留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulating Evolution of a Loess Gully Head with Cellular Automata

LIU Xiaojing TANG Guo'an YANG Jianyi SHEN Zhou PAN Ting

LIU Xiaojing, TANG Guo'an, YANG Jianyi, SHEN Zhou, PAN Ting. Simulating Evolution of a Loess Gully Head with Cellular Automata[J]. 中国地理科学, 2015, 25(6): 765-774. doi: 10.1007/s11769-014-0716-z
引用本文: LIU Xiaojing, TANG Guo'an, YANG Jianyi, SHEN Zhou, PAN Ting. Simulating Evolution of a Loess Gully Head with Cellular Automata[J]. 中国地理科学, 2015, 25(6): 765-774. doi: 10.1007/s11769-014-0716-z
LIU Xiaojing, TANG Guo'an, YANG Jianyi, SHEN Zhou, PAN Ting. Simulating Evolution of a Loess Gully Head with Cellular Automata[J]. Chinese Geographical Science, 2015, 25(6): 765-774. doi: 10.1007/s11769-014-0716-z
Citation: LIU Xiaojing, TANG Guo'an, YANG Jianyi, SHEN Zhou, PAN Ting. Simulating Evolution of a Loess Gully Head with Cellular Automata[J]. Chinese Geographical Science, 2015, 25(6): 765-774. doi: 10.1007/s11769-014-0716-z

Simulating Evolution of a Loess Gully Head with Cellular Automata

doi: 10.1007/s11769-014-0716-z
基金项目: Under the auspices of National Natural Science Foundation of China (No. 41171320, 41101349), National Innovation and Entrepreneurship Program (No. 201210319025)
详细信息
    通讯作者:

