留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effective Seed Distribution Pattern of an Upward Shift Species in Alpine Tundra of Changbai Mountains

ZONG Shengwei XU Jiawei Eckart DEGE WU Zhengfang HE Hongshi

ZONG Shengwei, XU Jiawei, Eckart DEGE, WU Zhengfang, HE Hongshi. Effective Seed Distribution Pattern of an Upward Shift Species in Alpine Tundra of Changbai Mountains[J]. 中国地理科学, 2016, 26(1): 48-58. doi: 10.1007/s11769-015-0775-9
引用本文: ZONG Shengwei, XU Jiawei, Eckart DEGE, WU Zhengfang, HE Hongshi. Effective Seed Distribution Pattern of an Upward Shift Species in Alpine Tundra of Changbai Mountains[J]. 中国地理科学, 2016, 26(1): 48-58. doi: 10.1007/s11769-015-0775-9
ZONG Shengwei, XU Jiawei, Eckart DEGE, WU Zhengfang, HE Hongshi. Effective Seed Distribution Pattern of an Upward Shift Species in Alpine Tundra of Changbai Mountains[J]. Chinese Geographical Science, 2016, 26(1): 48-58. doi: 10.1007/s11769-015-0775-9
Citation: ZONG Shengwei, XU Jiawei, Eckart DEGE, WU Zhengfang, HE Hongshi. Effective Seed Distribution Pattern of an Upward Shift Species in Alpine Tundra of Changbai Mountains[J]. Chinese Geographical Science, 2016, 26(1): 48-58. doi: 10.1007/s11769-015-0775-9

Effective Seed Distribution Pattern of an Upward Shift Species in Alpine Tundra of Changbai Mountains

doi: 10.1007/s11769-015-0775-9
基金项目: Under the auspices of Special Fund of National Seismological Bureau, China (No. 201208005), Doctorial Innovation Fund of Northeast Normal University (No. 10SSXT133, 2412013XS001), National Natural Science Foundation of China (No. 41171038, 41171072, 41101523), Doctoral Fund of Ministry of Education of China (No. 20120043110014)
详细信息
    通讯作者:

    XU Jiawei. E-mail:xujw634@nenu.edu.cn

Effective Seed Distribution Pattern of an Upward Shift Species in Alpine Tundra of Changbai Mountains

