留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of Wetland Utilization Change on Spatial Distribution of Soil Nematodes in Heihe River Basin, Northwest China

ZHU Hongqiang MAO Zhixia LONG Zhangwei WANG Yan SU Yongzhong WANG Xuefeng

ZHU Hongqiang, MAO Zhixia, LONG Zhangwei, WANG Yan, SU Yongzhong, WANG Xuefeng. Effects of Wetland Utilization Change on Spatial Distribution of Soil Nematodes in Heihe River Basin, Northwest China[J]. 中国地理科学, 2016, 26(3): 339-351. doi: 10.1007/s11769-016-0813-2
引用本文: ZHU Hongqiang, MAO Zhixia, LONG Zhangwei, WANG Yan, SU Yongzhong, WANG Xuefeng. Effects of Wetland Utilization Change on Spatial Distribution of Soil Nematodes in Heihe River Basin, Northwest China[J]. 中国地理科学, 2016, 26(3): 339-351. doi: 10.1007/s11769-016-0813-2
ZHU Hongqiang, MAO Zhixia, LONG Zhangwei, WANG Yan, SU Yongzhong, WANG Xuefeng. Effects of Wetland Utilization Change on Spatial Distribution of Soil Nematodes in Heihe River Basin, Northwest China[J]. Chinese Geographical Science, 2016, 26(3): 339-351. doi: 10.1007/s11769-016-0813-2
Citation: ZHU Hongqiang, MAO Zhixia, LONG Zhangwei, WANG Yan, SU Yongzhong, WANG Xuefeng. Effects of Wetland Utilization Change on Spatial Distribution of Soil Nematodes in Heihe River Basin, Northwest China[J]. Chinese Geographical Science, 2016, 26(3): 339-351. doi: 10.1007/s11769-016-0813-2

Effects of Wetland Utilization Change on Spatial Distribution of Soil Nematodes in Heihe River Basin, Northwest China

doi: 10.1007/s11769-016-0813-2
基金项目: Under the auspices of Major State Basic Research Development Program of China (No. 2009CB421302), National Natural Science Foundation of China (No. 30670375, 41201245)
详细信息
    通讯作者:

    WANG Xuefeng

Effects of Wetland Utilization Change on Spatial Distribution of Soil Nematodes in Heihe River Basin, Northwest China

