[1]
|
Allen G R P, 1954. The ‘courbe des population’: a further analysis. Bulletin of the Oxford University Institute of Statistics, 16(May-June): 179-189. |
[2]
|
Anderson G, Ge Y, 2005. The size distribution of Chinese cities. Regional Science and Urban Economics, 35(6): 756-776. doi: 10.1016/j.regsciurbeco.2005.01.003 |
[3]
|
Auerbach F, 1913. Das Gesetz der Bevolkerungskoncentration. Petermanns Geographische Mitteilungen, 59(1): 74-76. |
[4]
|
Benguigui L, Blumenfeld-Lieberthal E, 2007. Beyond the power law-a new approach to analyze city size distributions. Computer Environment and Urban Systems, 31(6): 648-666. doi: 10.1016/j.compenvurbsys.2006.11.002 |
[5]
|
Benguigui L, Blumenfeld-Lieberthal E, 2011. The end of a para-digm: is Zipf's law universal? Journal of Geographical Sys-tems, 13(1): 87-100. doi: 10.1007/s10109-010-0132-6 |
[6]
|
Benguigui L, Blumenfeld-Lieberthal E, Batty M, 2008. Macro and micro dynamics of city size distributions: the case of Israel. Available at: http://discovery.ucl.ac.uk/15192/ |
[7]
|
Black D, Henderson V, 2003. Urban evolution in the USA. Jour-nal of Economic Geography, 3(4): 343-372. doi: 10.1093/jeg/lbg017 |
[8]
|
Chan K W, 1992. Economic growth strategy and urbanization policies in China, 1949-1982. International Journal of Urban Regional Research, 16(2): 275-305. doi: 10.1111/j.1468-2427. 1992.tb00173.x |
[9]
|
China State Statistical Bureau, 1985-2005. China City Statistical Yearbook 1984-2004. Beijing: China Statistical Press. |
[10]
|
Cheshire P, 1999. Trends in sizes and structures of urban areas. In: Cheshire P et al. (eds.). Handbook of Regional and Urban Economics. Amsterdam: Elsevier Science, 1339-1372. |
[11]
|
Delgado A P, Godinho I M, 2004. The evolution of city size dis-tribution in Portugal: 1864-2001. Faculdade de Economia, Universidade do Porto. Available at: http://www.fep.up.pt/inves-tigacao/workingpa-pers/04.07.23_WP151_Ana%20Paula%20e%20Isabel.pdf |
[12]
|
Fan C C, 1999. The vertical and horizontal expansions of China's city system. Urban Geography, 20(6): 493-515. doi: 10. 2747/0272-3638.20.6.493 |
[13]
|
Fragkias M, Seto K C, 2009. Evolving rank-size distributions of intra-metropolitan urban clusters in South China. Computer Environment and Urban Systems, 33(3): 189-199. doi: 10.1016/j.compenvurbsys.2008.08.005 |
[14]
|
Gabaix X, 1999. Zipf's law for cities: an explanation. Quarterly Journal of Economics, 114(3): 739-767. doi: 10.1162/00335 5399556133 |
[15]
|
Garmestani A, Allen C, Bessey K, 2005. Time-series analysis of clusters in city size distributions. Urban Studies, 42(9): 1507-1515. doi: 10.1080/00420980500185314 |
[16]
|
Garmestani A S, Allen C R, Gallagher C M, 2008. Power laws, discontinuities and regional city size distributions. Journal of Economic Behavior & Organization, 68(1): 209-216. doi: 10.1016/j.jebo.2008.03.011 |
[17]
|
Giesen K, Suedekum J, 2011. Zipf's law for cities in the regions and the country. Journal of Economic Geography, 11(4): 667-686. doi: 10.1093/jeg/lbq019 |
[18]
|
Giesen K, Zimmermann A, Suedekum J, 2010. The size distribu-tion across all cities: Double Pareto lognormal strikes. Journal of Economic Geography, 68(2): 129-137. doi: 10.1016/j.jue. 2010.03.007 |
[19]
|
Guérin-Pace F, 1995. Rank-size distribution and the process of urban growth. Urban Studies, 32(3): 551-562. doi: 10.1080/00420989550012960 |