Funds: Under the auspices of Special Fund of National Seismological Bureau, China (No. 201208005), Doctorial Innovation Fund of Northeast Normal University (No. 10SSXT133, 2412013XS001), National Natural Science Foundation of China (No. 41171038, 41171072, 41101523), Doctoral Fund of Ministry of Education of China (No. 20120043110014)
More Information
    Corresponding author: XU Jiawei. E-mail:xujw634@nenu.edu.cn
  • 摘要: The vegetation of alpine tundra in the Changbai Mountains has experienced great changes in recent decades. Narrowleaf small reed (Deyeuxia angustifolia), a perennial herb from the birch forest zone had crossed the tree line and invaded into the alpine tundra zone. To reveal the driven mechanism of D. angustifolia invasion, there is an urgent need to figure out the effective seed distribution pattern, which could tell us where the potential risk regions are and help us to interpret the invasion process. In this study, we focus on the locations of the seeds in the soil layer and mean to characterize the effective seed distribution pattern of D. angustifolia. The relationship between the environmental variables and the effective seed distribution pattern was also assessed by redundancy analysis. Results showed that seeds of D. angustifolia spread in the alpine tundra with a considerable number (mean value of 322 per m2). They were mainly distributed in the low elevation areas with no significant differences in different slope positions. Effective seed number (ESN) occurrences of D. angustifolia were different in various plant communities. Plant communities with lower canopy cover tended to have more seeds of D. angustifolia. Our research indicated reliable quantitative information on the extent to which habitats are susceptible to invasion.
  • [1] Alpert P, Bone E, Holzapfel C, 2000. Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspectives in Plant Ecology, Evolution and Systematics, 3(1):52-66. doi: 10.1078/1433-8319-00004
    [2] Baret S, Maurice S, Le Bourgeois T et al., 2004. Altitudinal variation in fertility and vegetative growth in the invasive plant Rubus alceifolius Poiret (Rosaceae), on Réunion island. Plant Ecology, 172(2):265-273. doi:10.1023/B:VEGE. 0000026345.67250.d2
    [3] Bazzaz F, 1991. Habitat selection in plants. American Naturalist, 137:S116-S130.
    [4] Chang E, Jefferies R, Carleton T, 2001. Relationship between vegetation and soil seed banks in an arctic coastal marsh. Journal of Ecology, 89(3):367-384. doi: 10.1046/j.1365-2745.2001.00549.x
    [5] Chou R, Vardy C, Jefferies R, 1992. Establishment from leaves and other plant fragments produced by the foraging activities of geese. Functional Ecology, 6(3):297-301.
    [6] Chytrý M, Jarosik V, Pysek P et al., 2008a. Separating habitat invasibility by alien plants from the actual level of invasion. Ecology, 89(6):1541-1553. doi: 10.1890/07-0682.1
    [7] Chytrý M, Maskell L C, Pino J et al., 2008b. Habitat invasions by alien plants:a quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. Journal of Applied Ecology, 45(2):448-458. doi:10.1111/j.1365-2664. 2007.01398.x
    [8] Colautti R I, Grigorovich I A, MacIsaac H J, 2006. Propagule pressure:a null model for biological invasions. Biological Invasions, 8(5):1023-1037. doi: 10.1007/s10530-005-3735-y
    [9] DiVittorio C T, Corbin J D, D'Antonio C M, 2007. Spatial and temporal patterns of seed dispersal:an important determinant of grassland invasion. Ecological Applications, 17(2):311-316. doi: 10.1890/06-0610
    [10] Forcella F, Wood J, Dillon S, 1986. Characteristics distinguishing invasive weeds within Echium (Bugloss). Weed Research, 26(5):351-364. doi: 10.1111/j.1365-3180.1986.tb00718.x
    [11] Foster B L, Dickson T L, Murphy C A et al., 2004. Propagule pools mediate community assembly and diversity ecosystem regulation along a grassland productivity gradient. Journal of Ecology, 92(3):435-449. doi:10.1111/j.0022-0477.2004. 00882.x
    [12] Gadgil M, 1971. Dispersal:population consequences and evolution. Ecology, 52(2):253-261. doi: 10.2307/1934583
    [13] Halloy S R P, Mark A F, 2003. Climate-change effects on alpine plant biodiversity:a New Zealand perspective on quantifying the threat. Arctic, Antarctic, and Alpine Research, 35(2):248-254. doi:10.1657/1523-0430(2003)035[0248:CEOAPB] 2.0.CO;2
    [14] He H, Hao Z, Larsen D R et al., 2002. A simulation study of landscape scale forest succession in northeastern China. Ecological Modelling, 156(2):153-166. doi: 10.1016/S0304-3800(02)00104-7
    [15] Hejda M, Pyšek P, Pergl J et al., 2009. Invasion success of alien plants:do habitat affinities in the native distribution range matter? Global Ecology and Biogeography, 18(3):372-382. doi: 10.1111/j.1466-8238.2009.00445.x
    [16] Huang Xichou, Li Chonghao, 1984. An analysis on the ecology of alpine tundra landscape of Changbai Mountains. Acta Geographica Sinica, 39(3):285-297. (in Chinese)
    [17] Humphries S E, Groves R H, Mitchell D S, 1991. Plant Invasions of Australian Ecosystems:A Status Review and Management Directions Report To:Australian National Parks and Wildlife Service. Sydney:Australian National Parks and Wildlife Service, 160-165.
    [18] Jongman R H, Ter Braak C J, Van Tongeren O F, 1995. Data Analysis in Community and Landscape Ecology. London:Cambridge University Press.
    [19] Kalamees R, Zobel M, 2002. The role of the seed bank in gap regeneration in a calcareous grassland community. Ecology, 83(4):1017-1025. doi: 10.1890/0012-9658(2002)083[1017:TROTSB]2.0.CO;2
    [20] Körner C, 2003. Alpine Plant Life:Functional Plant Ecology of High Mountain Ecosystems. Heidelberg:Springer Verlag.