Funds: Under the auspices of Major State Basic Research Development Program of China (No. 2009CB421302), National Natural Science Foundation of China (No. 30670375, 41201245)
More Information
    Corresponding author: WANG Xuefeng
  • 摘要: The first account of the effects of wetland reclamation on soil nematode assemblages were provided, three sites in Heihe River Basin of Northwest China, that is grass wetland (GW), Tamarix chinensis wetland (TW) and crop wetland (CW) treatments, were compared. Results showed that the majority of soil nematodes were presented in the 0-20 cm soil layers in CW treatments, followed by in the 20-40 cm and 40-60 cm layers in GW treatments. Plant-feeding nametodes were the most abundant trophic groups in each treatment, where GW (91.0%) > TW (88.1%) > CW (53.5%). Generic richness (GR) was lower in the TW (16) than that in GW (23) and CW (25). The combination of enrichment index (EI) and structure index (SI) showed that the soil food web in GW was more structured, and those in TW was stressed, while the enrichment soil food web was presented in the CW treatment. Several ecological indices which reflected soil community structure, diversity, Shannon-Weaver diversity (H'), Evenness (J'), Richness (GR) and modified maturity index (MMI) were found to be effective for assessing the response of soil namatode communities to soil of saline wetland reclamation. Furthermore, saline wetland reclamation also exerted great influence on the soil physical and chemical properties (pH, Electric conductivity (EC), Total organic carbon (TOC), Total nitrogen (Total-N) and Nitrate Nitrogen (N-NO3-)). These results indicated that the wetland reclamation had significantly effects on soil nematode community structure and soil properties in this study.
  • [1] Berkelmans R, Ferris H, Tenuta M et al., 2003. Effects of long-term crop management on nematode trophic levels other than plant feeders disappear after 1 year of disruptive soil management. Applied Soil Ecology, 23(3): 223-235. doi: 10. 1016/S0929-1393(03)00047-7
    [2] Bird A F, 1959. The attractiveness of roots to the plant parasitic nematodes, Meloidogyne javanica and M. hapla. Nemato­logica, 4(4): 322-335.
    [3] Bloemers G F, Hodda M, Lambshead P J D et al., 1997. The effects of forest disturbance on diversity of tropical soil nematodes. Oecologia, 111(4): 575-582. doi: 10.1007/s00442 0050274
    [4] Bongers T, 1990. The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83(1): 14-19. doi: 10.1007/BF0032 4627
    [5] Bongers T, Bongers M, 1998. Functional diversity of nematodes., Applied Soil Ecology, 10(3): 239-251. doi:  10.1016/S0929-1393(98)00123-1
    [6] Bongers T, Ferris H, 1999. Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology & Evolution, 14(6): 224-228. doi: 10.1016/S0169-5347(98) 01583-3
    [7] Coulson S J, Hodkinson I D, Strathdee A T et al., 1995. Thermal environments of arctic soil organisms during winter. Arctic & Alpine Research, 27(4): 364-370. doi:  10.2307/1552029
    [8] Ekschmitt K, Bakonyi G, Bongers M et al., 2001. Nematode community structure as indicator of soil functioning in European grassland soils. European Journal of Soil Biology, 37(4): 263-268. doi:  10.1016/S1164-5563(01)01095-0
    [9] Ettema C H, Bongers T, 1993. Characterization of nematode colonization and succession in disturbed soils using the Maturity Index. Biology & Fertility of Soils, 16(2): 79-85. doi:  10.1007/BF00369407
    [10] Ferris H, Bongers T, de Goede R G M, 2001. A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Applied Soil Ecology, 18(1): 13-29. doi:  10.1016/S0929-1393(01)00152-4
    [11] Ferris H, Matute M M, 2003. Structural and functional succession in the nematode fauna of a soil food web. Applied Soil Ecology, 23(2): 93-110. doi:  10.1016/S0929-1393(03)00044-1
    [12] Ferris H, Venette R C, Lau S S, 1996. Dynamics of nematode communities in tomatoes grown in conventional and organic farming systems, and their impact on soil fertility. Applied Soil Ecology, 3(2): 161-175. doi:  10.1016/0929-1393(95)00071-2
    [13] Forge T, Simard S, 2001. Structure of nematode communities in forest soils of southern British Columbia: relationship to nitrogen mineralization and effects of clearcut harvesting and fertilization. Biology & Fertility of Soils, 34(3): 170-178. doi:  10.1007/s003740100390
    [14] Freckman D W, 1978. Ecology of anhydrobiotic nematodes. In: Crowe J H et al. (Eds). Dried Biological Systems. New York: Academic Press, 345-357.
    [15] Fu S L, Coleman D C, Hendrix P F et al., 2000. Responses of trophic groups of soil nematodes to residue application under conventional tillage and no-till regimes. Soil Biology and Biochemistry, 32(11-12): 1731-1741. doi:  10.1016/S0038-0717(00)00091-2
