留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Industrial Spatial Agglomeration Using Distance-based Approach in Beijing, China

LI Jiaming ZHANG Wenzhong YU Jianhui CHEN Hongxia

LI Jiaming, ZHANG Wenzhong, YU Jianhui, CHEN Hongxia. Industrial Spatial Agglomeration Using Distance-based Approach in Beijing, China[J]. 中国地理科学, 2015, 25(6): 698-712. doi: 10.1007/s11769-015-0770-1
引用本文: LI Jiaming, ZHANG Wenzhong, YU Jianhui, CHEN Hongxia. Industrial Spatial Agglomeration Using Distance-based Approach in Beijing, China[J]. 中国地理科学, 2015, 25(6): 698-712. doi: 10.1007/s11769-015-0770-1
LI Jiaming, ZHANG Wenzhong, YU Jianhui, CHEN Hongxia. Industrial Spatial Agglomeration Using Distance-based Approach in Beijing, China[J]. Chinese Geographical Science, 2015, 25(6): 698-712. doi: 10.1007/s11769-015-0770-1
Citation: LI Jiaming, ZHANG Wenzhong, YU Jianhui, CHEN Hongxia. Industrial Spatial Agglomeration Using Distance-based Approach in Beijing, China[J]. Chinese Geographical Science, 2015, 25(6): 698-712. doi: 10.1007/s11769-015-0770-1

Industrial Spatial Agglomeration Using Distance-based Approach in Beijing, China

doi: 10.1007/s11769-015-0770-1
基金项目: Under the auspices of State Key Program of National Natural Science of China (No. 41230632), National Natural Science Foundation of China (No. 41301123, 41201169)
详细信息
    通讯作者:

