal of Remote Sensing, 4(2):247-255. doi: 10.1080/01431168308948544
    [27] Pisek J, Chen J M, 2007. Comparison and validation of modis and vegetation global LAI products over four bigfoot sites in north America. Remote Sensing of Environment, 109(1):81-94. doi: 10.1016/j.rse.2006.12.004
    [28] Rogers J N, Parrish C E, Ward L G et al., 2015. Evaluation of field-measured vertical obscuration and full waveform lidar to assess salt marsh vegetation biophysical parameters. Remote Sensing of Environment, 156:264-275. doi:10.1016/j.rse. 2014.09.035
    [29] Stéphane J, Wout V, Frédéric B et al., 2009. Prospect+sail mod-els:a review of use for vegetation characterization. Remote Sensing of Environment, 113(2009):S56-S66. doi: 10.1016/j.rse.2008.01.026
    [30] Su Lihong, Li Xiaowen, Huang Yuxia, 2001. A review on scale in remote sensing. Advance in Earth Sciences, 16(4):544-548. (in Chinese)
    [31] Sun Li, Cheng Lijuan, 2010. Analysis of spectral response of vegetation leaf biochemical components. Spectroscopy & Spectral Analysis, 30(11):3031-3035(5). (in Chinese)
    [32] Teillet P M, Staenz K, William D J, 1997. Effects of spectral, spatial, and radiometric characteristics on remote sensing veg-etation indices of forested regions. Remote Sensing of Envi-ronment, 61(1):139-149. doi: 10.1016/S0034-4257(96)00248-9
    [33] Thenkabail P S, Smith R B, Pauw E D, 2000. Hyperspectral veg-etation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment, 71(2):158-182. doi: 10.1016/S0034-4257(99)00067-X
    [34] Vuolo F, Neugebauer N, Bolognesi S F et al., 2013. Estimation of leaf area index using deimos-1 data:application and transfera-bility of a semi-empirical relationship between two agricultural areas. Remote Sensing, 5(3):1274-1291. doi: 10.3390/rs5031274
    [35] Weiss M, Baret F, Smith G J, 2004. Review of methods for in situ leaf area index (LAI) determination:part ii. estimation of LAI, errors and sampling. Agricultural & Forest Meteorology, 121(1):37-53. doi: 10.1016/j.agrformet.2003.08.001
    [36] Wu C Y, Han X Z, Niu Zet al., 2010a. An evaluation of eo-1 hy-perspectral hyperion data for chlorophyll content and leaf area index estimation. International Journal of Remote Sensing, 31(4):1079-1086. doi: 10.1080/01431160903252335
    [37] Wu C Y, Niu Z, Wang J D et al., 2010b. Predicting leaf area index in wheat using angular vegetation indices derived from in situ canopy measurements. Canadian Journal of Remote Sensing, 36(4):301-312. doi: 10.5589/m10-050
    [38] Wang Jihua, Huang Wenjiang, Zhao Chunjiang et al., 2003. The inversion of leaf biochemical components and grain quality indicators of winter wheat with spectral reflectance. Journal of Remote Sensing, (4):277-284. (in Chinese)
    [39] Wang Q, Samuel A, John T et al., 2005. On the relationship of ndvi with leaf area index in a deciduous forest site. Remote Sensing of Environment, 94(2):244-255. doi:10.1016/j.rse. 2004.10.006
    [40] Wen J G, Liu Q, Liu Q H et al., 2009. Scale effect and scale cor-rection of land-surface albedo in rugged terrain. International Journal of Remote Sensing, 30(20):5397-5420. doi: 10.1080/01431160903130903
    [41] Zhang L F, Furumi S, Muramatsu K et al., 2006. Sensor-inde-pendent analysis method for hyperspectral data based on the pattern decomposition method. International Journal of Remote Sensing, 27(21):4899-4910. doi: 10.1080/01431160600702640
    [42] Zhang L F, Furumi S, Muramatsu K et al., 2007. A new vegetation index based on the universal pattern decomposition method. International Journal of Remote Sensing, 28(1-2):107-124. doi: 10.1080/01431160600857402
    [43] Zhang L F, Liu B, Zhang Bet al., 2010. An evaluation of the effect of the spectral response function of satellite sensors on the precision of the universal pattern decomposition method. In-ternational Journal of Remote Sensing, 31(8):2083-2090. doi: 10.1080/01431160903246675
  • [1] Jinjian LI, Shu WANG, Ningsheng QIN, Xisheng LIU, Liya JIN.  Vegetation Index Reconstruction and Linkage with Drought for the Source Region of the Yangtze River Based on Tree-ring Data . Chinese Geographical Science, 2021, 31(4): 684-695. doi: 10.1007/s11769-021-1217-5
    [2] FENG Xinghua, LEI Jing, XIU Chunliang, LI Jianxin, BAI Limin, ZHONG Yexi.  Analysis of Spatial Scale Effect on Urban Resilience: A Case Study of Shenyang, China . Chinese Geographical Science, 2020, 30(6): 1005-1021. doi: 10.1007/s11769-020-1163-7