    [16] Geraert E, 1965. The genus Paratylenchus. Nematologica, 11(3): 301-334. doi:  10.1163/187529265X00221
    [17] Gordon D C, 1994. Intertidal ecology and potential power impacts, Bay of Fundy. Biological Journal of the Linnean Society, 51(1-2): 17-23. doi:  10.1006/bijl.1994.1003
    [18] Hodson A K, Ferris H, Hollander A D et al., 2014. Nematode food webs associated with native perennial plant species and soil nutrient pools in California riparian oak woodlands. Geoderma, 228(5): 182-191. doi: 10.1016/j.geoderma.2013.07. 021
    [19] Jiang D M, Li Q, Liu F M et al., 2007. Vertical distribution of soil nematodes in an age sequence of Caragana microphylla plantations in the Horqin Sandy Land, Northeast China. Ecology Research, 22(1): 49-56. doi:  10.1007/s11284-006-0187-5
    [20] Kandji S T, Ogol C K P O, Albrecht A, 2001. Diversity of plant-parasitic nematodes and their relationships with some soil physico-chemical characteristics in improved fallows in western Kenya. Applied Soil Ecology, 18(2): 143-157. doi:  10.1016/S0929-1393(01)00157-3
    [21] Kennish M J, 2002. Environmental threats and environmental future of estuaries. Environmental. Conservation, 29(1): 78-107. doi:  10.1017/S0376892902000061
    [22] Li Q, Xu C G, Liang W J et al., 2009. Residue incorporation and N fertilization affect the response of soil nematodes to the elevated CO2 in a Chinese wheat field. Soil Biology and Biochemistry, 41(7): 1497-1503. doi: 10.1016/j.soilbio.2009. 04.006
    [23] Liang W J, Li Q, Jiang Y et al., 2005. Nematode faunal analysis in an aquic brown soil fertilised with slow-release urea, Northeast China. Applied Soil Ecology, 29(2): 185-192. doi:  10.1016/j.apsoil.2004.10.004
    [24] Liang W J, Lou Y L, Li Q et al., 2009. Nematode faunal response to long-term application of nitrogen fertilizer and organic manure in Northeast China. Soil Biology and Biochemistry, 41(5): 883-890. doi:  10.1016/j.soilbio.2008.06.018
    [25] Liang W J, Zhong S, Hua J F et al., 2007. Nematode faunal response to grassland degradation in Horqin Sandy Land. Pedosphere, 17(5): 611-618. doi: 10.1016/S1002-0160(07) 60072-1
    [26] Mai W F, Harrison M B, 1959. The golden nematode. Cornell Extension Bulletin, 49(sup.): S870.
    [27] Malhi S S, Lemke R, Wang Z H et al., 2006. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions. Soil and Tillage Research, 90(1-2): 171-183. doi:  10.1016/j.still.2005.09.001
    [28] Montemayor M B, Price J S, Rochefort L et al., 2008. Temporal variations and spatial patterns in saline and waterlogged peat fields. Environmental and Experimental Botany, 62(3): 333-342. doi:  10.1016/j.envexpbot.2007.10.004
    [29] Mulvaney R L, 1996. Nitrogen-inorganic. In: Sparks D L (Ed.). Methods of soil Analysis. Part 3. Book Series 5. Madison: Soil Science Society of America.
    [30] Neher D A, Barbercheck M E, Anas O, 2001. Nematodes in wetland soils of North Carolina. Phytopathology, 91(6s): S139.
    [31] Nico E, Tomasz D, Simone C et al., 2013. Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. Proceedings of the National Academy of Sciences, 110(17): 6689-6694. doi:  10.1073/pnas.1217382110
    [32] Okada H, Ferris H, 2001. Temperature effects on growth and nitrogen mineralization of fungi and fungal-feeding nematodes. Plant and Soil, 234(2): 253-262. doi: 10.1023/A: 1017957929476
    [33] Oostenbrink M, 1960. Estimating nematode populations by some selected methods. In: Sasser J N et al. (Eds.). Nematology. Chapel Hill: University of North Carolina Press.
    [34] Ou W, Liang W J, Jiang Y et al., 2005. Vertical distribution of soil nematodes under different land use types in an aquic brown soil. Pedobiologia, 49(2): 139-148. doi: 10.1016/j.pedobi. 2004.10.001
    [35] Porazinska D L, Duncan L W, McSorley R et al., 1999. Nematode communities as indicators of status and processes of a soil ecosystem influenced by agricultural management practices. Applied Soil Ecology, 13(1): 69-86.
    [36] Rey A, Pegoraro E, Tedeschi V et al., 2008. Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Global Change Biology, 32(4): 387-392. doi:  10.1046/j.1365-2486.2002.00521.x
    [37] Sainju U M, Singh B P, Whitehead W F et al., 2007. Accumulation and crop uptake of soil mineral nitrogen as influenced by tillage, cover crops, and nitrogen fertilization. Agronomy Journal, 99(3): 682-691.
    [38] Stanislav P, Ginetta B, Yosef S, 2008. Effect of desert plant ecophysiological adaptation on soil nematode communities. European Journal of Soil Biology, 44(3): 298-308. doi:  10.1016/j.ejsobi.2008.03.005