    YU Jianhui. E-mail: Yujh@igssnrr.ac.cn

Industrial Spatial Agglomeration Using Distance-based Approach in Beijing, China

Funds: Under the auspices of State Key Program of National Natural Science of China (No. 41230632), National Natural Science Foundation of China (No. 41301123, 41201169)
More Information
    Corresponding author: YU Jianhui. E-mail: Yujh@igssnrr.ac.cn
  • 摘要: To study the difference of industrial location among different industries, this article is to test the spatial agglomeration across industries and firm sizes at the city level. Our research bases on a unique plant-level data set of Beijing and employs a distance-based approach, which considers space as continuous. Unlike previous studies, we set two sets of references for service and manufacturing industries respectively to adapt to the investigation in the intra-urban area. Comparing among eight types of industries and different firm sizes, we find that: 1) producer service, high-tech industries and labor-intensive manufacturing industries are more likely to cluster, whereas personal service and capital-intensive industries tend to be randomly dispersed in Beijing; 2) the spillover of the co-location of firms is more important to knowledge-intensive industries and has more significant impact on their allocation than business-oriented services in the intra-urban area; 3) the spatial agglomeration of service industries are driven by larger establishments, whereas manufacturing industries are mixed.
  • [1] Alfaro L, Chen M, 2014. The global agglomeration of multinational firms. Journal of International Economics, 94(2): 263-276. doi:  10.1016/j.jinteco.2014.09.001
    [2] Anselin L, 1995. Local indicators of spatial association—LISA. Geographical Analysis, 27(2): 93-115. doi:  10.1111/j.1538-4632.1995.tb00338.x
    [3] Arbia G, Espa G, Quah D, 2008. A class of spatial econometric methods in the empirical analysis of clusters of firms in the space. Empirical Economics, 34(1): 81-103. doi: 10.1007/ s00181-007-0154-1
    [4] Barlet M, Briant A, Crusson L, 2013. Location patterns of service industries in France: a distance-based approach. Regional Science and Urban Economics, 43(2): 338-351. doi:  10.1080/00343400500151806
    [5] Bertinelli L, Decrop J, 2005. Geographical agglomeration: Ellison and Glaeser's index applied to the case of Belgian manufacturing industry. Regional Studies, 39(5): 567-583. doi: 10. 1080/00343400500151806
    [6] Braunerhjelm P, Borgman B, 2004. Geographical concentration, entrepreneurship and regional growth: evidence from regional data in Sweden, 1975-1999. Regional Studies, 38(8): 929-947. doi:  10.1080/0034340042000280947
    [7] Briant A, Combes P P, Lafourcade M, 2010. Dots to boxes: do the size and shape of spatial units jeopardize economic geography estimations? Journal of Urban Economics, 67(3): 287-302. doi:  10.1080/0034340042000280947
    [8] Brülhart M, Sbergami F, 2009. Agglomeration and growth: Cross-country evidence. Journal of Urban Economics, 65(1): 48-63. doi:  10.1016/j.jue.2008.08.003
    [9] Carlos G R, José A, Álvarez L et al., 2013. Calculating intraurban agglomeration of economic units with planar and network K-functions: a comparative analysis. Urban Geography, 34: 2, 261-286. doi:  10.1080/02723638.2013.778655
    [10] Carod J M A, Antolín M C M, 2004. Firm size and geographical aggregation: an empirical appraisal in industrial location. Small Business Economics, 22(3-4): 299-312. doi: 10.1023/ B:SBEJ.0000022216.09083.76
    [11] Chen Hongxia, Li Guoping, 2011. Empirical study on effect of industrial structure change on regional economic growth of Beijing-Tianjin-Hebei Metropolitan Region. Chinese Geographical Science, 21(6): 708-714. doi:  10.1007/s11769-011-0478-9
    [12] Ciccone A, 2002. Agglomeration effects in Europe. European Economic Review, 46(2): 213-227. doi: 10.1016/S0014-2921 (00)00099-4
    [13] Clark G L, Gertler M S, Feldman M P, 2003. The Oxford Handbook of Economic Geography. Oxford: Oxford University Press.
    [14] Coe N M, 2001. A hybrid agglomeration? The development of a satellite-Marshallian industrial district in Vancouver's film industry. Urban Studies, 38(10): 1753-1775. doi: 10.1080/ 00420980120084840
    [15] Coe N M, Kelly P F, Yeung H W C, 2007. Economic Geography: A Contemporary Introduction. Oxford: Blackwell.
    [16] Devereux M P, Griffith R, Simpson H, 2004. The geographic distribution of production activity in the UK. Regional Science and Urban Economics, 34(5): 533-564. doi:  10.1016/S0166-0462(03)00073-5