    TANG Guo'an. E-mail: tangguoan@njnu.edu.cn

Simulating Evolution of a Loess Gully Head with Cellular Automata

Funds: Under the auspices of National Natural Science Foundation of China (No. 41171320, 41101349), National Innovation and Entrepreneurship Program (No. 201210319025)
More Information
    Corresponding author: TANG Guo'an. E-mail: tangguoan@njnu.edu.cn
  • 摘要: This paper presents a new method for simulating the evolution of a gully head in a loess catchment with cellular automata (CA) based on the Fisher discriminant. The experimental site is an indoor loess catchment that was constructed in a fixed-intensity rainfall erosion test facility. Nine high-resolution digital elevation model (DEM) data sets were gathered by close range photogrammetry during different phases of the experiment. To simulate the evolution of the catchment gully head, we assumed the following. First, the 5th and 6th DEM data sets were used as a data source for acquiring the location of the catchment gully head and for obtaining spatial variables with GIS spatial analysis tools. Second, the Fisher discriminant was used to calculate the weight of the spatial variables to determine the transition probabilities. Third, CA model was structured to simulate the evolution of the gully head by iterative looping. The status of the cell in the CA models was dynamically updated at the end of each loop to obtain realistic results. Finally, the nearest neighbor, G-function, K-function, Moran's I and fractal indexes were used to evaluate the model results. Overall, the CA model can be used to simulate the evolution of a loess gully head. The experiment demonstrated the advantages of the CA model which can simulate the dynamic evolution of gully head evolution in a catchment.
  • [1] Batty M, Xie Y, Sun Z, 1999. Modeling urban dynamics through GIS-based cellular automata. Computers, Environment and Urban Systems, 23(3): 205-233. doi: 10.1016/S0198-9715(99) 00015-0
    [2] Cao M, Tang G A, Zhang Fang et al., 2013. A cellular automata model for simulating the evolution of positive-negative terrains in a small loess watershed. International Journal of Geographical Information Science, 27(7): 1349-1363. doi: 10. 1080/13658816.2012.756882
    [3] Chase C G, 1992. Fluvial landsculpting and the fractal dimension of topography. Geomorphology, 5(1): 39-57.
    [4] Clark P J, Evans F C, 1954. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology, 35(4): 445-453.
    [5] Clarke K C, Brass J A, Riggan P J, 1994. A cellular automata model of wildfire propagation and extinction. Photogrammetric Engineering & Remote Sensing, 60(11): 1355-1367.
    [6] Clarke K C, Gaydos L J, 1998. Loose-coupling a cellular automata model and GIS: Long-term urban growth prediction for San Francisco and Washington/Baltimore. International Journal of Geographical Information Science, 12(7): 699-714.
    [7] Clarke K C, Hoppen S, Gaydos L J, 1997. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning B: Planning and Design, 24(2): 247-261.
    [8] Couclelis H, 1985. Cellular worlds: A framework for modeling micro-macro dynamics. Environment and Planning, A(17): 585-596.
    [9] Couclelis H, 1988. Of mice and men: What rodent populations can teach us about complex spatial dynamics. Environment and Planning A, 20(1): 99-109.
    [10] Couclelis H, 1989. Macrostructure and microbehavior in a metropolitan area. Environment and planning B, 16(2): 141-154.
    [11] Couclelis H, 1997. From cellular automata to urban models: New principles for model development and implementation. Environment and Planning B: Planning and Design, 24(2): 165-174.
    [12] Cui Lingzhou, 2002. The Coupling Relationship Between the Sediment Yield of Rainfall Erosion and the Topographic Feature of Small Watershed on Loess Plateau. Yangling: Institute of Soil and Water Conservation, Chinese Academy of Sciences.
    [13] Densmore A L, Ellis M A, Anderson R S, 1998. Landsliding and the evolution of normal fault-bounded mountains. Journal of Geophysical Research: Solid Earth, 103(B7): 15203-15219. doi:  10.1029/98JB00510
    [14] Gatrell A C, Bailey T C, Diggle P J et al., 1996. Spatial point pattern analysis and its application in geographical epidemiology. Transactions of the Institute of British Geographers, 21(1): 256-274.
    [15] Gregorio S D, Serra R, 1999. An empirical method for modelling and simulating some complex macroscopic phenomena by cellular automata. Future Generation Computer Systems, 16(2): 259-271. doi:  10.1016/S0167-739X(99)00051-5
    [16] Haase P, 1995. Spatial pattern analysis in ecology based on Ripley's K-function: Introduction and methods of edge correction. Journal of Vegetation Science, 6(4): 575-582. doi: 10.2307/ 3236356
    [17] Hargrove W W, Gardner R H, Turner M G et al., 2000. Simulating fire patterns in heterogeneous landscapes. Ecological modelling, 135(2): 243-263.
    [18] Howard A D, 1994. A detachment-limited model of drainage basin evolution. Water Resources Research, 30(7): 2261-2285. doi:  10.1029/94WR00757
