留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sensitivity of Near Real-time MODIS Gross Primary Productivity in Terrestrial Forests Based on Eddy Covariance Measurements

TANG Xuguang LI Hengpeng LIU Guihua LI Xinyan YAO Li XIE Jing CHANG Shouzhi

TANG Xuguang, LI Hengpeng, LIU Guihua, LI Xinyan, YAO Li, XIE Jing, CHANG Shouzhi. Sensitivity of Near Real-time MODIS Gross Primary Productivity in Terrestrial Forests Based on Eddy Covariance Measurements[J]. 中国地理科学, 2015, 25(5): 537-548. doi: 10.1007/s11769-015-0777-7
引用本文: TANG Xuguang, LI Hengpeng, LIU Guihua, LI Xinyan, YAO Li, XIE Jing, CHANG Shouzhi. Sensitivity of Near Real-time MODIS Gross Primary Productivity in Terrestrial Forests Based on Eddy Covariance Measurements[J]. 中国地理科学, 2015, 25(5): 537-548. doi: 10.1007/s11769-015-0777-7
TANG Xuguang, LI Hengpeng, LIU Guihua, LI Xinyan, YAO Li, XIE Jing, CHANG Shouzhi. Sensitivity of Near Real-time MODIS Gross Primary Productivity in Terrestrial Forests Based on Eddy Covariance Measurements[J]. Chinese Geographical Science, 2015, 25(5): 537-548. doi: 10.1007/s11769-015-0777-7
Citation: TANG Xuguang, LI Hengpeng, LIU Guihua, LI Xinyan, YAO Li, XIE Jing, CHANG Shouzhi. Sensitivity of Near Real-time MODIS Gross Primary Productivity in Terrestrial Forests Based on Eddy Covariance Measurements[J]. Chinese Geographical Science, 2015, 25(5): 537-548. doi: 10.1007/s11769-015-0777-7

Sensitivity of Near Real-time MODIS Gross Primary Productivity in Terrestrial Forests Based on Eddy Covariance Measurements

doi: 10.1007/s11769-015-0777-7
基金项目: Under the auspices of National Natural Science Foundation of China (No. 41401221, 41271500, 41201496), Opening Fund of Key Laboratory of Poyang Lake Wetland and Watershed Research (Jiangxi Normal University), Ministry of Education, China (No. PK2014002)
详细信息
    通讯作者:

    LI Hengpeng.E-mail:hpli@niglas.ac.cn

Sensitivity of Near Real-time MODIS Gross Primary Productivity in Terrestrial Forests Based on Eddy Covariance Measurements