    [17] Duranton G, Overman H G, 2005. Testing for localization using micro-geographic data. Review of Economic Studies, 72(4): 1077-1106. doi:  10.1111/0034-6527.00362
    [18] Ellison G, Glaeser E L, 1997. Geographic concentration in US manufacturing industries: a dartboard approach. Journal of Political Economy, 105(5): 889-927. doi:  10.1086/262098
    [19] Ellison G, Glaeser E L, Kerr W, 2010. What causes industry agglomeration? Evidence from coagglomeration patterns. American Economic Review, 100(3): 1195-1213. doi: 10.1257/aer. 100.3.1195
    [20] Fischer M M, Getis A, 2009. Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications. Berlin: Springer Science & Business Media.
    [21] Fujita M, 1988. A monopolistic competition model of spatial agglomeration: differentiated product approach. Regional Science and Urban Economics, 18(1): 87-124. doi: 10.1016/ 0166-0462(88)90007-5
    [22] Guillain R, Le Gallo J, 2010. Agglomeration and dispersion of economic activities in and around Paris: an exploratory spatial data analysis. Environment and planning B, 37(6): 961-981. doi:  10.1068/b35038
    [23] Goetz S J, Rupasingha A, 2002. High-tech firm clustering: implications for rural areas. American Journal of Agricultural Economics, 84(5): 1229-1236. doi:  10.1111/1467-8276.00383
    [24] Glaeser E L, Kallal H D, Scheinkman J A et al., 1992. Growth in cities. Journal of Political Economy, 100(6): 1126-1152.
    [25] Haining R P, 2003. Spatial Data Analysis. Cambridge: Cambridge University Press.
    [26] Henderson J V, 2003. Marshall's scale economies. Journal of Urban Economics, 53(1): 1-28. doi: 10.1016/S0094-1190(02) 00505-3
    [27] HUallachain B O, Leslie T F, 2009. Postindustrial manufacturing in a Sunbelt Metropolis: where are factories located in Phoenix? Urban Geography, 30(8): 898-926. doi:  10.2747/0272-3638.30.8.898
    [28] Krugman P, 1991a. Increasing returns and economic geography. Journal of Political Economy, 99(3): 483-499.
    [29] Krugman P, 1991b. Geography and Trade. Cambridge: MIT press.
    [30] Lin H L, Li H Y, Yang C H, 2011. Agglomeration and productivity: firm-level evidence from China's textile industry. China Economic Review, 22(3): 313-329. doi: 10.1016/j.chieco. 2011.03.003
    [31] Logan J R, Spielman S, Xu H et al., 2011. Identifying and bounding ethnic neighborhoods. Urban Geography, 32(3): 334-359. doi:  10.2747/0272-3638.32.3.334
    [32] Marcon E, Puech F, 2003. Evaluating the geographic concentration of industries using distance-based methods. Journal of Economic Geography, 3(4): 409-428. doi:  10.1093/jeg/lbg016
    [33] Marcon E, Puech F, 2010. Measures of the geographic concentration of industries: improving distance-based methods. Journal of Economic Geography, 10(8): 745-762. doi: 10.1093/jeg/ lbp056
    [34] Marshall A, 1890. Principles of Economics. London: Macmillan and Company, limited.
    [35] Mitchell A, 2005. The ESRI Guide to GIS Analysis. Redlands, CA: ESRI Press.
    [36] Morphet C S, 1997. A statistical method for the identification of spatial clusters. Environment and Planning A, 29(6): 1039-1055. doi:  10.1068/a291039
    [37] Ripley B D, 1976. The second-order analysis of stationary point processes. Journal of Applied Probability, 13(2): 255-266.
    [38] Ripley B D, 1977. Modelling Spatial Patterns. Journal of the Royal Statistical Society B, 39(2): 172-212.
    [39] Silverman B W, 1986. Density estimation for statistics and data analysis. New York: Chapman and Hall.
    [40] Van Oort F G, Atzema O A L C, 2004. On the conceptualization of agglomeration economies: the case of new firm formation in the Dutch ICT sector. The Annals of Regional Science, 38(2): 263-290. doi:  10.1007/s00168-004-0195-8
    [41] Venables A J, 1996. Equilibrium locations of vertically linked industries. International Economic Review, 37(2): 341-359.
    [42] Yang D Y R, Wang H K, 2008. Dilemmas of local governance under the development zone fever in China: a case study of the Suzhou region. Urban Studies, 45(5-6): 1037-1054. doi: 10. 1177/0042098008089852
    [43] Yeh A G O, Li X, 1999. Economic development and agricultural land loss in the Pearl River Delta, China. Habitat international, 23(3): 373-390. doi:  10.1016/S0197-3975(99)00013-2
    [44] Zhang Jingqiu, Chen Yelong, 2011. Industrial distribution and clusters of urban office space in Beijing. Acta Geopraphica Sinca, 66(10): 1299-1308. (in Chinese)
    [45] Zhang Xiaoping, Sun Lei, 2012. Manufacture restructuring and main Determinants in Beijing. Acta Geopraphica Sinca, 67(10): 1308-1316. (in Chinese)
