留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Comparison on Soil Carbon Stocks Between Urban and Suburban Topsoil in Beijing, China

LUO Shanghua MAO Qizheng MA Keming

LUO Shanghua, MAO Qizheng, MA Keming. Comparison on Soil Carbon Stocks Between Urban and Suburban Topsoil in Beijing, China[J]. 中国地理科学, 2014, (5): 551-561. doi: 10.1007/s11769-014-0709-y
引用本文: LUO Shanghua, MAO Qizheng, MA Keming. Comparison on Soil Carbon Stocks Between Urban and Suburban Topsoil in Beijing, China[J]. 中国地理科学, 2014, (5): 551-561. doi: 10.1007/s11769-014-0709-y
LUO Shanghua, MAO Qizheng, MA Keming. Comparison on Soil Carbon Stocks Between Urban and Suburban Topsoil in Beijing, China[J]. Chinese Geographical Science, 2014, (5): 551-561. doi: 10.1007/s11769-014-0709-y
Citation: LUO Shanghua, MAO Qizheng, MA Keming. Comparison on Soil Carbon Stocks Between Urban and Suburban Topsoil in Beijing, China[J]. Chinese Geographical Science, 2014, (5): 551-561. doi: 10.1007/s11769-014-0709-y

Comparison on Soil Carbon Stocks Between Urban and Suburban Topsoil in Beijing, China

doi: 10.1007/s11769-014-0709-y
基金项目: Under the auspices of National Key Technology Research and Development Program (No. 2007BAC28B01), Innovation Project of State Key Laboratory of Urban and Regional Ecology of China
详细信息
    通讯作者:

    MA Keming

Comparison on Soil Carbon Stocks Between Urban and Suburban Topsoil in Beijing, China

Funds: Under the auspices of National Key Technology Research and Development Program (No. 2007BAC28B01), Innovation Project of State Key Laboratory of Urban and Regional Ecology of China
More Information
    Corresponding author: MA Keming
  • 摘要: The urban population and urbanized land in China have both increased markedly since the 1980s. Urban and suburban developments have grown at unprecedented rates with unknown consequences for ecosystem functions. In particular, the effect of rapid urbanization on the storage of soil carbon has not been studied extensively. In this study, we compared the soil carbon stocks of different land use types in Beijing Municipality. We collected 490 top-soil samples (top 20 cm) from urban and suburban sites within the Sixth Ring Road of Beijing, which cover approximately 2400 km2, and the densities of soil organic carbon (SOC), soil inorganic carbon (SIC), and total carbon (TC) were analyzed to determine the spatial distribution of urban and suburban soil carbon characteristics across seven land use types. The results revealed significant differences in soil carbon densities among land use types. Additionally, urban soil had significantly higher SOC and SIC densities than suburban soil did, and suburban shelterbelts and productive plantations had lower SIC densities than the other land use types. The comparison of coefficients of variance (CVs) showed that carbon content of urban topsoil had a lower variability than that of suburban topsoil. Further findings revealed that soil carbon storage increased with built-up age. Urban soil built up for more than 20 years had higher densities of SOC, SIC and TC than both urban soil with less than 10 years and suburban soil. Correlation analyses indicated the existence of a significantly negative correlation between the SOC, SIC, and TC densities of urban soil and the distance to the urban core, and the distance variable alone explained 23.3% of the variation of SIC density and 13.8% of the variation of TC density. These results indicate that SOC and SIC accumulate in the urban topsoil under green space as a result of the conversion of agricultural land to urban land due to the urbanization in Beijing.