Funds: Under the auspices of National Natural Science Foundation of China (No. 41401221, 41271500, 41201496), Opening Fund of Key Laboratory of Poyang Lake Wetland and Watershed Research (Jiangxi Normal University), Ministry of Education, China (No. PK2014002)
More Information
    Corresponding author: LI Hengpeng.E-mail:hpli@niglas.ac.cn
  • 摘要: As an important product of Moderate Resolution Imaging Spectroradiometer (MODIS), MOD17A2 provides dramatic improvements in our ability to accurately and continuously monitor global terrestrial primary production, which is also significant in effort to advance scientific research and eco-environmental management. Over the past decades, forests have moderated climate change by sequestrating about one-quarter of the carbon emitted by human activities through fossil fuels burning and land use/land cover change. Thus, the carbon uptake by forests reduces the rate at which carbon accumulates in the atmosphere. However, the sensitivity of near real-time MODIS gross primary productivity (GPP) product is directly constrained by uncertainties in the modeling process, especially in complicated forest ecosystems. Although there have been plenty of studies to verify MODIS GPP with ground-based measurements using the eddy covariance (EC) technique, few have comprehensively validated the performance of MODIS estimates (Collection 5) across diverse forest types. Therefore, the present study examined the degree of correspondence between MODIS-derived GPP and EC-measured GPP at seasonal and interannual time scales for the main forest ecosystems, including evergreen broadleaf forest (EBF), evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), and mixed forest (MF) relying on 16 flux towers with a total of 68 site-year datasets. Overall, site-specific evaluation of multi-year mean annual GPP estimates indicates that the current MOD17A2 product works highly effectively for MF and DBF, moderately effectively for ENF, and ineffectively for EBF. Except for tropical forest, MODIS estimates could capture the broad trends of GPP at 8-day time scale for all other sites surveyed. On the annual time scale, the best performance was observed in MF, followed by ENF, DBF, and EBF. Trend analyses also revealed the poor performance of MODIS GPP product in EBF and DBF. Thus, improvements in the sensitivity of MOD17A2 to forest productivity require continued efforts.
  • [1] Archibald S A, Kirton A, Van der Merwe M et al., 2009. Drivers of inter-annual variability in net ecosystem exchange in a semi-arid savanna ecosystem, South Africa. Biogeosciences, 6(2): 251-266. doi:  10.5194/bgd-5-3221-2008
    [2] Aubinet M, Heinesch B, Longdoz B, 2002. Estimation of the carbon sequestration by a heterogeneous forest: night flux corrections, heterogeneity of the site and inter-annual variability. Global Change Biology, 8(11): 1053-1071. doi: 10.1046/j. 1365-2486.2002.00529.x
    [3] Beer C, Reichstein M, Tomelleri E et al., 2010. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science, 329(5993): 834-838. doi: 10.1126/science. 1184984
    [4] Berbigier P, Bonnefonda J M, Mellmann P, 2001. CO2 and water vapour fluxes for 2 years above Euroflux forest site. Agricultural and Forest Meteorology, 108(3): 183-197. doi: 10.1016/ S0168-1923(01)00240-4
    [5] Betts A K, Zhao M, Dirmeyer P A et al., 2006. Comparison of ERA40 and NCEP/DOE near-surface data sets with other ISLSCP-II data sets. Journal of Geophysical Research: Atmospheres (1984-2012), 111(D22). doi: 10.1029/2006JD0 07174
    [6] Blonquist J, Montzka S A, Yakir D et al., 2010. The potential of carbonyl sulfide as a tracer for gross primary productivity at flux tower sites. American Geophysical Union Fall Meeting, B21G-07. doi:  2010AGUFM.B21G.07B
    [7] Carvalhais N, Reichstein M, Ciais P et al., 2010. Identification of vegetation and soil carbon pools out of equilibrium in a process model via eddy covariance and biometric constraints. Global Change Biology, 16(10): 2813-2829. doi: 10.1111/j. 1365-2486.2010.02173
    [8] Chasmer L, Barr A, Hopkinson C et al., 2009. Scaling and assessment of GPP from MODIS using a combination of airborne lidar and eddy covariance measurements over jack pine forests. Remote Sensing of Environment, 113(1): 82-93. doi: 10.1016/ j.rse.2008.08.009
    [9] Cohen W B, Maiersperger T K, Yang Z et al., 2003. Comparisons of land cover and LAI estimates derived from ETM+ and MODIS for four sites in North America: a quality assessment of 2000/2001 provisional MODIS products. Remote Sensing of Environment, 88(3): 233-255. doi:  10.1016/j.rse.2003.06.006
    [10] Coops N C, Black T A, Jassal R P S et al., 2007. Comparison of MODIS, eddy covariance determined and physiologically modelled gross primary production (GPP) in a Douglas-fir forest stand. Remote Sensing of Environment, 107(3): 385-401. doi:  10.1016/j.rse.2006.09.010