    [19] Ke C Q, 2006. Modeling soil erosion in Chinese Loess Plateau using Cellular Automata. Geoscience and Remote Sensing Symposium, 2006. IEEE International Conference on, 1063-1066. doi:  10.1109/IGARSS.2006.274
    [20] Li X, Liu X P, 2006. An extended cellular automaton using case-based reasoning for simulating urban development in a large complex region. International Journal of Geographical Information Science, 20: 1109-1136. doi: 10.1080/13658810 600816870
    [21] Li X, Yeh A G O, 2000. Modelling sustainable urban development by the integration of constrained cellular automata and GIS. International Journal of Geographical Information Science, 14(2): 131-152. doi:  10.1080/136588100240886
    [22] Li X, Yeh A G O, 2002. Neural-network-based cellular automata for simulating multiple land use changes using GIS. International Journal of Geographical Information Science, 16(4): 323-343. doi:  10.1080/13658810210137004
    [23] Liu X P, Li X, Liu L et al., 2008a. A bottom-up approach to discover transition rules of cellular automata using ant intelligence. International Journal of Geographical Information Science, 22(11-12): 1247-1269. doi:  10.1080/13658810701757510
    [24] Liu X P, Li X, Shi X et al., 2008b. Simulating complex urban development using kernel-based non-linear cellular automata. Ecological Modelling, 211(1): 169-181. doi: 10.1016/j.ecol model.2007.08.024
    [25] Liu X P, Li X, Shi X et al., 2010. Simulating land use dynamics under planning policies by integrating artificial immune systems with cellular automata. International Journal of Geographical Information Science, 24(5): 783-802. doi: 10.1080/ 13658810903270551
    [26] Liu X P, Ma L, Li X et al., 2014. Simulating urban growth by integrating landscape expansion index (LEI) and cellular automata. International Journal of Geographical Information Science, 28(1): 148-163. doi:  10.1080/13658816.2013.831097
    [27] Liu Xiaoping, Li Xia, 2007. Fisher discriminant and automatically getting transition rule of CA. Acta Geodaetica et Cartographica Sinica, 36(1): 112-118. (in Chinese)
    [28] Mandelbrot B B, 1983. The Fractal Geometry of Nature/Revised and Enlarged Edition. New York: W.H. Freeman and Company, 495.
    [29] Moran P A P, 1950. Notes on continuous stochastic phenomena. Biometrika, 37(1-2): 17-23.
    [30] Murray A B, Paola C, 1994. A cellular model of braided rivers. Nature, 371(6492): 54-57. doi:  10.1038/371054a0
    [31] Neil G, Curtis K, 1997. Shape recognition using fractal geometry. Pattern Recognition, 30(12): 1957-1969.
    [32] Ripley B D, 1977. Modelling spatial patterns. Journal of the Royal Statistical Society. Series B (Methodological), 39(2): 172-212.
    [33] Shi H, Shao M, 2000. Soil and water loss from the Loess Plateau in China. Journal of Arid Environments, 45(1): 9-20. doi:  10.1006/jare.1999.0618
    [34] Smith R, 1991. The application of cellular automata to the erosion of landforms. Earth Surface Processes and Landforms, 16(3): 273-281. doi:  10.1002/esp.3290160307
    [35] Tian Y, Wu L, Gao Y et al., 2008. DEM-based modeling and simulation of modern landform evolution of loess. In: Earth and Environmental Science, Advances in Digital Terrain Analysis, Lecture Notes in Geoinformation and Cartography (Section 3). Berlin: Springer, 257-276.
    [36] Tucker G E, Slingerland R L, 1994. Erosional dynamics, flexural isostasy, and long-lived escarpments: A numerical modeling study. Journal of Geophysical Research: Solid Earth (1978-2012), 99(B6): 12229-12243.
    [37] Unwin D J, 1996. GE, spatial analysis and spatial statistics. Progress in Human Geography, 20(4): 540-551.
    [38] Wang Y, Zhang X, 2001. A dynamic modeling approach to simulating socioeconomic effects on landscape changes. Ecological Modelling, 140(1): 141-162. doi: 10.1016/S0304-3800 (01)00262-9
    [39] White R, Engelen G, 1993. Cellular automata and fractal urban form: A cellular modeling approach to the evolution of urban land-use patterns. Environment and Planning A, 25(8): 1175-1199.
    [40] Willgoose G, 2005. Mathematical modeling of whole landscape evolution. Annual Review of Earth and Planetary Sciences, 33(1): 443-459. doi:  10.1146/annurev.earth.33.092203.122610
    [41] Willgoose G, Bras R L, Rodriguez-Iturbe I, 1991. Results from a new model of river basin evolution. Earth Surface Processes and Landforms, 16(3): 237-254. doi:  10.1002/esp.3290160305
    [42] Wu F, 2002. Calibration of stochastic cellular automata: The application to rural-urban land conversions. International Journal of Geographical Information Science, 16(8): 795-818. doi:  10.1080/13658810210157769
    [43] Wu F, Webster C J, 1998. Simulation of land development through the integration of cellular automata and multicriteria evaluation. Environment and Planning B: Planning and Design, 25(1): 103-126.
    [44] Yang J Y, Tang G O, Cao M et al., 2013. An intelligent method to discover transition rules for cellular automata using bee colony optimisation. International Journal of Geographical Information Science, 27(10): 1849-1864. doi: 10.1080/13658 816.2013.823498