  • [1] Angel S, Parent J, Civco D L et al., 2011. The dimensions of global urban expansion: Estimates and projections for all countries, 2000-2050. Progress in Planning, 75(2): 53-107. doi:  10.1016/j.progress.2011.04.001
    [2] Chen J, 2007. Rapid urbanization in China: A real challenge to soil protection and food security. Catena, 69(1): 1-15. doi:  10.1016/j.catena.2006.04.019
    [3] Churkina G, Brown D G, Keoleian G, 2010. Carbon stored in human settlements: The conterminous United States. Global Change Biology, 16(1): 135-143. doi: 10.1111/j.1365-2486. 2009.02002.x
    [4] Compton J E, Boone R D, 2000. Long-term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology, 81(8): 2314-2330. doi: 10.1890/0012-9658(2000)081 [2314:Ltioao]2.0.Co;2
    [5] Duan Yingqiu, Wei Zhongyi, Han Chunlan et al., 2008. Contents of organic carbon urban soil in different land use type areas, Northeast China. Journal of Shenyang Agricultural University, 39(3): 324-326. (in Chinese)
    [6] Edmondson J L, Davies Z G, McHugh N et al., 2012. Organic carbon hidden in urban ecosystems. Scientific Reports, 2: 963. doi:  10.1038/srep00963
    [7] Golubiewski N E, 2006. Urbanization increases grassland carbon pools: Effects of landscaping in Colorado's front range. Ecological Applications, 16(2): 555-571. doi: 10.1890/1051-0761 (2006)016[0555:UIGCPE]2.0.CO;2
    [8] Grimm N B, Faeth S H, Golubiewski N E et al., 2008. Global change and the ecology of cities. Science, 319(5864): 756-760. doi:  10.1126/science.1150195
    [9] Hao Ruijun, Fang Hailan, Shen Lieying, 2011. Distribution characteristics of soil organic carbon and total nitrogen in greenbelt soil in Shanghai center city. Journal of Nanjing Forestry University (Natural Science Edition), 35(6): 49-52. (in Chinese)
    [10] Houghton R A, 1995. Land-use change and the carbon cycle. Global Change Biology, 1(4): 275-287. doi:  10.1111/j.1365-2486.1995.tb00026.x
    [11] Hu K L, Li H, Li B G et al., 2007. Spatial and temporal patterns of soil organic matter in the urban-rural transition zone of Beijing. Geoderma, 141(3-4): 302-310. doi: 10.1016/j.geoderma. 2007.06.010
    [12] Hutyra L R, Yoon B, Alberti M, 2011. Terrestrial carbon stocks across a gradient of urbanization: A study of the Seattle, WA region. Global Change Biology, 17(2): 783-797. doi: 10.1111/ j.1365-2486.2010.02238.x
    [13] Kaye J P, Groffman P M, Grimm N B et al., 2006. A distinct urban biogeochemistry? Trends in Ecology & Evolution, 21(4): 192-199. doi:  10.1016/j.tree.2005.12.006
    [14] Kaye J P, Majumdar A, Gries C et al., 2008. Hierarchical Bayesian scaling of soil properties across urban, agricultural, and desert ecosystems. Ecological Applications, 18(1): 132-145. doi:  10.1890/06-1952.1
    [15] Kaye J P, McCulley R L, Burke I C, 2005. Carbon fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native and agricultural ecosystems. Global Change Biology, 11(4): 575-587. doi:  10.1111/j1365-2486.2005.00921.x
    [16] Knops J M H, Tilman D, 2000. Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment. Ecology, 81(1): 88-98. doi: 10.1890/0012-9658(2000) 081[0088:DOSNAC]2.0.CO;2
    [17] Koerner A B, Klopatek M J, 2010. Carbon fluxes and nitrogen availability along an urban-rural gradient in a desert landscape. Urban Ecosystems, (13): 1-21. doi:  10.1007/s11252-009-0105-z
    [18] Kong X, Dao T H, Qin J et al., 2009. Effects of soil texture and land use interactions on organic carbon in soils in North China cities' urban fringe. Geoderma, 154(1): 86-92. doi: 10.1016/ j.geoderma.2009.09.016
    [19] Lal R, 2004. Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677): 1623-1627. doi:  10.1126/science.1097396
    [20] Lehmann A, Stahr K, 2007. Nature and significance of anthropogenic urban soils. Journal of Soils and Sediments, 7(4): 247-260. doi:  10.1065/jss2007.06.235
    [21] Liu J, Tian H, Liu M et al., 2005. China's changing landscape during the 1990s: Large-scale land transformations estimated with satellite data. Geophysical Research Letters, 32(2): L02405. doi:  10.1029/2004gl021649
    [22] Liu Yan, Wang Cheng, Peng Zhenhua et al., 2010. Soil enzyme activity and its relationship with soil phosico-chemical properties in green areas of Chongwen District of Beijing. Journal of Northeast Forestry University, 38(4): 66-70. (in Chinese)
    [23] Liu Zhaoyun, Zhang Mingkui, 2010. Effects of green space age on organic carbon accumulated in urban soils. Chinese Journal of Ecology, 29(1): 142-145. (in Chinese)