    [11] Desai A R, 2010. Climatic and phenological controls on coherent regional interannual variability of carbon dioxide flux in a heterogeneous landscape. Journal of Geophysical Research, 115: G00J02. doi:  10.1029/2010JG001423
    [12] Don A, Rebmann C, Kolle O et al., 2009. Impact of afforestation-associated management changes on the carbon balance of grassland. Global Change Biology, 15(8): 1990-2002. doi: 10. 1111/j.1365-2486.2009.01873.x
    [13] Dragoni D, Schmid H P, Wayson C A et al., 2011. Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south-central Indiana, USA. Global Change Biology, 17(2): 886-897. doi: 10. 1111/ j.1365-2486.2010.02281.x
    [14] Garbulsky M F, Peñuelas J, Papale D et al., 2008. Remote estimation of carbon dioxide uptake of terrestrial ecosystems. Global Change Biology, 14(12): 2860-2867. doi: 10. 1111/j. 1365-2486.2008.01684.x
    [15] Granier A, Pilegaard K, Jensen N O, 2002. Similar net ecosystem exchange of beech stands located in France and Denmark. Agricultural and Forest Meteorology, 114(1): 75-82. doi: 10.1016/ S0168-1923(02)00137-5
    [16] Grant R F, Hutyra L R, de Oliveira R C et al., 2009. Modeling the carbon balance of Amazonian rain forests: resolving ecological controls on net ecosystem productivity. Ecological Monographs, 79(3): 445-463. doi:  10.1890/08-0074.1
    [17] Grünwald T, Bernhofer C, 2007. A decade of carbon, water and energy flux measurements of an old spruce forest at the Anchor Station Tharandt. Tellus B, 59(3): 387-396. doi: 10. 1111/j.1600-0889.2007.00259.x
    [18] Heinsch F A, Zhao M, Running S W et al., 2006. Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations. IEEE Transactions on Geoscience and Remote Sensing, 44(7): 1908-1925. doi:  10.1109/TGRS.2005.853936
    [19] Houghton R A, Hackler J L, Lawrence K T, 1999. The US carbon budget: contributions from land-use change. Science, 285 (5427): 574-578. doi:  10.1126/science.285.5427.574
    [20] Kanamitsu M, Ebisuzaki W, Woollen J et al., 2002. Ncep-Doe Amip-Ii Reanalysis (r-2). Bulletin of the American Meteorological Society, 83(11): 1631-1643. doi:  10.1175/BAMS-83-11-1631
    [21] Kanniah K D, Beringer J, Hutley L B et al., 2009. Evaluation of collections 4 and 5 of the MODIS Gross Primary Productivity product and algorithm improvement at a tropical savanna site in northern Australia. Remote Sensing of Environment, 113(9): 1808-1822. doi:  10.1016/j.rse.2009.04.013
    [22] Knohl A, Schulze E D, Kolle O et al., 2003. Large carbon uptake by an unmanaged 250-year-old deciduous forest in Central Germany. Agricultural and Forest Meteorology, 118(3): 151-167. doi:  10.1016/S0168-1923(03)00115-1
    [23] Lagergren F, Eklundh L, Grelle A et al., 2005. Net primary production and light use efficiency in a mixed coniferous forest in Sweden. Plant, Cell & Environment, 28(3): 412-423. doi:  10.1111/j.1365-3040.2004.01280.x
    [24] Liang S, Wang K, Zhang X et al., 2010. Review on estimation of land surface radiation and energy budgets from ground measurement, remote sensing and model simulations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(3): 225-240. doi:  10.1109/JSTARS.2010.2048556
    [25] Lloyd J, Taylor J, 1994. On the temperature dependence of soil respiration. Functional Ecology, 8(3): 315-323. doi: 10.2307/ 2389824
    [26] Morales P, Sykes M T, Prentice I C et al., 2005. Comparing and evaluating process-based ecosystem model predictions of carbon and water fluxes in major European forest biomes. Global Change Biology, 11(12): 2211-2233. doi: 10.1111/j.1365-2486. 2005.01036.x
    [27] Myneni R B, Ramakrishna R, Nemani R et al., 1997. Estimation of global leaf area index and absorbed PAR using radiative transfer models. IEEE Transactions on Geoscience and Remote Sensing, 35(6): 1380-1393. doi:  10.1109/36.649788
    [28] Nightingale J M, Coops N C, Waring R H et al., 2007. Comparison of MODIS gross primary production estimates for forests across the USA with those generated by a simple process model, 3-PGS. Remote Sensing of Environment, 109(4): 500-509. doi:  10.1016/j.rse.2007.02.004
    [29] Pan S, Tian H, Dangal S R et al., 2014. Modeling and monitoring terrestrial primary production in a changing global environment: toward a multiscale synthesis of observation and simulation. Advances in Meteorology, ID965936. doi: 10.1155/ 2014/ 965936
    [30] Papale D, Valentini R, 2003. A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Global Change Biology, 9(4): 525-535. doi:  10.1046/j.1365-2486.2003.00609.x
    [31] Propastin P, Ibrom A, Knohl A et al., 2012. Effects of canopy photosynthesis saturation on the estimation of gross primary productivity from MODIS data in a tropical forest. Remote Sensing of Environment, 121(6): 252-260. doi: 10.1016/j.rse. 2012.02.005
    [32] Rahman A F, Sims D A, Cordova V D et al., 2005. Potential of MODIS EVI and surface temperature for directly estimating per-pixel ecosystem C fluxes. Geophysical Research Letters, 32(19): L19404. doi:  10.1029/2005GL024127