    [46] Zhou Shangyi, Ji Limei, 2009. Commercial space succession in old city of Beijing-case of survey line of inner city in Beijing from 1996 to 2006. Scienta Geographica Sinica, 29(4): 493-499. (in Chinese)Acta Geopraphica Sinca, 66(10): 1299-1308. (in Chinese)
    [47] Zhang Xiaoping, Sun Lei, 2012. Manufacture restructuring and main Determinants in Beijing. Acta Geopraphica Sinca, 67(10): 1308-1316. (in Chinese)
    [48] Zhou Shangyi, Ji Limei, 2009. Commercial space succession in old city of Beijing-case of survey line of inner city in Beijing from 1996 to 2006. Scienta Geographica Sinica, 29(4): 493-499. (in Chinese)
    [49]  
  • [1] GUO Peipei, SU Yuebo, WAN Wuxing, LIU Weiwei, ZHANG Hongxing, SUN Xu, OUYANG Zhiyun, WANG Xiaoke.  Urban Plant Diversity in Relation to Land Use Types in Built-up Areas of Beijing . Chinese Geographical Science, 2018, 28(1): 100-110. doi: 10.1007/s11769-018-0934-x
    [2] ZHAO Meifeng, LIU Shenghe, QI Wei.  Spatial Differentiation and Influencing Mechanism of Medical Care Accessibility in Beijing: A Migrant Equality Perspective . Chinese Geographical Science, 2018, 28(2): 353-362. doi: 10.1007/s11769-018-0950-x
    [3] FANG Zhongquan, ZHANG Ying, WANG Zhangjun, ZHANG Lifeng.  Spatial Agglomeration of Exhibition Enterprises on a Regional Scale in China . Chinese Geographical Science, 2017, 27(3): 497-506. doi: 10.1007/s11769-017-0879-5
    [4] YANG Zhenshan, LIANG Jinshe, CAI Jianming.  Urban Economic Cluster Template and Its Dynamics of Beijing, China . Chinese Geographical Science, 2014, 0(6): 740-750. doi: 10.1007/s11769-014-0686-1
    [5] LUO Shanghua, MAO Qizheng, MA Keming.  Comparison on Soil Carbon Stocks Between Urban and Suburban Topsoil in Beijing, China . Chinese Geographical Science, 2014, 0(5): 551-561. doi: 10.1007/s11769-014-0709-y
    [6] HU Yecui, ZHENG Yunmei, ZHENG Xinqi.  Simulation of Land-use Scenarios for Beijing Using CLUE-S and Markov Composite Models . Chinese Geographical Science, 2013, 23(1): 92-100.
    [7] ZHAO Ying, CHAI Yanwei.  Residents’ Activity-travel Behavior Variation by Communities in Beijing, China . Chinese Geographical Science, 2013, 23(4): 492-505. doi: 10.1007/s11769-013-0616-7
    [8] ZHANG Xiaoping, HUANG Pingting, SUN Lei, WANG Zhaohong.  Spatial Evolution and Locational Determinants of High-tech Industries in Beijing . Chinese Geographical Science, 2013, 23(2): 249-260.
    [9] KUANG Wenhui.  Spatio-temporal Patterns of Intra-urban Land Use Change in Beijing, China Between 1984 and 2008 . Chinese Geographical Science, 2012, 22(2): 210-220.
    [10] CAO Guangzhong, LIU Tao, LIU Hui, MIAO Yangbing.  Changing Spatial and Structural Patterns of Non-agricultural Activities in Outward-moving Beijing Urban Fringe . Chinese Geographical Science, 2012, 22(6): 718-729.
    [11] ZHU Lin, CHEN Yun, GONG Huili, et al..  Economic Value Evaluation of Wetland Service in Yeyahu Wetland Nature Reserve, Beijing . Chinese Geographical Science, 2011, 21(6): 744-752.
    [12] XIAO Yu, AN Kai, XIE Gaodi, LU Chunxia, ZHANG Biao.  Carbon Sequestration in Forest Vegetation of Beijing at Sublot Level . Chinese Geographical Science, 2011, 21(3): 279-289.
    [13] HE Yan, CHEN Tian, ZHANG Meng.  Utilization Pattern of Olympic Parks and Its Application in Beijing . Chinese Geographical Science, 2010, 20(5): 414-422. doi: 10.1007/s11769-010-0415-3
    [14] XIE Gaodi, LI Wenhua, XIAO Yu, ZHANG Biao, LU Chunxia, AN Kai, WANG Jixing, XU Kang, WANG Jinzeng.  Forest Ecosystem Services and Their Values in Beijing . Chinese Geographical Science, 2010, 20(1): 51-58. doi: 10.1007/s11769-010-0051-y
    [15] LU Dadao.  Objective and Framework for Territorial Development in China . Chinese Geographical Science, 2009, 19(3): 195-202. doi: 10.1007/s11769-009-0195-9
    [16] CHAI Yanwei, SHEN Jie, LONG Tao.  Downtown Retailing Development Under Suburbanization——A Case Study of Beijing . Chinese Geographical Science, 2007, 17(1): 1-9. doi: 10.1007/s11769-007-0001-5
    [17] SUN Tie-shan, LI Guo-ping, LU Ming-hua.  STUDY ON BEIJING'S EMERGING MOBILE COMMUNICATION INDUSTRIAL CLUSTER AND ITS POLICY IMPLICATIONS . Chinese Geographical Science, 2003, 13(2): 104-111.
    [18] GU Chao-lin.  SOCIAL POLARIZATION AND SEGREGATION IN BEIJING . Chinese Geographical Science, 2001, 11(1): 17-26.
    [19] 张佳华, 孔昭宸.  STUDY ON VEGETATION AND CLIMATE CHANGES IN BEIJING REGION SINCE LATE PLEISTOCENE . Chinese Geographical Science, 1999, 9(3): 243-249.
    [20] 杨开忠.  BASIC FEATURES AND TRENDS OF THE ECONOMIC BASE OF BEIJING . Chinese Geographical Science, 1999, 9(1): 12-19.
  • 加载中
计量
  • 文章访问数:  339
  • HTML全文浏览量:  0
  • PDF下载量:  1188
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-26
  • 修回日期:  2014-11-21
  • 刊出日期:  2015-06-27

