[1]
|
Bowman W D, Bahn L, Damm M, 2003. Alpine landscape varia-tion in foliar nitrogen and phosphorus concentrations and the relation to soil nitrogen and phosphorus availability. Arctic, Antarctic, and Alpine Research, 35(2):144-149. doi: 10.1657/1523-0430(2003)035[0144:ALVIFN]2.0.CO;2 |
[2]
|
Cassagne N, Remaury M, Gauquelin T et al., 2000. Forms and profile distribution of soil phosphorus in alpine Inceptisols and Spodosols (Pyrenees, France). Geoderma, 95(1-2):161-172. doi: 10.1016/S0016-7061(99)00093-2 |
[3]
|
Cathy W, Sarah L S, Jennifer M, 2003. The role of climate and vegetation change in shaping past and future fire regimes in the northwestern US and the implications for ecosystem man-agement. Forest Ecology and Management, 178(1-2):5-21. doi: 10.1016/S0378-1127(03)00051-3 |
[4]
|
Condron L M, Frossard E, Tiessen H et al., 1990. Chemical nature of organic phosphorus in cultivated and uncultivated soils under different environmental conditions. Soil Science, 41(1):41-50. doi: 10.1111/j.1365-2389.1990.tb00043.x |
[5]
|
Dai L M, Wu G, Zhao J Z et al., 2002. Carbon cycling of alpine tundra ecosystems on Changbai Mountain and its comparison with arctic tundra. Science in China (Series D), 45(10):903-910. doi: 10.1360/02yd908 |
[6]
|
He H S, Hao Z Q, Larsen D R et al., 2002. A simulation study of landscape scale forest succession in northeastern China. Eco-logical Modelling, 156(2-3):153-166. doi: 10.1016/S0304-3800(02)00104-7 |
[7]
|
Jonasson S, Michelsen A, Schmidt I K et al., 1999. Responses in microbes and plants to changed temperature, nutrient, and light regimes in the Arctic. Ecology, 80(6):1828-1843. doi: 10.1890/0012-9658(1999)080[1828:RIMAPT]2.0.CO;2 |
[8]
|
Kuo S, 1996. Phosphorus. In:Sparks D L. (ed.). Methods of Soil Analysis. Part 3:Chemical Methods. Soil Science Society of America Inc., 869-919. |
[9]
|
Litaor M I, Seastedt T R, Walker M D et al., 2005. The biogeo-chemistry of phosphorus across an alpine topographic/snow gradient. Geoderma, 124(1-2):49-61. doi: 10.1016/j.geoder-ma.2004.04.001 |
[10]
|
Ma D W, Zhu R B, Ding W et al., 2011. Alkaline phosphatase activity in ornithogenic soils in polar tundra. Advances in Polar Science, 22(2):92-100. doi:10.3724/SP.J.1085.2011. 00092 |
[11]
|
Makarov M I, Malysheva T I, Haumaier L et al., 1997. The forms of phosphorus in humic and fulvic acids of a toposequence of alpine soils in the northern Caucasus. Geoderma, 80(1-2):61-73. doi: 10.1016/S0016-7061(97)00049-9 |
[12]
|
Martin B, 2003. Climatic change in mountain regions:a review of possible impacts. Climatic Change, 59(15):5-31. doi:10. 1007/978-94-015-1252-7_2 |
[13]
|
Murphy J, Riley J P, 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 26(27):31-36. doi:10.1016/S0003-2670(00) 88444-5 |
[14]
|
Nannipieri P, Giagnoni L, Landi L et al., 2011. Role of phospha-tase enzymes in soil. In:Bunemann E (ed.). Phosphorus in Ac-tion:Biological Processes in Soil Phosphorus Cycling. Soil Biology, 26(1613-3382):215-243. doi: 10.1007/978-3-642-15271-9_9 |
[15]
|
Reiner G, Camilla E, Anna L et al., 2012. Phosphorus availability and microbial respiration across different tundra vegetation types. Biogeochemistry, 108(1-3):429-445. doi:10.1007/s 10533-011-9609-8 |
[16]
|
Samuel A D, Domuta C, Sandor M et al., 2010. The estimation of phosphatase activity in soil. Research Journal of Agricultural Science, 42(3):311-314. |
[17]
|
Schmidt I K, Jonasson S, Michelsen A, 1999. Mineralization and microbial immobilization of N and P in arctic soils in relation to season, temperature and nutrient amendment. Applied Soil Ecology, 11(2-3):147-160. doi:10.1016/S0929-1393(98) 00147-4 |
[18]
|
Shen C C, Xiong J B, Zhang H Y et al., 2013. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biology & Biochemistry, 57:204-211. doi: 10.1016/j.soilbio.2012.07.013 |
[19]
|
Spier T W, Ross D J, 1978. Soil Phosphatase and Sulphatase. London:Academic Press, 197-250. |
[20]
|