    [33] Reichstein M, Falge E, Baldocchi D et al., 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11(9): 1424-1439. doi: 10.1111/j.1365-2486. 2005.001002.x
    [34] Richardson A D, Anderson R S, Arain M A et al., 2012. Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis. Global Change Biology, 18(2): 566-584. doi:  10.1111/j.1365-2486.2011.02562.x
    [35] Running S W, Nemani R R, Heinsch F A et al., 2004. A continuous satellite-derived measure of global terrestrial primary production. Bioscience, 54(6): 547-560. doi:  10.1641/0006-3568
    [36] Saigusa N, Yamamoto S, Hirata R et al., 2008. Temporal and spatial variations in the seasonal patterns of CO2 flux in boreal, temperate, and tropical forests in East Asia. Agricultural and Forest Meteorology, 148(5): 700-713. doi: 10.1016/j. agrformet. 2007.12.006
    [37] Seiler T J, Rasse D P, Li J H et al., 2009. Disturbance, rainfall and contrasting species responses mediated aboveground biomass response to 11 years of CO2 enrichment in a Florida scrub-oak ecosystem. Global Change Biology, 15(2): 356-367. doi:  10.1111/j.1365-2486.2008.01740.x
    [38] Sjöström M, Zhao M, Archibald S et al., 2013. Evaluation of MODIS gross primary productivity for Africa using eddy covariance data. Remote Sensing of Environment, 131(4): 275-286. doi:  10.1016/j.rse.2012.12.023
    [39] Tan B, Woodcock C E, Hu J et al., 2006. The impact of gridding artifacts on the local spatial properties of MODIS data: implications for validation, compositing, and band-to-band registration across resolutions. Remote Sensing of Environment, 105(2): 98-114. doi:  10.1016/j.rse.2006.06.008
    [40] Tang X G, Wang Z M, Liu D W et al., 2012. Estimating the net ecosystem exchange for the major forests in the northern United States by integrating MODIS and AmeriFlux data. Agricultural and Forest Meteorology, 156(4): 75-84. doi:  10.1016/j.agrformet.2012.01.003
    [41] Turner D P, Urbanski S, Bremer D et al., 2003. A cross-biome comparison of daily light use efficiency for gross primary production. Global Change Biology, 9(3): 383-395. doi: 10.1046/ j.1365-2486.2003.00573.x
    [42] Verma M, Friedl M A, Richardson A D et al., 2014. Remote sensing of annual terrestrial gross primary productivity from MODIS: an assessment using the FLUXNET La Thuile data set. Biogeosciences, 11(8): 2185-2200. doi:  10.5194/bgd-10-11627-2013
    [43] Wang X, Ma M, Li X et al., 2013. Validation of MODIS-GPP product at 10 flux sites in northern China. International Journal of Remote Sensing, 34(2): 587-599. doi: 10.1080/ 01431161.2012.715774
    [44] Wang Y, Woodcock C E, Buermann W et al., 2004. Evaluation of the MODIS LAI algorithm at a coniferous forest site in Finland. Remote Sensing of Environment, 91(1): 114-127. doi: 10. 1016/j.rse.2004.02.007
    [45] Williams C A, Hanan N P, Baker I et al., 2008. Interannual variability of photosynthesis across Africa and its attribution. Biogeosciences, 113: G04015. doi:  10.1029/2008JG000718
    [46] Wu C Y, Munger J W, Niu Z et al., 2010. Comparison of multiple models for estimating gross primary production using MODIS and eddy covariance data in Harvard Forest. Remote Sensing of Environment, 114(12): 2925-2939. doi: 10.1016/j.rse.2010. 07. 012
    [47] Wu C, Chen J M, Huang N, 2011. Predicting gross primary production from the enhanced vegetation index and photosynthetically active radiation: evaluation and calibration. Remote Sensing of Environment, 115(12): 3424-3435. doi: 10.1016/j. rse.2011.08.006
    [48] Xiao J, Zhuang Q, Law B E et al., 2010. A continuous measure of gross primary production for the conterminous U.S. derived from MODIS and AmeriFlux data. Remote Sensing of Environment, 114(3): 576-591. doi:  10.1016/j.rse.2009.10.013
    [49] Yang F H, Ichii K, White M A et al., 2007. Developing a continental-scale measure of gross primary production by combining MODIS and AmeriFlux data through support vector machine approach. Remote Sensing of Environment, 110(1): 109-122. doi:  10.1016/j.rse.2007.02.016
    [50] Zhao M, Running S W, 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329(5994): 940-943. doi: 10.1126/science. 1192666
    [51] Zhao M, Running S W, Nemani R R, 2006. Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses. Biogeosciences, 111(G1). doi: 10.1029/ 2004JG000004
  • [1] Hongzhu HAN, Jianjun BAI, Gao MA, Jianwu YAN, Xiaohui WANG, Zhijie TA, Pengtao WANG.  Seasonal Responses of Net Primary Productivity of Vegetation to Phenological Dynamics in the Loess Plateau, China . Chinese Geographical Science, 2022, 32(2): 340-357. doi: 10.1007/s11769-022-1270-8
    [2] Lanhui ZHANG, Chansheng HE, Wei TIAN, Yi ZHU.  Evaluation of Precipitation Datasets from TRMM Satellite and Downscaled Reanalysis Products with Bias-correction in Middle Qilian Mountain, China . Chinese Geographical Science, 2021, 31(3): 474-490. doi: 10.1007/s11769-021-1205-9