Industrial Spatial Agglomeration Using Distance-based Approach in Beijing, China

doi: 10.1007/s11769-015-0770-1
    基金项目:  Under the auspices of State Key Program of National Natural Science of China (No. 41230632), National Natural Science Foundation of China (No. 41301123, 41201169)
    通讯作者: YU Jianhui. E-mail: Yujh@igssnrr.ac.cn

摘要: To study the difference of industrial location among different industries, this article is to test the spatial agglomeration across industries and firm sizes at the city level. Our research bases on a unique plant-level data set of Beijing and employs a distance-based approach, which considers space as continuous. Unlike previous studies, we set two sets of references for service and manufacturing industries respectively to adapt to the investigation in the intra-urban area. Comparing among eight types of industries and different firm sizes, we find that: 1) producer service, high-tech industries and labor-intensive manufacturing industries are more likely to cluster, whereas personal service and capital-intensive industries tend to be randomly dispersed in Beijing; 2) the spillover of the co-location of firms is more important to knowledge-intensive industries and has more significant impact on their allocation than business-oriented services in the intra-urban area; 3) the spatial agglomeration of service industries are driven by larger establishments, whereas manufacturing industries are mixed.

English Abstract

LI Jiaming, ZHANG Wenzhong, YU Jianhui, CHEN Hongxia. Industrial Spatial Agglomeration Using Distance-based Approach in Beijing, China[J]. 中国地理科学, 2015, 25(6): 698-712. doi: 10.1007/s11769-015-0770-1
引用本文: LI Jiaming, ZHANG Wenzhong, YU Jianhui, CHEN Hongxia. Industrial Spatial Agglomeration Using Distance-based Approach in Beijing, China[J]. 中国地理科学, 2015, 25(6): 698-712. doi: 10.1007/s11769-015-0770-1
LI Jiaming, ZHANG Wenzhong, YU Jianhui, CHEN Hongxia. Industrial Spatial Agglomeration Using Distance-based Approach in Beijing, China[J]. Chinese Geographical Science, 2015, 25(6): 698-712. doi: 10.1007/s11769-015-0770-1
Citation: LI Jiaming, ZHANG Wenzhong, YU Jianhui, CHEN Hongxia. Industrial Spatial Agglomeration Using Distance-based Approach in Beijing, China[J]. Chinese Geographical Science, 2015, 25(6): 698-712. doi: 10.1007/s11769-015-0770-1
参考文献 (49)

目录

    /

    返回文章
    返回