    [3] GUO Long, ZHANG Haitao, CHEN Yiyun, QIAN Jing.  Combining Environmental Factors and Lab VNIR Spectral Data to Predict SOM by Geospatial Techniques . Chinese Geographical Science, 2019, 20(2): 258-269. doi: 10.1007/s11769-019-1020-8
    [4] CHEN Si, ZHAO Kai, JIANG Tao, LI Xiaofeng, ZHENG Xingming, WAN Xiangkun, ZHAO Xiaowei.  Predicting Surface Roughness and Moisture of Bare Soils Using Multiband Spectral Reflectance Under Field Conditions . Chinese Geographical Science, 2018, 28(6): 986-997. doi: 10.1007/s11769-018-1007-x
    [5] CHEN Shengbo, HUANG Shuang, LIU Yanli, ZHOU Chao.  Soil and Vegetation Spectral Coupling Difference (SVSCD) for Minerals Extraction from Hyperion Data in Vegetation Covered Area . Chinese Geographical Science, 2018, 28(6): 957-972. doi: 10.1007/s11769-018-1005-z
    [6] ZHU Guofeng, QIN Dahe, TONG Huali, LIU Yuanfeng, LI Jiafang, CHEN Dongdong, WANG Kai, HU Pengfei.  Variation of Thornthwaite Moisture Index in Hengduan Mountains, China . Chinese Geographical Science, 2016, 26(5): 687-702. doi: 10.1007/s11769-016-0820-3
    [7] LI Xiaosong, WANG Hongyan, ZHOU Shufang, SUN Bin, GAO Zhihai.  Did Ecological Engineering Projects Have a Significant Effect on Large-scale Vegetation Restoration in Beijing-Tianjin Sand Source Region, China? A Remote Sensing Approach . Chinese Geographical Science, 2016, 26(2): 216-228. doi: 10.1007/s11769-016-0801-6
    [8] SONG Kaishan, LI Lin, Lenore TEDESCO, Nicolas CLERCIN, LI Linhai, SHI Kun.  Spectral Characterization of Colored Dissolved Organic Matter for Productive Inland Waters and Its Source Analysis . Chinese Geographical Science, 2015, 25(3): 295-308. doi: 10.1007/s11769-014-0690-5
    [9] HUANG Yue, FANG Yangang, ZHANG Ye, LIU Jisheng.  A Study of Resource Curse Effect of Chinese Provinces Based on Human Developing Index . Chinese Geographical Science, 2014, 0(6): 732-739. doi: 10.1007/s11769-014-0727-9
    [10] WANG Cong, LIU Shiliang, DENG Li, LIU Qi, YANG Juejie.  Road Lateral Disconnection and Crossing Impacts in River Landscape of Lancang River Valley in Yunnan Province, China . Chinese Geographical Science, 2014, 0(1): 28-38. doi: 10.1007/s11769-014-0653-x
    [11] SONG Chuangye, HUANG Chong, LIU Huiming.  Predictive Vegetation Mapping Approach Based on Spectral Data, DEM and Generalized Additive Models . Chinese Geographical Science, 2013, 23(3): 331-343. doi: 10.1007/s11769-013-0590-0
    [12] ZHU Xiaohua, ZHAO Yingshi, FENG Xiaoming.  A Methodology for Estimating Leaf Area Index by Assimilating Remote Sensing Data into Crop Model Based on Temporal and Spatial Knowledge . Chinese Geographical Science, 2013, 23(5): 550-561. doi: 10.1007/s11769-013-0621-x
    [13] WEN Zhaofei, ZHANG Ce, ZHANG Shuqing, et al.  Effects of Normalized Difference Vegetation Index and Related wavebands′ Characteristics on Detecting Spatial Heterogeneity Using Variogram-based Analysis . Chinese Geographical Science, 2012, 22(2): 188-195.
    [14] WEI Wei, CHEN Liding, YANG Lei, FU Bojie, SUN Ranhao.  Spatial Scale Effects of Water Erosion Dynamics: Complexities, Variabilities, and Uncertainties . Chinese Geographical Science, 2012, 22(2): 127-143.
    [15] XU Jingping, ZHANG Bai, LI Fang, SONG Kaishan, WANG Zongming, LIU Dianwei, ZHANG Guangxin.  Retrieval of Total Suspended Matters Using Field Spectral Data in Shitoukoumen Reservoir, Jilin Province, Northeast China . Chinese Geographical Science, 2009, 19(1): 77-82. doi: 10.1007/s11769-009-0077-1
    [16] CHEN Liding, TIAN Huiying, FU Bojie, ZHAO Xinfeng.  Development of a New Index for Integrating Landscape Patterns with Ecological Processes at Watershed Scale . Chinese Geographical Science, 2009, 19(1): 37-45. doi: 10.1007/s11769-009-0037-9
    [17] JIA Yuanyuan, LI Zhaoliang.  Soil-Vegetation-Atmosphere Radiative Transfer Model in Microwave Region . Chinese Geographical Science, 2008, 18(2): 171-177. doi: 10.1007/s11769-008-0171-9
    [18] CAO Yun-gang, LIU Chuang.  NORMALIZED DIFFERENCE SNOW INDEX SIMULATION FOR SNOW-COVER MAPPING IN FOREST BY GEOSAIL MODEL . Chinese Geographical Science, 2006, 16(2): 171-175.
    [19] 王协康, 方铎, 曹叔尤.  A NEW INDEX OF QUANTITATIVE STUDY ON THE DRAINAGE GEOMORPHY SYSTEM . Chinese Geographical Science, 1999, 9(3): 279-283.
    [20] 赵文经, 赵焕宸.  ESTIMATION OF VEGETATIVE SURFACE ALBEDO IN THE KUSHIRO MIRE WITH LANDSAT TM DATA ──A New Approach to Atmospheric and Spectral Corrections . Chinese Geographical Science, 1997, 7(3): 278-288.
  • 加载中
计量
  • 文章访问数:  247
  • HTML全文浏览量:  1
  • PDF下载量:  824
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-05
  • 修回日期:  2016-09-01
  • 刊出日期:  2016-12-27