    [3] LIU Yangyang, YANG Yue, WANG Qian, KHALIFA Muhammad, ZHANG Zhaoying, TONG Linjing, LI Jianlong, SHI Aiping.  Assessing the Dynamics of Grassland Net Primary Productivity in Re-sponse to Climate Change at the Global Scale . Chinese Geographical Science, 2019, 20(5): 725-740. doi: 10.1007/s11769-019-1063-x
    [4] WANG Xuecheng, YANG Fei, GAO Xing, WANG Wei, ZHA Xinjie.  Evaluation of Forest Damaged Area and Severity Caused by Ice-snow Frozen Disasters over Southern China with Remote Sensing . Chinese Geographical Science, 2019, 20(3): 405-416. doi: 10.1007/s11769-019-1041-3
    [5] CHEN Tiantian, PENG Li, LIU Shaoquan, WANG Qiang.  Spatio-temporal Pattern of Net Primary Productivity in Hengduan Mountains area, China:Impacts of Climate Change and Human Activities . Chinese Geographical Science, 2017, 27(6): 948-962. doi: 10.1007/s11769-017-0895-5
    [6] WANG Jinzhu, GAO Ming, HE Xinhua, ZHANG Qian, Natamba LEO, XU Chang.  Evaluation of Potential Productivity of Woody Energy Crops on Marginal Land in China . Chinese Geographical Science, 2017, 27(6): 963-973. doi: 10.1007/s11769-017-0916-4
    [7] GONG Shihan, XIAO Yang, XIAO Yi, ZHANG Lu, OUYANG Zhiyun.  Driving Forces and Their Effects on Water Conservation Services in Forest Ecosystems in China . Chinese Geographical Science, 2017, 27(2): 216-228. doi: 10.1007/s11769-017-0860-3
    [8] SUN Binfeng, ZHAO Hong, WANG Xiaoke.  Effects of Drought on Net Primary Productivity: Roles of Temperature, Drought Intensity, and Duration . Chinese Geographical Science, 2016, 26(2): 270-282. doi: 10.1007/s11769-016-0804-3
    [9] WANG Hao, LIU Guohua, LI Zongshan, YE Xin, WANG Meng, GONG Li.  Impacts of Climate Change on Net Primary Productivity in Arid and Semiarid Regions of China . Chinese Geographical Science, 2016, 26(1): 35-47. doi: 10.1007/s11769-015-0762-1
    [10] ZHANG Jing, LYU Zhipeng, SHAO Siya, LI Fangfang, YANG Shengtian, SONG Wenlong, LI Wei, LI Shunjiang.  Effects of Aluminum Toxicity Induced by Acid Deposition on Pine Forest Ecosystem in Longli of Guizhou Province, Southwestern China . Chinese Geographical Science, 2016, 26(4): 495-507. doi: 10.1007/s11769-015-0763-0
    [11] LI Yu, ZHAO Minyan, GUO Peng, ZHENG Ji, LI Zehong, LI Fujia, SHI Yuanyuan, DONG Suocheng.  Comprehensive Evaluation of Ski Resort Development Conditions in Northern China . Chinese Geographical Science, 2016, 26(3): 401-409. doi: 10.1007/s11769-016-0808-z
    [12] MAO Dehua, WANG Zongming, WU Changshan, SONG Kaishan, REN Chunying.  Examining Forest Net Primary Productivity Dynamics and Driving Forces in Northeastern China During 1982-2010 . Chinese Geographical Science, 2014, 0(6): 631-646. doi: 10.1007/s11769-014-0662-9
    [13] ZHAN Xiaoyun, YU Guirui, HE Nianpeng, FANG Huajun, JIA Bingrui, ZHOU Mei, WANG Chuankuan, ZHANG Junhui, ZHAO Guangdong, WANG Silong, LIU Yunfen, YAN Junhua.  Nitrogen Deposition and Its Spatial Pattern in Main Forest Ecosystems along North-South Transect of Eastern China . Chinese Geographical Science, 2014, 0(2): 137-146. doi: 10.1007/s11769-013-0650-5
    [14] YE Hanfeng, GUO Shuhai, LI Fengmei, LI Gang.  Water Quality Evaluation in Tidal River Reaches of Liaohe River Estuary, China Using a Revised QUAL2K Model . Chinese Geographical Science, 2013, 23(3): 301-311. doi: 10.1007/s11769-013-0586-9
    [15] ZHOU Lei, WANG Shaoqiang, Georg KINDERMANN, YU Guirui, HUANG Mei, Robert MICKLER, Florian KRAXNER, SHI Hao, GONG Yazhen.  Carbon Dynamics in Woody Biomass of Forest Ecosystem in China with Forest Management Practices under Future Climate Change and Rising CO2 Concentration . Chinese Geographical Science, 2013, 23(5): 519-536. doi: 10.1007/s11769-013-0622-9
    [16] XIE Gaodi, LI Wenhua, XIAO Yu, ZHANG Biao, LU Chunxia, AN Kai, WANG Jixing, XU Kang, WANG Jinzeng.  Forest Ecosystem Services and Their Values in Beijing . Chinese Geographical Science, 2010, 20(1): 51-58. doi: 10.1007/s11769-010-0051-y
    [17] KANG Guo-ding, CAI Zu-cong, ZHANG Zi-heng, XIAO Peng-feng.  ESTIMATE OF METHANE EMISSIONS FROM RICE FIELDS IN CHINA BY CLIMATE-BASED NET PRIMARY PRODUCTIVITY . Chinese Geographical Science, 2004, 14(4): 326-331.
    [18] XU Han-qiu.  ASSESSMENT OF THE SFIM ALGORITHM . Chinese Geographical Science, 2004, 14(1): 48-56.
    [19] XU Hui, QIAN Yi, ZHENG Lin, PENG Bu-zhuo.  ASSESSMENT OF INDIRECT USE VALUES OF FOREST BIODIVERSITY IN YAOLUOPING NATIONAL NATURE RESERVE, ANHUI PROVINCE . Chinese Geographical Science, 2003, 13(3): 277-283.
    [20] 郝革宗, 甘永萍, 胡海驰.  QUANTITATIVE EVALUATION AND REGIONALIZATION OF TOURISM RESOURCES IN GUANGXI . Chinese Geographical Science, 1998, 8(2): 183-192.
  • 加载中
计量
  • 文章访问数:  297
  • HTML全文浏览量:  1
  • PDF下载量:  1210
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-28
  • 修回日期:  2015-04-24
  • 刊出日期:  2015-05-27