    [45] Zucca C, Canu A, Della Peruta R, 2006. Effects of land use and landscape on spatial distribution and morphological features of gullies in an agropastoral area in Sardinia (Italy). Catena, 68(2): 87-95. doi:  10.1016/j.catena.2006.03.015
  • [1] CHEN Weiliang, LI Zongshan, JIAO Lei, WANG Cong, GAO Guangyao, FU Bojie.  Response of Soil Moisture to Rainfall Event in Black Locust Plantations at Different Stages of Restoration in Hilly-gully Area of the Loess Plateau, China . Chinese Geographical Science, 2020, 30(3): 427-445. doi: 10.1007/s11769-020-1121-4
    [2] DING Chengzhi, JIANG Xiaoming, WANG Lieen, FAN Hui, CHEN Liqiang, HU Jinming, WANG Hailong, CHEN Yifeng, SHI Xiaotao, CHEN Hao, PAN Bohui, DING Liuyong, ZHANG Chao, HE Daming.  Fish Assemblage Responses to a Low-head Dam Removal in the Lancang River . Chinese Geographical Science, 2019, 20(1): 26-36. doi: 10.1007/s11769-018-0995-x
    [3] FENG Fang, FENG Qi, LIU Xiande, WU Jinkui, LIU Wei.  Stable Isotopes in Precipitation and Atmospheric Moisture of Pailugou Catchment in Northwestern China's Qilian Mountains . Chinese Geographical Science, 2017, 27(1): 97-109. doi: 10.1007/s11769-017-0849-y
    [4] YANG Jiuchun, ZHANG Shuwen, CHANG Liping, LI Fei, LI Tianqi, GAO Yan.  Gully Erosion Regionalization of Black Soil Area in Northeastern China . Chinese Geographical Science, 2017, 27(1): 78-87. doi: 10.1007/s11769-017-0848-z
    [5] LIU Kai, DING Hu, TANG Guoan, ZHU A-Xing, YANG Xin, JIANG Sheng, CAO Jianjun.  An Object-based Approach for Two-level Gully Feature Mapping Using High-resolution DEM and Imagery: A Case Study on Hilly Loess Plateau Region, China . Chinese Geographical Science, 2017, 27(3): 415-430. doi: 10.1007/s11769-017-0874-x
    [6] QIAN Yeqing, XIONG Liyang, LI Jilong, TANG Guoan.  Landform Planation Index Extracted from DEMs: A Case Study in Ordos Platform of China . Chinese Geographical Science, 2016, 26(3): 314-324. doi: 10.1007/s11769-016-0811-4
    [7] LIU Yansui, GUO Yanjun, LI Yurui, LI Yuheng.  GIS-based Effect Assessment of Soil Erosion Before and After Gully Land Consolidation: A Case Study of Wangjiagou Project Region, Loess Plateau . Chinese Geographical Science, 2015, 25(2): 137-146. doi: 10.1007/s11769-015-0742-5
    [8] LU Yi, CAO Min, ZHANG Lei.  A Vector-based Cellular Automata Model for Simulating Urban Land Use Change . Chinese Geographical Science, 2015, 25(1): 74-84. doi: 10.1007/s11769-014-0719-9
    [9] Naci YASTIKLI, Umut G SEFERCIK, Fatih ESIRTGEN.  Quantitative Assessment of Remotely Sensed Global Surface Models Using Various Land Classes Produced from Landsat Data in Istanbul . Chinese Geographical Science, 2014, 0(3): 307-316. doi: 10.1007/s11769-014-0681-6
    [10] ZHU Hongchun, TANG Guoan, QIAN Kejian, LIU Haiying.  Extraction and Analysis of Gully Head of Loess Plateau in China Based on Digital Elevation Model . Chinese Geographical Science, 2014, 0(3): 328-338. doi: 10.1007/s11769-014-0663-8
    [11] JIANG Ming, LU Xianguo, WANG Hongqing, et al.  Transfer and Transformation of Soil Iron and Implications for Hydrogeomorpholocial Changes in Naoli River Catchment, Sanjiang Plain, Northeast China . Chinese Geographical Science, 2011, 21(2): 149-158.
    [12] YANG Yuhong, YAN Baixing, SHEN Wanbin.  Assessment of Point and Nonpoint Sources Pollution in Songhua River Basin, Northeast China by Using Revised Water Quality Model . Chinese Geographical Science, 2010, 20(1): 30-36. doi: 10.1007/s11769-010-0030-3
    [13] LI Ruzhong.  Estimation of Non-point Source Pollution Loads Under Uncertain Information . Chinese Geographical Science, 2008, 18(4): 348-355. doi: 10.1007/s11769-008-0348-2
    [14] LIU Xianzhao, LI Jiazhu.  Application of SCS Model in Estimation of Runoff from Small Watershed in Loess Plateau of China . Chinese Geographical Science, 2008, 18(3): 235-241. doi: 10.1007/s11769-008-0235-x
    [15] LIU Xi-lin.  GULLY-SPECIFIC DEBRIS FLOW HAZARD ASSESSMENT IN CHINA . Chinese Geographical Science, 2003, 13(2): 112-118.
    [16] LUO Ping, DU Qing-yun, HE Su-fang, LI Sen, MICHAEL Gallagher, NIU Hui-en.  A STUDY ON CELLULAR AUTOMATA BASED ON RELATIONAL DATABASES AND SPATIO-TEMPORAL SIMULATIONS OF CULTURE DIFFUSION . Chinese Geographical Science, 2002, 12(4): 359-365.
    [17] XU Peng-zhu, JIANG Tong, KING Lorenz.  HYDROLOGIC/HYDRAULIC MODELLING AND FLOOD RISK ANALYSIS FOR THE WEST TIAOXI CATCHMENT, TAIHU LAKE REGION, CHINA . Chinese Geographical Science, 2000, 10(4): 309-318.
    [18] Jim Pooler.  COMPETITION AMONG DESTINATIONS IN SPATIAL INTERACTION MODELS: A NEW POINT OF VIEW . Chinese Geographical Science, 1998, 8(3): 212-224.
    [19] 文启忠, 郑洪汉, 韩家懋, 王俊达, 林绍孟, 乔玉楼, 魏兰英, 刁桂仪.  LOESS IN THE LONGXI BASIN OF GANSU PROVINCE . Chinese Geographical Science, 1991, 1(4): 370-380.
    [20] 邓伟.  INVESTIGATION ON FUNDAMENTAL CHARACTERISTICS OF HYDROCHEMISTRY IN HEAD AREA OF THE CANGJIANG RIVER . Chinese Geographical Science, 1991, 1(3): 272-283.
  • 加载中
计量
  • 文章访问数:  226
  • HTML全文浏览量:  1
  • PDF下载量:  929
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-09
  • 修回日期:  2013-07-17
  • 刊出日期:  2015-06-27