Evaluation of Spectral Scale Effects in Estimation of Vegetation Leaf Area Index Using Spectral Indices Methods

doi: 10.1007/s11769-016-0833-y
    基金项目:  Under the auspices of National Natural Science Foundation of China (No.41401002), Jilin Province Science Foundation for Youths (No. 20160520077JH)
    通讯作者: WANG Zongming.E-mail:zongmingwang@iga.ac.cn

摘要: Spectral index methodology has been widely used in Leaf Area Index (LAI) retrieval at different spatial scales. There are differences in the spectral response of different remote sensors and thus spectral scale effect generated during the use of spectral indices to retrieve LAI. In this study, PROSPECT, leaf optical properties model and Scattering by Arbitrarily Inclined Layers (SAIL) model, were used to simulate canopy spectral reflectance with a bandwidth of 5 nm and a Gaussian spectral response function was employed to simulate the spectral data at six bandwidths ranging from 10 to 35 nm. Additionally, for bandwidths from 5 to 35 nm, the correlation between the spectral index and LAI, and the sensitivities of the spectral index to changes in LAI and bandwidth were analyzed. Finally, the reflectance data at six bandwidths ranging from 40 to 65 nm were used to verify the spectral scale effect generated during the use of the spectral index to retrieve LAI. Results indicate that Vegetation Index of the Universal Pattern Decomposition (VIUPD) had the highest accuracy during LAI retrieval. Followed by Normalized Difference Vegetation Index (NDVI), Modified Simple Ratio Indices (MSRI) and Triangle Vegetation Index (TVI), although the coefficient of determination R2 was higher than 0.96, the retrieved LAI values were less than the actual value and thus lacked validity. Other spectral indices were significantly affected by the spectral scale effect with poor retrieval results. In this study, VIUPD, which exhibited a relatively good correlation and sensitivity to LAI, was less affected by the spectral scale effect and had a relatively good retrieval capability. This conclusion supports a purported feature independent of the sensor of this model and also confirms the great potential of VIUPD for retrieval of physicochemical parameters of vegetation using multi-source remote sensing data.

English Abstract

DU Huishi, JIANG Hailing, ZHANG Lifu, MAO Dehua, WANG Zongming. Evaluation of Spectral Scale Effects in Estimation of Vegetation Leaf Area Index Using Spectral Indices Methods[J]. 中国地理科学, 2016, 26(6): 731-744. doi: 10.1007/s11769-016-0833-y
引用本文: DU Huishi, JIANG Hailing, ZHANG Lifu, MAO Dehua, WANG Zongming. Evaluation of Spectral Scale Effects in Estimation of Vegetation Leaf Area Index Using Spectral Indices Methods[J]. 中国地理科学, 2016, 26(6): 731-744. doi: 10.1007/s11769-016-0833-y
DU Huishi, JIANG Hailing, ZHANG Lifu, MAO Dehua, WANG Zongming. Evaluation of Spectral Scale Effects in Estimation of Vegetation Leaf Area Index Using Spectral Indices Methods[J]. Chinese Geographical Science, 2016, 26(6): 731-744. doi: 10.1007/s11769-016-0833-y
Citation: DU Huishi, JIANG Hailing, ZHANG Lifu, MAO Dehua, WANG Zongming. Evaluation of Spectral Scale Effects in Estimation of Vegetation Leaf Area Index Using Spectral Indices Methods[J]. Chinese Geographical Science, 2016, 26(6): 731-744. doi: 10.1007/s11769-016-0833-y
参考文献 (43)

目录

    /

    返回文章
    返回