Stark S, 2007. Nutrient cycling in the tundra. Soil Biology, 10(1613-3382):309-331. doi: 10.1007/978-3-540-68027-7_11 |
[21]
|
Stone M M, Plante A F, Casper B B, 2013. Plant and nutrient controls on microbial functional characteristics in a tropical Oxisol. Plant and Soil, 373(1-2):893-905. doi:10.1007/s 11104-013-1840-8 |
[22]
|
Sundqvist M K, Wardle D A, Vincent A et al., 2014. Contrasting nitrogen and phosphorus dynamics across an elevational gra-dient for subarctic tundra heath and meadow vegetation. Plant Soil, 383(1-2):387-399. doi: 10.1007/s11104-014-2179-5 |
[23]
|
Tabatabai M A, 1994. Soil enzymes. In:Tabatabai M A. Methods of Soil Analysis, Part 2:Microbiological and Biochemical Properties, 775-833. |
[24]
|
Tadano T, Ozawa K, Sakai H et al., 1993. Secretion of acid phosphatase by the roots of crop plants under phosphorus-de-ficient conditions and some properties of the enzyme secreted by lupin roots. Plant and Soil, 155-156(1):95-98. doi: 10.1007/BF00024992 |
[25]
|
Tarafdar J C, Claassen N, 1988. Organic phosphorus composition as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms. Biology and Fertility of Soils, 5(4):308-312. doi: 10.1007/BF00262137 |
[26]
|
Tate K R, Newman R H, 1982. Phosphorus fractions of a climosequence of soils in New Zealand tussock grassland. Soil Biology & Biochemistry, 14(3):191-196. doi: 10.1016/0038-0717(82)90022-0 |
[27]
|
Turner B L, Mahieu N, Condron L M, 2003. The phosphorus composition of temperate pasture soils determined by NaOH-EDTA extraction and solution 31P NMR spectroscopy. Organic Geochemistry, 34(8):1199-1210. doi: 10.1016/S0146-6380(03)00061-5 |
[28]
|
Turner B L, Baxter R, Mahieu N et al., 2004. Phosphorus compo-sition in subarctic Fennoscandian soils at the mountain birch (Betula pubescens)-tundra ecotone. Soil Biology & Bio-chemistry, 36(5):815-823. doi: 10.1016/j.soilbio.2004.01.011 |
[29]
|
Turner B L, Engelbrecht B M J, 2011. Soil organic phosphorus in lowland tropical rain forests. Biogeochemistry, 103(1-3):297-315. doi: 10.1007/s10533-010-9466-x |
[30]
|
Walker T W, Adams A F R, 1958. Studies on soil organic matter:I. influence of phosphorus content of parent materials on ac-cumulations of carbon, nitrogen, sulfur, and organic phospho-rus in grassland soils. Soil Science, 85(6):307-318. doi: 10.1097/00010694-195806000-00004 |
[31]
|
Wei K, Chen Z H, Zhang X P et al., 2014a. Tillage effects on phosphorus composition and phosphatase activities in soil ag-gregates. Geoderma, 217-218:37-44. doi:10.1016/j.geoderma. 2013.11.002 |
[32]
|
Wei K, Chen Z H, Zhu A N et al., 2014b. Application of 31P NMR spectroscopy in determining phosphatase activities and P composition in soil aggregates influenced by tillage and residue management practices. Soil & Tillage Research, 138:35-43. doi: 10.1016/j.still.2014.01.001 |
[33]
|
Weintraub M N, 2011. Biological phosphorus cycling in arctic and alpine soils. Soil Biology, 26:295-316. doi: 10.1007/978-3-642-15271-9_12 |
[34]
|
Wu G, Wei J, Deng H B et al., 2006. Nutrient cycling in an alpine tundra ecosystem on Changbai Mountain, Northeast China. Applied Soil Ecology, 32(2):199-209. doi:10.1016/j.apsoil. 2005.06.003 |
[35]
|
Wu Y H, Zhou J, Yu D et al., 2013. Phosphorus biogeochemical cycle research in mountainous ecosystems. Journal of Mountain Science, 10(1):43-53. doi: 10.1007/s11629-013-2386-1 |
[36]
|
Yu Qunying, 2001. Study on soil phosphatase activity and their influenced factors. Journal of Anhui Technical Teachers Col-lege, 15(4):5-8. (in Chinese) |
[37]
|
Zhang A M, Chen Z H, Zhang G N et al., 2012. Soil phosphorus composition determined by 31P NMR spectroscopy and relative phosphatase activities influenced by land use. European Journal of Soil Biology, 52:73-77. doi:10.1016/j.ejsobi.2012. 07.001 |
[38]
|
Zhang G N, Chen Z H, Zhang A M et al., 2014. Influence of cli-mate warming and nitrogen deposition on soil phosphorus composition and phosphorus availability in a temperate grass-land, China. Journal of Arid Land, 6(2):156-163. doi:10. 1007/s40333-013-0241-4 |