    [39] Sun G, Wu N, Luo P, 2005. Soil N pools and transformation rates under different land uses in a subalpine forest-grassland ecotone. Pedosphere, 15(1): 52-58.
    [40] Townshend J L, 1963. A modification and evaluation of the apparatus for the Oostenbrink direct cottonwool filter extraction method. Nematologica, 7(3): 106-110. doi: 10. 1163/18752 9263X00205
    [41] Ugarte C M, Zaborski E R, Wander M M, 2013. Nematode indicators as integrative measures of soil condition in organic cropping systems. Soil Biology and Biochemistry, 64(9): 103-113. doi:  10.1016/j.soilbio.2013.03.035
    [42] Verhoeven Jos T A, Setter Tim L, 2010. Agricultural use of wetlands: opportunities and limitations. Annals of Botany, 105(1): 155-163. doi:  10.1093/aob/mcp172
    [43] Verschoor B C, de Goede R G M, de Hoop, J W et al., 2001. Seasonal dynamics and vertical distribution of plant-feeding nematode communities in grasslands. Pedobiologia, 45(3): 213-233. doi:  10.1078/0031-4056-00081
    [44] Wang K H, McSorley R, Marshall A.J et al., 2004. Nematode community changes associated with decomposition of Crotalaria juncea amendment in litterbags. Applied Soil Ecology, 27(1): 31-45. doi:  10.1016/j.apsoil.2004.03.006
    [45] Wasilewska L, 2006. Changes in the structure of the soil nematode community over long-term secondary grassland succession in drained fen peat. Applied Soil Ecology, 32(2): 165-179. doi:  10.1016/j.apsoil.2005.07.003
    [46] Wu H Y, Li X X, Shi L B et al., 2008. Distribution of nematodes in wetland soils with different distance from the Bohai sea. Plant Soil and Environment, 54(8): 359-366.
    [47] Wu J H, Fu C Z, Chen S S et al., 2002. Soil faunal response to land use: effect of estuarine tideland reclamation on nematode communities. Applied Soil Ecology, 21: 131-147. doi:  10.1016/S0929-1393(02)00065-3
    [48] Wu J H, Fu C Z, Lu F et al., 2005. Changes in free-living nematode community structure in relation to progressive land reclamation at an intertidal marsh. Applied Soil Ecology, 29(1): 47-58. doi:  10.1016/j.apsoil.2004.09.003
    [49] Yeates G W, 1994. Modification and qualification of the nematode maturity index. Pedobiologia, 38(2): 97-101.
    [50] Yeates G W, 2003. Nematodes as soil indicators: functional and biodiversity aspects. Biology & Fertility of Soils, 37(4): 199-210. doi:  10.1007/s00374-003-0586-5
    [51] Yeates G W, Bongers T, 1999. Nematode diversity in agroecosystems. Agriculture, Ecosystems and Environments, 74(1-3): 113-135. doi:  10.1016/B978-0-444-50019-9.50010-8
    [52] Yeates G W, Bongers T, de Goede, R G M et al., 1993. Feeding habits in soil nematode families and genera. An outline for soil ecologists. Journal of Nematology, 25(3): 315-331.
    [53] Yeates G W, Wardal D A, Watson R N, 1999. Responses of soil nematode populations, community structure, diversity and temporal variability to agricultural intensification over a seven-year period. Soil Biology and Biochemistry, 31(12): 1721-1733. doi:  10.1016/S0038-0717(99)00091-7
    [54] Zhang X K, Guan P T, Wang Y L et al., 2015. Community composition, diversity and metabolic footprints of soil nematodes in differently-aged temperate forests. Soil Biology & Biochemistry, 80: 118-126. doi:  10.1016/j.soilbio.2014.10.003
    [55] Zhang X K, Liang W J, Jiang D M et al., 2007. Soil nematode community structure in a Chinese sand dune system. Helminthologia, 44(4): 204-209. doi:  10.2478/s11687-007-0032-6
    [56] Zhi D J, Li H Y, Nan W B et al., 2008. Nematode communities in the artificially vegetated belt with or without irrigation in the Tengger Desert, China. European Journal of Soil Biology, 44(2): 238-246. doi:  10.1016/j.ejsobi.2007.09.006
    [57] Zhou H, 2001. Effects of leaf litter addition on meiofaunal colonization of azoic sediments in a subtropical mangrove in Hong Kong. Journal of Experimental Marine Biology and Ecology, 256(1): 99-121. doi: 10.1016/S0022-0981(00) 00310-5
  • [1] Qing QI, Mingye ZHANG, Shouzheng TONG, Yan LIU, Dongjie ZHANG, Guanglei ZHU, Xianguo LYU.  Evolution of Potential Spatial Distribution Patterns of Carex Tussock Wetlands Under Climate Change Scenarios, Northeast China . Chinese Geographical Science, 2022, 32(1): 142-154. doi: 10.1007/s11769-022-1260-x
    [2] Baolin LIU, Deming DONG, Xiuyi HUA, Weihua DONG, Ming LI.  Spatial Distribution and Ecological Risk Assessment of Heavy Metals in Surface Sediment of Songhua River, Northeast China . Chinese Geographical Science, 2021, 31(2): 223-233. doi: 10.1007/s11769-021-1186-8
    [3] Yumei LIN, Peng LI, Zhiming FENG, Yanzhao YANG, Zhen YOU, Fuxin ZHU.  Climate Suitability Assessment of Human Settlements for Regions along the Belt and Road . Chinese Geographical Science, 2021, 31(6): 996-1010. doi: 10.1007/s11769-021-1241-5