    [21] Krinke L, Moravcová L, Pysek P et al., 2005. Seed bank of an invasive alien, Heracleum mantegazzianum, and its seasonal dynamics. Seed Science Research, 15(3):239-248. doi:10. 1016/j.ppees.2008.03.001
    [22] Lepš J, Šmilauer P, 2003. Multivariate Analysis of Ecological Data Using CANOCO. London:Cambridge University Press
    [23] Li Youzhi, Huang Jishan, Zhu Jiehui, 2007. Effects of light and temperature on seed germination and seedling growth of Deyeuxia angustifolia. Journal of Hunan Agricultural University (Natural Sciences), 33(2):187-190. (in Chinese)
    [24] Li Y, Zhang C, Xie Y et al., 2009. Germination of Deyeuxia angustifolia as affected by soil type, burial depth, water depth and oxygen level. Mitigation and Adaptation Strategies for Global Change, 14(6):537-545. doi: 10.1007/s11027-009-9172-y
    [25] Lockwood J L, Cassey P, Blackburn T, 2005. The role of propagule pressure in explaining species invasions. Trends in Ecology & Evolution, 20(5):223-228. doi:10.1016/j.tree. 2005.02.004
    [26] Marco D E, Páez S A, 2000. Invasion of Gleditsia triacanthos in Lithraea ternifolia montane forests of central Argentina. Environmental Management, 26(4):409-419. doi:10.1007/s 002670010098
    [27] McDougall K L, Khuroo A A, Loope L L et al., 2011. Plant Invasions in Mountains:global lessons for better management. Mountain Research and Development, 31(4):380-387. doi: 10.1659/MRD-JOURNAL-D-11-00082.1
    [28] Molau U, Larsson E L, 2000. Seed rain and seed bank along an alpine altitudinal gradient in Swedish Lapland. Canadian Journal of Botany, 78(6):728-747. doi: 10.1139/cjb-78-6-728
    [29] Muñoz A A, Cavieres L A, 2008. The presence of a showy invasive plant disrupts pollinator service and reproductive output in native alpine species only at high densities. Journal of Ecology, 96(3):459-467. doi:10.1111/j.1365-2745.2008. 01361.x
    [30] Nathan R, Muller-Landau H C, 2000. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends in Ecology & Evolution, 15(7):278-285. doi: 10.1016/S0169-5347(00)01874-7
    [31] Pauchard A, Alaback P B, 2004. Influence of elevation, land use, and landscape context on patterns of alien plant invasions along roadsides in protected areas of Sout-Central Chile. Conservation Biology, 18(1):238-248. doi: 10.1111/j.1523-1739.2004.00300.x
    [32] Pauchard A, Kueffer C, Dietz H et al., 2009. Ain't no mountain high enough:plant invasions reaching new elevations. Frontiers in Ecology and the Environment, 7(9):479-486. doi: 10.1890/080072
    [33] Quiroz C L, Choler P, Baptist F et al., 2009. Alpine dandelions originated in the native and introduced range differ in their responses to environmental constraints. Ecological Research, 24(1):175-183. doi: 10.1007/s11284-008-0498-9
    [34] Richardson D M, Kluge R L, 2008. Seed banks of invasive Australian Acacia species in South Africa:role in invasiveness and options for management. Perspectives in Plant Ecology, Evolution and Systematics, 10(3):161-177. doi:10.1016/j. ppees.2008.03.001
    [35] Scherff E, Galen C, Stanton M, 1994. Seed dispersal, seedling survival and habitat affinity in a snowbed plant:limits to the distribution of the snow buttercup, Ranunculus adoneus. Oikos, 69(3):405-413. doi: 10.2307/3545853
    [36] Theoharides K A, Dukes J S, 2007. Plant invasion across space and time:factors affecting nonindigenous species success during four stages of invasion. New Phytologist, 176(2):256-273. doi: 10.1111/j.1469-8137.2007.02207.x
    [37] Titus J H, del Moral R, 1998. Seedling establishment in different microsites on Mount St. Helens, Washington, USA. Plant Ecology, 134(1):13-26. doi: 10.1023/A:1009765502741
    [38] Vilà M, Gimeno I, 2007. Does invasion by an alien plant species affect the soil seed bank? Journal of Vegetation Science, 18(3):423-430. doi: 10.1111/j.1654-1103.2007.tb02554.x
    [39] Wei J, Jiang P, Yu D et al., 2007. Distribution patterns of vegetation biomass and nutrients bio-cycle in alpine tundra ecosystem on Changbai Mountains, Northeast China. Journal of Forestry Research, 18(4):271-278. doi: 10.1007/s11676-007-0055-3
    [40] Williamson M H, Fitter A, 1996. The characters of successful invaders. Biological Conservation, 78(1):163-170. doi:10. 1016/0006-3207(96)00025-0
    [41] Wilson J R, Dormontt E E, Prentis P J et al., 2009. Something in the way you move:dispersal pathways affect invasion success. Trends in Ecology & Evolution, 24(3):136-144. doi:10. 1016/j.tree.2008.10.007
    [42] Witkowski E, Wilson M, 2001. Changes in density, biomass, seed production and soil seed banks of the non-native invasive plant, Chromolaena odorata, along a 15 year chronosequence. Plant Ecology, 152(1):13-27. doi: 10.1023/A:1011409004004
    [43] Zheng D, Wallin D O, Hao Z, 1997. Rates and patterns of landscape change between 1972 and 1988 in the Changbai Mountain area of China and North Korea. Landscape Ecology, 12(4):241-254. doi: 10.1023/A:1007963324520
    [44] Zong Shengwei, Wu Zhengfang, Du Haibo, 2013a. Study on climate change in alpine tundra of the Changbai Mountain in growing season in recent 52 years. Arid Zone Research, 30(1):41-49. (in Chinese)
    [45] Zong Shengwei, Xu Jiawei, Wu Zhengfang, 2013b. Analysis on the process and impacts of deyeuxia angustifolia invasion on the alpine tundra, Changbai Mountain. Acta Ecologica Sinica, 34(23):6837-6846. (in Chinese)
    [46] Zong Shengwei, Xu Jiawei, Wu Zhengfang, 2013c. Investigation and mechanism analysis on the invasion of Deyeuxia. angustifolia to tundra zone in western slope of Changbai Mountain. Journal of Mountain Science, 31(4):448-455. (in Chinese)