Sensitivity of Near Real-time MODIS Gross Primary Productivity in Terrestrial Forests Based on Eddy Covariance Measurements

doi: 10.1007/s11769-015-0777-7
    基金项目:  Under the auspices of National Natural Science Foundation of China (No. 41401221, 41271500, 41201496), Opening Fund of Key Laboratory of Poyang Lake Wetland and Watershed Research (Jiangxi Normal University), Ministry of Education, China (No. PK2014002)
    通讯作者: LI Hengpeng.E-mail:hpli@niglas.ac.cn

摘要: As an important product of Moderate Resolution Imaging Spectroradiometer (MODIS), MOD17A2 provides dramatic improvements in our ability to accurately and continuously monitor global terrestrial primary production, which is also significant in effort to advance scientific research and eco-environmental management. Over the past decades, forests have moderated climate change by sequestrating about one-quarter of the carbon emitted by human activities through fossil fuels burning and land use/land cover change. Thus, the carbon uptake by forests reduces the rate at which carbon accumulates in the atmosphere. However, the sensitivity of near real-time MODIS gross primary productivity (GPP) product is directly constrained by uncertainties in the modeling process, especially in complicated forest ecosystems. Although there have been plenty of studies to verify MODIS GPP with ground-based measurements using the eddy covariance (EC) technique, few have comprehensively validated the performance of MODIS estimates (Collection 5) across diverse forest types. Therefore, the present study examined the degree of correspondence between MODIS-derived GPP and EC-measured GPP at seasonal and interannual time scales for the main forest ecosystems, including evergreen broadleaf forest (EBF), evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), and mixed forest (MF) relying on 16 flux towers with a total of 68 site-year datasets. Overall, site-specific evaluation of multi-year mean annual GPP estimates indicates that the current MOD17A2 product works highly effectively for MF and DBF, moderately effectively for ENF, and ineffectively for EBF. Except for tropical forest, MODIS estimates could capture the broad trends of GPP at 8-day time scale for all other sites surveyed. On the annual time scale, the best performance was observed in MF, followed by ENF, DBF, and EBF. Trend analyses also revealed the poor performance of MODIS GPP product in EBF and DBF. Thus, improvements in the sensitivity of MOD17A2 to forest productivity require continued efforts.