    [4] FU Zhanhui, MEI Lin, LIU Yanjun, TIAN Junfeng, ZHENG Rumin, TIAN Jing.  Spatial Pattern of Female Non-agricultural Employment and Its Driving Forces in Guangdong Province, China: A Perspective of Individual and Family-level . Chinese Geographical Science, 2020, 30(4): 725-735. doi: 10.1007/s11769-020-1141-0
    [5] CAO Youhui, JIANG Ziran, YE Shilin, WU Wei, LIANG Shuangbo.  Spatial Pattern and Heterogeneity of Port & Shipping Service Enterprises in the Yangtze River Delta, 2002-2016 . Chinese Geographical Science, 2019, 20(3): 474-487. doi: 10.1007/s11769-019-1035-1
    [6] CUI Zhengwu, WANG Yang, ZHAO Na, YU Rui, XU Guanghui, YU Yong.  Spatial Distribution and Risk Assessment of Heavy Metals in Paddy Soils of Yongshuyu Irrigation Area from Songhua River Basin, Northeast China . Chinese Geographical Science, 2018, 28(5): 797-809. doi: 10.1007/s11769-018-0991-1
    [7] WANG Fang, MAO Wen, DONG Ying, ZHU Xiaohua.  Implications for Cultural Landscape in a Chinese Context: Geo-analysis of Spatial Distribution of Historic Sites . Chinese Geographical Science, 2018, 28(1): 167-182. doi: 10.1007/s11769-017-0915-5
    [8] ZHAO Guanghui, CHANG Wenyue, YAN Jinxia, LI Xiaojun, TONG Dongli, ZHAO Ranran, Sharley James DAVID, TAI Peidong.  Spatial Distribution and Sources Identification of Polycyclic Aromatic Hydrocarbons in Wolong Lake, Northeast China . Chinese Geographical Science, 2017, 27(6): 1003-1012. doi: 10.1007/s11769-017-0923-5
    [9] LYU Mingzhi, SHENG Lianxi, ZHANG Zhongsheng, ZHANG Li.  Distribution and Accumulation of Soil Carbon in Temperate Wetland, Northeast China . Chinese Geographical Science, 2016, 26(3): 295-303. doi: 10.1007/s11769-016-0809-y
    [10] XU Xiuli, ZHANG Qi, TAN Zhiqiang, LI Yunliang, WANG Xiaolong.  Effects of Water-table Depth and Soil Moisture on Plant Biomass, Diversity, and Distribution at a Seasonally Flooded Wetland of Poyang Lake, China . Chinese Geographical Science, 2015, 25(6): 739-756. doi: 10.1007/s11769-015-0774-x
    [11] SHA Di, GAO Meixiang, SUN Xin, WU Donghui, ZHANG Xueping.  Relative Contributions of Spatial and Environmental Processes and Biotic Interactions in a Soil Collembolan Community . Chinese Geographical Science, 2015, 25(5): 582-590. doi: 10.1007/s11769-015-0778-6
    [12] SU Nian, XUE Desheng, John AGNEW.  World Cities and International Organizations:Political Global-city Status of Chinese Cities . Chinese Geographical Science, 2014, 0(3): 362-374. doi: 10.1007/s11769-014-0677-2
    [13] HOU Xuekun, HU Ning, ZHANG Xiaoke, LIANG Lei, ZHAI Ruichang.  Vertical Distribution of Soil Nematode Communities under Different Tillage Systems in Lower Reaches of Liaohe River . Chinese Geographical Science, 2010, 20(2): 106-110. doi: 10.1007/s11769-010-0106-0
    [14] CHEN Liding, TIAN Huiying, FU Bojie, ZHAO Xinfeng.  Development of a New Index for Integrating Landscape Patterns with Ecological Processes at Watershed Scale . Chinese Geographical Science, 2009, 19(1): 37-45. doi: 10.1007/s11769-009-0037-9
    [15] WANG Aijun, CHEN Jian.  Spatial Variations in Depth-distribution of Trace Metals in Coastal Wetland Sediments from Quanzhou Bay, Fujian Province, China . Chinese Geographical Science, 2009, 19(1): 62-68. doi: 10.1007/s11769-009-0062-8
    [16] DAI Guangquan, BAO Jigang.  Spatial Distribution of Integrated Impact Index of Mega-event——A Case Study of Expo '99 Kunming . Chinese Geographical Science, 2008, 18(3): 214-223. doi: 10.1007/s11769-008-0214-2
    [17] CHU Jinlong, XU Jiangang, GAO Shu.  Spatio-temporal Characteristics of Residential Land Growth in Hefei of Anhui Province, China . Chinese Geographical Science, 2007, 17(2): 135-142. doi: 10.1007/s11769-007-0135-5
    [18] WANG Wei-wu, ZHU Li-zhong, WANG Ren-chao, SHI Yong-jun.  ANALYSIS ON THE SPATIAL DISTRIBUTION VARIATION CHARACTERISTIC OF URBAN HEAT ENVIRONMENTAL QUALITY AND ITS MECHANISM—A Case Study of Hangzhou City . Chinese Geographical Science, 2003, 13(1): 39-47.
    [19] GU Feng-xue, ZHANG Yuan-dong, CHU Yu, SHI Qing-dong, PAN Xiao-ling.  PRIMARY ANALYSIS ON GROUNDWATER, SOIL MOISTURE AND SALINITY IN FUKANG OASIS OF SOUTHERN JUNGGAR BASIN . Chinese Geographical Science, 2002, 12(4): 333-338.
    [20] HOU Wei-lin, ZHANG Hua.  ECOLOGICAL DISTRIBUTION OF SOIL ANIMALS IN BROAD-LEAVED PINE FORESTS IN SOUTHERN SLOPE OF XIAO HINGGAN MOUNTAINS . Chinese Geographical Science, 2000, 10(3): 276-281.
  • 加载中
计量
  • 文章访问数:  154
  • HTML全文浏览量:  2
  • PDF下载量:  656
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-18
  • 修回日期:  2016-02-17
  • 刊出日期:  2016-06-27