  • [1] WAN Siang, LIU Xingtu, MOU Xiaojie, ZHAO Yongqiang.  Comparison of Carbon, Nitrogen, and Sulfur in Coastal Wetlands Dominated by Native and Invasive Plants in the Yancheng National Nature Reserve, China . Chinese Geographical Science, 2020, 30(2): 202-216. doi: 10.1007/s11769-020-1108-1
    [2] JIN Yinghua, ZHANG Yingjie, XU Zhiwei, GU Xiaonan, XU Jiawei, TAO Yan, HE Hongshi, WANG Ailin, LIU Yuxia, NIU Liping.  Soil Microbial Community and Enzyme Activity Responses to Herbaceous Plant Expansion in the Changbai Mountains Tundra, China . Chinese Geographical Science, 2019, 29(6): 985-1000. doi: 10.1007/s11769-019-1067-6
    [3] JIN Yinghua, ZHANG Yingjie, XU Jiawei, TAO Yan, HE Hongshi, GUO Meng, WANG Ailin, LIU Yuxia, NIU Liping.  Comparative Assessment of Tundra Vegetation Changes Between North and Southwest Slopes of Changbai Mountains, China, in Response to Global Warming . Chinese Geographical Science, 2018, 28(4): 665-679. doi: 10.1007/s11769-018-0978-y
    [4] ZHANG Guangliang, BAI Junhong, JIA Jia, WANG Xin, WANG Wei, ZHAO Qingqing, ZHANG Shuai.  Soil Organic Carbon Contents and Stocks in Coastal Salt Marshes with Spartina alterniflora Following an Invasion Chronosequence in the Yellow River Delta, China . Chinese Geographical Science, 2018, 28(3): 374-385. doi: 10.1007/s11769-018-0955-5
    [5] YANG Xiaozhu, WEI Kai, CHEN Zhenhua, CHEN Lijun.  Soil Phosphorus Composition and Phosphatase Activities along Altitudes of Alpine Tundra in Changbai Mountains, China . Chinese Geographical Science, 2016, 26(1): 90-98. doi: 10.1007/s11769-015-0786-6
    [6] WU Zhijun, SU Dongkai, NIU Lijun, Bernard Joseph LEWIS, YU Dapao, ZHOU Li, ZHOU Wangming, WU Shengnan, DAI Limin.  Effects of Logging Intensity on Structure and Composition of a Broadleaf-Korean Pine Mixed Forest on Changbai Mountains, Northeast China . Chinese Geographical Science, 2016, 26(1): 59-67. doi: 10.1007/s11769-015-0785-7
    [7] ZHAO Wei, QI Xiaojuan, LYU Jianwei, YU Zhengxiang, CHEN Xia.  Characterization of Microbial Community Structure in Rhizosphere Soils of Cowskin Azalea (Rhododendron aureum Georgi) on Northern Slope of Changbai Mountains, China . Chinese Geographical Science, 2016, 26(1): 78-89. doi: 10.1007/s11769-015-0787-5
    [8] ZHAO Fuqiang, QI Lin, FANG Lei, YANG Jian.  Influencing Factors of Seed Long-distance Dispersal on a Fragmented Forest Landscape on Changbai Mountains, China . Chinese Geographical Science, 2016, 26(1): 68-77. doi: 10.1007/s11769-015-0747-0
    [9] JIN Yinghua, XU Jiawei, WANG Yeqiao, WANG Shaoxian, CHEN Zhaoshuang, HUANG Xiangtong, NIU Lijun.  Effects of Nitrogen Deposition on Tundra Vegetation Undergoing Invasion by Deyeuxia angustifolia in Changbai Mountains . Chinese Geographical Science, 2016, 26(1): 99-108. doi: 10.1007/s11769-015-0746-1
    [10] XIONG Dingpeng, SHI Peili, SUN Yinliang, WU Jianshuang, ZHANG Xianzhou.  Effects of Grazing Exclusion on Plant Productivity and Soil Carbon, Nitrogen Storage in Alpine Meadows in Northern Tibet, China . Chinese Geographical Science, 2014, 0(4): 488-498. doi: 10.1007/s11769-014-0697-y
    [11] FANG Xiangmin, WANG Qingli, ZHOU Wangming, ZHAO Wei, WEI Yawei, NIU Lijun, DAI Limin.  Land Use Effects on Soil Organic Carbon, Microbial Biomass and Microbial Activity in Changbai Mountains of Northeast China . Chinese Geographical Science, 2014, 0(3): 297-306. doi: 10.1007/s11769-014-0670-9
    [12] GAO Meixiang, LI Jingke, ZHANG Xueping.  Responses of Soil Fauna Structure and Leaf Litter Decomposition to Effective Microorganism Treatments in Da Hinggan Mountains, China . Chinese Geographical Science, 2012, 22(6): 647-658.
    [13] LIANG Yu, HE Hong S, LEWIS Bernard L.  Responses of Tree Species to Climate Warming at Different Spatial Scales . Chinese Geographical Science, 2011, 21(4): 427-436.
    [14] LI Ming, WU Zhengfang, QIN Lijie, MENG Xiangjun.  Extracting Vegetation Phenology Metrics in Changbai Mountains Using an Improved Logistic Model . Chinese Geographical Science, 2011, 21(3): 304-311.
    [15] QIAO Zhihe, JIE Dongmei, LIU Hongmei, GE Yong, ZHANG Hongyan.  Morphological Characteristics and Environmental Implications of Phytoliths in Topsoils from Different Vegetation Zones on Northern Slope of Changbai Mountains,China . Chinese Geographical Science, 2010, 20(6): 506-512. doi: 10.1007/s11769-010-0424-2
    [16] BAO Kunshan, JIA Lin, LU Xianguo, WANG Guoping.  Grain-size Characteristics of Sediment in Daniugou Peatland in Changbai Mountains,Northeast China:Implications for Atmospheric Dust Deposition . Chinese Geographical Science, 2010, 20(6): 498-505. doi: 10.1007/s11769-010-0427-z
    [17] PAN Jun, XING Li-xin, LI Bai-shou, MENG Tao.  APPLICATION OF THREE-DIMENSIONAL VISULIZATION IN SIMULATION OF GEOGRAPHICAL LANDSCAPE EVOLVEMENT . Chinese Geographical Science, 2005, 15(2): 168-172.
    [18] XIAO Yan.  MARKETIZATION OF GREEN FOOD RESOURCES IN FOREST REGION OF THE CHANGBAI MOUNTAINS . Chinese Geographical Science, 2004, 14(2): 186-191.
    [19] BO Li-qun, ZHAO Yun-ping, HUA Ren-kui.  FRAME DESIGN OF REMOTE SENSING MONITORINGFOR VOLCANIC ACTIVITIES IN CHANGBAI MOUNTAINS . Chinese Geographical Science, 2003, 13(4): 347-351.
    [20] LIU Jing-shuang, YU Jun-bao.  ANALYSIS OF BIOLOGICAL GEOCHEMISTRY OFCHEMICAL ELEMENTS IN Betula ermanii FORESTIN CHANGBAI MOUNTAINS, CHINA . Chinese Geographical Science, 2001, 11(4): 350-355.
  • 加载中
计量
  • 文章访问数:  240
  • HTML全文浏览量:  3
  • PDF下载量:  926
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-25
  • 修回日期:  2014-12-31
  • 刊出日期:  2016-01-27