Simulating Evolution of a Loess Gully Head with Cellular Automata

doi: 10.1007/s11769-014-0716-z
    基金项目:  Under the auspices of National Natural Science Foundation of China (No. 41171320, 41101349), National Innovation and Entrepreneurship Program (No. 201210319025)
    通讯作者: TANG Guo'an. E-mail: tangguoan@njnu.edu.cn

摘要: This paper presents a new method for simulating the evolution of a gully head in a loess catchment with cellular automata (CA) based on the Fisher discriminant. The experimental site is an indoor loess catchment that was constructed in a fixed-intensity rainfall erosion test facility. Nine high-resolution digital elevation model (DEM) data sets were gathered by close range photogrammetry during different phases of the experiment. To simulate the evolution of the catchment gully head, we assumed the following. First, the 5th and 6th DEM data sets were used as a data source for acquiring the location of the catchment gully head and for obtaining spatial variables with GIS spatial analysis tools. Second, the Fisher discriminant was used to calculate the weight of the spatial variables to determine the transition probabilities. Third, CA model was structured to simulate the evolution of the gully head by iterative looping. The status of the cell in the CA models was dynamically updated at the end of each loop to obtain realistic results. Finally, the nearest neighbor, G-function, K-function, Moran's I and fractal indexes were used to evaluate the model results. Overall, the CA model can be used to simulate the evolution of a loess gully head. The experiment demonstrated the advantages of the CA model which can simulate the dynamic evolution of gully head evolution in a catchment.

English Abstract

LIU Xiaojing, TANG Guo'an, YANG Jianyi, SHEN Zhou, PAN Ting. Simulating Evolution of a Loess Gully Head with Cellular Automata[J]. 中国地理科学, 2015, 25(6): 765-774. doi: 10.1007/s11769-014-0716-z
引用本文: LIU Xiaojing, TANG Guo'an, YANG Jianyi, SHEN Zhou, PAN Ting. Simulating Evolution of a Loess Gully Head with Cellular Automata[J]. 中国地理科学, 2015, 25(6): 765-774. doi: 10.1007/s11769-014-0716-z
LIU Xiaojing, TANG Guo'an, YANG Jianyi, SHEN Zhou, PAN Ting. Simulating Evolution of a Loess Gully Head with Cellular Automata[J]. Chinese Geographical Science, 2015, 25(6): 765-774. doi: 10.1007/s11769-014-0716-z
Citation: LIU Xiaojing, TANG Guo'an, YANG Jianyi, SHEN Zhou, PAN Ting. Simulating Evolution of a Loess Gully Head with Cellular Automata[J]. Chinese Geographical Science, 2015, 25(6): 765-774. doi: 10.1007/s11769-014-0716-z
参考文献 (45)

目录

    /

    返回文章
    返回