Effects of Wetland Utilization Change on Spatial Distribution of Soil Nematodes in Heihe River Basin, Northwest China

doi: 10.1007/s11769-016-0813-2
    基金项目:  Under the auspices of Major State Basic Research Development Program of China (No. 2009CB421302), National Natural Science Foundation of China (No. 30670375, 41201245)
    通讯作者: WANG Xuefeng

摘要: The first account of the effects of wetland reclamation on soil nematode assemblages were provided, three sites in Heihe River Basin of Northwest China, that is grass wetland (GW), Tamarix chinensis wetland (TW) and crop wetland (CW) treatments, were compared. Results showed that the majority of soil nematodes were presented in the 0-20 cm soil layers in CW treatments, followed by in the 20-40 cm and 40-60 cm layers in GW treatments. Plant-feeding nametodes were the most abundant trophic groups in each treatment, where GW (91.0%) > TW (88.1%) > CW (53.5%). Generic richness (GR) was lower in the TW (16) than that in GW (23) and CW (25). The combination of enrichment index (EI) and structure index (SI) showed that the soil food web in GW was more structured, and those in TW was stressed, while the enrichment soil food web was presented in the CW treatment. Several ecological indices which reflected soil community structure, diversity, Shannon-Weaver diversity (H'), Evenness (J'), Richness (GR) and modified maturity index (MMI) were found to be effective for assessing the response of soil namatode communities to soil of saline wetland reclamation. Furthermore, saline wetland reclamation also exerted great influence on the soil physical and chemical properties (pH, Electric conductivity (EC), Total organic carbon (TOC), Total nitrogen (Total-N) and Nitrate Nitrogen (N-NO3-)). These results indicated that the wetland reclamation had significantly effects on soil nematode community structure and soil properties in this study.