Effective Seed Distribution Pattern of an Upward Shift Species in Alpine Tundra of Changbai Mountains

doi: 10.1007/s11769-015-0775-9
    基金项目:  Under the auspices of Special Fund of National Seismological Bureau, China (No. 201208005), Doctorial Innovation Fund of Northeast Normal University (No. 10SSXT133, 2412013XS001), National Natural Science Foundation of China (No. 41171038, 41171072, 41101523), Doctoral Fund of Ministry of Education of China (No. 20120043110014)
    通讯作者: XU Jiawei. E-mail:xujw634@nenu.edu.cn

摘要: The vegetation of alpine tundra in the Changbai Mountains has experienced great changes in recent decades. Narrowleaf small reed (Deyeuxia angustifolia), a perennial herb from the birch forest zone had crossed the tree line and invaded into the alpine tundra zone. To reveal the driven mechanism of D. angustifolia invasion, there is an urgent need to figure out the effective seed distribution pattern, which could tell us where the potential risk regions are and help us to interpret the invasion process. In this study, we focus on the locations of the seeds in the soil layer and mean to characterize the effective seed distribution pattern of D. angustifolia. The relationship between the environmental variables and the effective seed distribution pattern was also assessed by redundancy analysis. Results showed that seeds of D. angustifolia spread in the alpine tundra with a considerable number (mean value of 322 per m2). They were mainly distributed in the low elevation areas with no significant differences in different slope positions. Effective seed number (ESN) occurrences of D. angustifolia were different in various plant communities. Plant communities with lower canopy cover tended to have more seeds of D. angustifolia. Our research indicated reliable quantitative information on the extent to which habitats are susceptible to invasion.