[20]
|
González-Val R, Ramos A, Sanz-Gracia F, 2010. Size distributions for all cities: lognormal and q-exponential functions. Available at: http://mpra.ub.uni-muenchen.de/24887/ |
[21]
|
Ioannides Y M, Skouras S P, 2009. Gibrat's law for (all) cities: a rejoinder. Department of Economics, Tufts University. Available at: http://ase.tufts.edu/econ/research/documents/2009/ioannidesGibratsLaw.pdf |
[22]
|
Levy M, 2009. Gibrat's Law for (all) cities: comment. American Economic Review, 99(4): 1672-1675. doi: 10.1257/aer.99.4. 1672 |
[23]
|
Li S, Sui D, 2013. Pareto's law and sample size: a case study of China's urban system 1984-2008. Geojournal, 78(4): 615-626. doi: 10.1007/s10708-012-9455-9 |
[24]
|
Malacarne L C, Mendes R, Lenzi E K, 2001. Q-Exponential dis-tribution in urban agglomeration. Physical Reveview E, 65: 1-3. doi: 10.1103/PhysRevE.65.017106 |
[25]
|
Malevergne Y, Pisarenko V, Sornette D, 2009. Gibrats Law for cities: uniformly most powerful unbiased test of the Pareto against the lognormal. Research paper series: 09-40. Swiss Finance Institute. Available at: http://arxiv.org/pdf/0909.1281v1.pdf |
[26]
|
Malevergne Y, Pisarenko V, Sornette D, 2011. Testing the Pareto against the lognormal distributions with the uniformly most powerful unbiased test applied to the distribution of cities. Physical Review E, 83(3): 61-72. doi: 10.1103/PhysRevE.83. 036111 |
[27]
|
Nitsch V, 2005. Zipf zipped. Journal of Urban Economics, 57(1): 86-100. doi: 10.1016/j.jue.2004.09.002 |
[28]
|
Overman H G, Ioannides Y, 2000. Cross sectional evolution of the US city size distribution. Centre for Economic Performance, London School of Economics and Political Science. |
[29]
|
Reed W J, 2002. On the rank-size distribution for human settle-ments. Journal of Regional Science, 42(1): 1-17. doi: 10.1111/1467-9787.00247 |
[30]
|
Rosen K T, Resnick M, 1980. The size distribution of cities: an examination of the Pareto law and primacy. Journal of Urban Economics, 8(2): 165-186. doi: 10.1016/0094-1190(80)90043-1 |
[31]
|
Singer H W, 1936. The ‘courbe des populations’: a parallel to Pareto's law. The Economic Journal, 46(182): 254-263. doi: 10.2307/2225228 |
[32]
|
Song S, Zhang K, 2002. Urbanisation and city size distribution in China. Urban Studies, 39(12): 2317-2327. doi: 10.1080/00420 98022000033890 |
[33]
|
Soo K T, 2005. Zipf's law for cities: a cross-country investigation. Regional Science and Urban Economics, 35(3): 239-263. doi: 10.1016/j.regsciurbeco.2004.04.004 |
[34]
|
Soo K T, 2007. Zipf's law and urban growth in Malaysia. Urban Studies, 44(1): 1-14. doi: 10.1080/00420980601023869 |
[35]
|
Xu Z, Zhu N, 2008. Urban growth determinants in China. Chinese Economy, 41(1): 7-35. doi: 10.2753/ces1097-1475410101 |
[36]
|
Xu Z, Harriss R, 2010. A spatial and temporal autocorrelated growth model for city rank-size distribution. Urban Studies, 47(2): 321-335. doi: 10.1177/0042098009348326 |
[37]
|
Xu Z, Harriss R, 2014. Discontinuities in the evolution of the city system in Texas from 1850 to 2010. Computer, Environment and Urban Systems, 43: 14-24. doi: c10.1016/j.compenvurbsys.2013.10.001 |
[38]
|
Ye X, Xie Y, 2011. Re-examination of Zipf's law and urban dy-namic in China: a regional approach. Annuals of Regional Science, 49(1): 135-156. doi: 10.1007/s00168-011-0442-8 |