    [24] Lorenz K, Lal R, 2009. Biogeochemical C and N cycles in urban soils. Environment International, 35(1): 1-8. doi: 10.1016/ j.envint.2008.05.006
    [25] Lorenz K, Preston C M, Kandeler E, 2006. Soil organic matter in urban soils: Estimation of elemental carbon by thermal oxidation and characterization of organic matter by solid-state C-13 nuclear magnetic resonance (NMR) spectroscopy. Geoderma, 130(3-4): 312-323. doi:  10.1016/j.geoderma.2005.02.004
    [26] Mu Fengyun, Zhang Zengxiang, Chi Yaobin et al., 2007. Dynamic monitoring of built-up area in Beijing during 1973-2005 based on multi original remote sensed images. Journal of Remote Sensing, 11(2): 257-268. (in Chinese)
    [27] Nehls T, Rokia S, Mekiffer B et al., 2012. Contribution of bricks to urban soil properties. Journal of Soils and Sediments, 13(3): 575-584. doi:  10.1007/s11368-012-0559-0
    [28] Nowak D J, Crane D E, 2002. Carbon storage and sequestration by urban trees in the USA. Environmental Pollution, 116(3): 381-389. doi:  10.1016/S0269-7491(01)00214-7
    [29] Pataki D E, Alig R J, Fung A S et al., 2006. Urban ecosystems and the North American carbon cycle. Global Change Biology, 12(11): 2092-2102. doi:  10.1111/j.1365-2486.2006.01242.x
    [30] Pickett S T A, Cadenasso M L, Grove J M et al., 2011. Urban ecological systems: Scientific foundations and a decade of progress. Journal of Environmental Management, 92(3): 331-362. doi:  10.1016/j.jenvman.2010.08.022
    [31] Pickett S, Cadenasso M, 2009. Altered resources, disturbance, and heterogeneity: A framework for comparing urban and non-urban soils. Urban Ecosystems, 12(1): 23-44. doi:  10.1007/s11252-008-0047-x
    [32] Post W M, Kwon K C, 2000. Soil carbon sequestration and land-use change: Processes and potential. Global Change Biology, 6(3): 317-327. doi:  10.1046/j.1365-2486.2000.00308.x
    [33] Pouyat R V, Szlavecz K, Yesilonis I D et al., 2010. Chemical, physical, and biological characteristics of urban soils. Urban Ecosystem Ecology. Agronmy. Monograph, 55: 119-152. doi:  10.2134/agronmonogr55.c7
    [34] Pouyat R V, Yesilonis I D, Nowak D J, 2006. Carbon storage by urban soils in the United States. Journal of Environmental Quality, 35(4): 1566-1575. doi:  10.2134/Jeq2005.0215
    [35] Pouyat R V, Yesilonis I D, Russell-Anelli J et al., 2007. Soil chemical and physical properties that differentiate urban land-use and cover types. Soil Science Society of America Journal, 71(3): 1010-1019. doi:  10.2136/sssaj2006.0164
    [36] Pouyat R, Groffman P, Yesilonis I et al., 2002. Soil carbon pools and fluxes in urban ecosystems. Environmental Pollution, 116 (Supp. 1): S107-S118. doi: 10.1016/S0269-7491(01) 00263-9
    [37] Pouyat R, Yesilonis I, Golubiewski N, 2009. A comparison of soil organic carbon stocks between residential turf grass and native soil. Urban Ecosystems, 12(1): 45-62. doi:  10.1007/s11252-008-0059-6
    [38] Qian Y L, Follett R F, 2002. Assessing soil carbon sequestration in turfgrass systems using long-term soil testing data. Agronomy Journal, 94(4): 930-935. doi:  10.2134/agronj2002.9300
    [39] Raciti S M, Groffman P M, Jenkins J C et al., 2011. Accumulation of carbon and nitrogen in residential soils with different land-use histories. Ecosystems, 14(2): 287-297. doi: 10.1007/s 10021-010-9409-3
    [40] Schneider A, Friedl M A, Potere D, 2010. Mapping global urban areas using MODIS 500-m data: New methods and datasets based on 'urban ecoregions'. Remote Sensing of Environment, 114(8): 1733-1746. doi:  10.1016/j.rse.2010.03.003
    [41] Seto K C, Fragkias M, Güneralp B et al., 2011. A meta-analysis of global urban land expansion. PLOS ONE, 6(8): e23777. doi:  10.1371/journal.pone.0023777
    [42] Seto K C, Güneralp B, Hutyra L R, 2012. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences, 109(40): 16083-16088. doi:  10.1073/pnas.1211658109
    [43] Seto K C, Shepherd J M, 2009. Global urban land-use trends and climate impacts. Current Opinion in Environmental Sustainability, 1(1): 89-95. doi:  10.1016/j.cosust.2009.07.012
    [44] Sun Y L, Ma J H, Li C, 2010. Content and densities of soil organic carbon in urban soil in different function districts of Kaifeng. Journal of Geographical Sciences, 20(1): 148-156. doi:  10.1007/s11442-010-0148-3
    [45] Svirejeva-Hopkins A, Schellnhuber H J, Pomaz V L, 2004. Urbanized territories as a specific component of the global carbon cycle. Ecological Modelling, 173(2-3): 295-312. doi:  10.1016/j.ecolmodel.2003.09.022
    [46] United Nations, 2012. World Urbanization Prospects: The 2011 Revision. New York: United Nations Department of Economic and Social Affairs.