English Abstract

ZONG Shengwei, XU Jiawei, Eckart DEGE, WU Zhengfang, HE Hongshi. Effective Seed Distribution Pattern of an Upward Shift Species in Alpine Tundra of Changbai Mountains[J]. 中国地理科学, 2016, 26(1): 48-58. doi: 10.1007/s11769-015-0775-9
引用本文: ZONG Shengwei, XU Jiawei, Eckart DEGE, WU Zhengfang, HE Hongshi. Effective Seed Distribution Pattern of an Upward Shift Species in Alpine Tundra of Changbai Mountains[J]. 中国地理科学, 2016, 26(1): 48-58. doi: 10.1007/s11769-015-0775-9
ZONG Shengwei, XU Jiawei, Eckart DEGE, WU Zhengfang, HE Hongshi. Effective Seed Distribution Pattern of an Upward Shift Species in Alpine Tundra of Changbai Mountains[J]. Chinese Geographical Science, 2016, 26(1): 48-58. doi: 10.1007/s11769-015-0775-9
Citation: ZONG Shengwei, XU Jiawei, Eckart DEGE, WU Zhengfang, HE Hongshi. Effective Seed Distribution Pattern of an Upward Shift Species in Alpine Tundra of Changbai Mountains[J]. Chinese Geographical Science, 2016, 26(1): 48-58. doi: 10.1007/s11769-015-0775-9
参考文献 (46)

目录

    /

    返回文章
    返回