English Abstract

ZHU Hongqiang, MAO Zhixia, LONG Zhangwei, WANG Yan, SU Yongzhong, WANG Xuefeng. Effects of Wetland Utilization Change on Spatial Distribution of Soil Nematodes in Heihe River Basin, Northwest China[J]. 中国地理科学, 2016, 26(3): 339-351. doi: 10.1007/s11769-016-0813-2
引用本文: ZHU Hongqiang, MAO Zhixia, LONG Zhangwei, WANG Yan, SU Yongzhong, WANG Xuefeng. Effects of Wetland Utilization Change on Spatial Distribution of Soil Nematodes in Heihe River Basin, Northwest China[J]. 中国地理科学, 2016, 26(3): 339-351. doi: 10.1007/s11769-016-0813-2
ZHU Hongqiang, MAO Zhixia, LONG Zhangwei, WANG Yan, SU Yongzhong, WANG Xuefeng. Effects of Wetland Utilization Change on Spatial Distribution of Soil Nematodes in Heihe River Basin, Northwest China[J]. Chinese Geographical Science, 2016, 26(3): 339-351. doi: 10.1007/s11769-016-0813-2
Citation: ZHU Hongqiang, MAO Zhixia, LONG Zhangwei, WANG Yan, SU Yongzhong, WANG Xuefeng. Effects of Wetland Utilization Change on Spatial Distribution of Soil Nematodes in Heihe River Basin, Northwest China[J]. Chinese Geographical Science, 2016, 26(3): 339-351. doi: 10.1007/s11769-016-0813-2
参考文献 (57)

目录

    /

    返回文章
    返回