    [47] Wang Lei,Li Congcong, Ying Qing et al., 2012a. China's urban expansion from 1990 to 2010 determined with satellite remote sensing. Chinese Science Bulletin, 57(16): 1388-1399. (in Chinese)
    [48] Wang M, Markert B, Chen W et al., 2012b. Identification of heavy metal pollutants using multivariate analysis and effects of land uses on their accumulation in urban soils in Beijing, China. Environmental Monitoring and Assessment, 184(10): 1-9. doi:  10.1007/s10661-011-2388-9
    [49] Wang Shuying, Lu Ping, Wang Jianli et al., 2008. Spatial variability and distribution of soil organic matter and total nitrogen at different scales: A case study in Pinggu County, Beijing. Acta Ecologica Sinica, 28(10): 4957-4964. (in Chinese)
    [50] Xia X, Chen X, Liu R et al., 2011. Heavy metals in urban soils with various types of land use in Beijing, China. Journal of Hazardous Materials, 186(2-3): 2043-2050. doi: 10.1016/j. jhazmat.2010.12.104
    [51] Xu N Z, Liu H Y, Wei F et al., 2012. Urban expanding pattern and soil organic, inorganic carbon distribution in Shanghai, China. Environmental Earth Sciences, 66(4): 1233-1238. doi:  10.1007/s12665-011-1334-z
    [52] Yu D, Shi X, Wang H et al., 2007. Regional patterns of soil organic carbon stocks in China. Journal of Environmental Management, 85(3): 680-689. doi: 10.1016/j.jenvman.2006. 09.020
    [53] Zhang Ganlin, Zhu Yongguan, Fu Bojie, 2003. Quality changes of soils in urban and suburban areas and its eco-environmental impacts—A review. Acta Ecologica Sinica, 23(3): 539-546. (in Chinese)
    [54] Zhang Xinyu, Chen Liding, Fu Bojie et al., 2006. Soil organic carbon changes as influenced by different agricultural land use types and management practices: A case study in Yanqing Basin, Beijing. Acta Ecologica Sinica, 26(10): 3198-3204. (in Chinese)
  • [1] Zhi WANG, Lihua XU, Yijun SHI, Qiwei MA, Yaqi WU, Zhangwei LU, Liwei MAO, Enqi PANG, Qi ZHANG.  Impact of Land Use Change on Vegetation Carbon Storage During Rapid Urbanization: A Case Study of Hangzhou, China . Chinese Geographical Science, 2021, 31(2): 209-222. doi: 10.1007/s11769-021-1183-y
    [2] HE Qingsong, TAN Shukui, XIE Peng, LIU Yaolin, LI Jing.  Re-assessing Vegetation Carbon Storage and Emissions from Land Use Change in China Using Surface Area . Chinese Geographical Science, 2019, 20(4): 601-613. doi: 10.1007/s11769-019-1058-7
    [3] GUO Peipei, SU Yuebo, WAN Wuxing, LIU Weiwei, ZHANG Hongxing, SUN Xu, OUYANG Zhiyun, WANG Xiaoke.  Urban Plant Diversity in Relation to Land Use Types in Built-up Areas of Beijing . Chinese Geographical Science, 2018, 28(1): 100-110. doi: 10.1007/s11769-018-0934-x
    [4] XIANG Hengxing, JIA Mingming, WANG Zongming, LI Lin, MAO Dehua, ZHANG Da, CUI Guishan, ZHU Weihong.  Impacts of Land Cover Changes on Ecosystem Carbon Stocks Over the Transboundary Tumen River Basin in Northeast Asia . Chinese Geographical Science, 2018, 28(6): 973-985. doi: 10.1007/s11769-018-1006-y