English Abstract

TANG Xuguang, LI Hengpeng, LIU Guihua, LI Xinyan, YAO Li, XIE Jing, CHANG Shouzhi. Sensitivity of Near Real-time MODIS Gross Primary Productivity in Terrestrial Forests Based on Eddy Covariance Measurements[J]. 中国地理科学, 2015, 25(5): 537-548. doi: 10.1007/s11769-015-0777-7
引用本文: TANG Xuguang, LI Hengpeng, LIU Guihua, LI Xinyan, YAO Li, XIE Jing, CHANG Shouzhi. Sensitivity of Near Real-time MODIS Gross Primary Productivity in Terrestrial Forests Based on Eddy Covariance Measurements[J]. 中国地理科学, 2015, 25(5): 537-548. doi: 10.1007/s11769-015-0777-7
TANG Xuguang, LI Hengpeng, LIU Guihua, LI Xinyan, YAO Li, XIE Jing, CHANG Shouzhi. Sensitivity of Near Real-time MODIS Gross Primary Productivity in Terrestrial Forests Based on Eddy Covariance Measurements[J]. Chinese Geographical Science, 2015, 25(5): 537-548. doi: 10.1007/s11769-015-0777-7
Citation: TANG Xuguang, LI Hengpeng, LIU Guihua, LI Xinyan, YAO Li, XIE Jing, CHANG Shouzhi. Sensitivity of Near Real-time MODIS Gross Primary Productivity in Terrestrial Forests Based on Eddy Covariance Measurements[J]. Chinese Geographical Science, 2015, 25(5): 537-548. doi: 10.1007/s11769-015-0777-7
参考文献 (51)

目录

    /

    返回文章
    返回