    [5] Yu Dongsheng, Pan Yue, Zhang Haidong, Wang Xiyang, Ni Yunlong, Zhang Liming, Shi Xue­zheng.  Equality Testing for Soil Grid Unit Resolutions to Polygon Unit Scales with DNDC Modeling of Regional SOC Pools . Chinese Geographical Science, 2017, 27(4): 552-568. doi: 10.1007/s11769-017-0887-5
    [6] WU Qiulan, LIANG Yong, LI Ying, WANG Xizhi, YANG Lei, WANG Xiaotong.  Factors Acquisition and Content Estimation of Farmland Soil Organic Carbon Based upon Internet of Things . Chinese Geographical Science, 2017, 27(3): 431-440. doi: 10.1007/s11769-017-0875-9
    [7] QIN Falyu, SHI Xuezheng, XU Shengxiang, YU Dongsheng, WANG Dandan.  Zonal Differences in Correlation Patterns Between Soil Organic Carbon and Climate Factors at Multi-extent . Chinese Geographical Science, 2016, 26(5): 670-678. doi: 10.1007/s11769-015-0736-3
    [8] NING Jia, LIU Jiyuan, ZHAO Guosong.  Spatio-temporal Characteristics of Disturbance of Land Use Change on Major Ecosystem Function Zones in China . Chinese Geographical Science, 2015, 25(5): 523-536. doi: 10.1007/s11769-015-0776-8
    [9] YANG Zhenshan, LIANG Jinshe, CAI Jianming.  Urban Economic Cluster Template and Its Dynamics of Beijing, China . Chinese Geographical Science, 2014, 0(6): 740-750. doi: 10.1007/s11769-014-0686-1
    [10] FANG Xiangmin, WANG Qingli, ZHOU Wangming, ZHAO Wei, WEI Yawei, NIU Lijun, DAI Limin.  Land Use Effects on Soil Organic Carbon, Microbial Biomass and Microbial Activity in Changbai Mountains of Northeast China . Chinese Geographical Science, 2014, 0(3): 297-306. doi: 10.1007/s11769-014-0670-9
    [11] XIONG Dingpeng, SHI Peili, SUN Yinliang, WU Jianshuang, ZHANG Xianzhou.  Effects of Grazing Exclusion on Plant Productivity and Soil Carbon, Nitrogen Storage in Alpine Meadows in Northern Tibet, China . Chinese Geographical Science, 2014, 0(4): 488-498. doi: 10.1007/s11769-014-0697-y
    [12] ZENG Xinhua, ZHANG Wanjun, LIU Xiuping, CAO Jiansheng, SHEN Huitao, ZHAO Xin, ZHANG Nannan, BAI Yuru, Yi Mei.  Change of Soil Organic Carbon after Cropland Afforestation in ‘Beijing- Tianjin Sandstorm Source Control’ Program Area in China . Chinese Geographical Science, 2014, 0(4): 461-470. doi: 10.1007/s11769-014-0701-6
    [13] LI Taijun, LIU Guobin.  Age-related Changes of Carbon Accumulation and Allocation in Plants and Soil of Black Locust Forest on Loess Plateau in Ansai County, Shaanxi Province of China . Chinese Geographical Science, 2014, 0(4): 414-422. doi: 10.1007/s11769-014-0704-3
    [14] ZHOU Lei, WANG Shaoqiang, Georg KINDERMANN, YU Guirui, HUANG Mei, Robert MICKLER, Florian KRAXNER, SHI Hao, GONG Yazhen.  Carbon Dynamics in Woody Biomass of Forest Ecosystem in China with Forest Management Practices under Future Climate Change and Rising CO2 Concentration . Chinese Geographical Science, 2013, 23(5): 519-536. doi: 10.1007/s11769-013-0622-9
    [15] CAO Guangzhong, LIU Tao, LIU Hui, MIAO Yangbing.  Changing Spatial and Structural Patterns of Non-agricultural Activities in Outward-moving Beijing Urban Fringe . Chinese Geographical Science, 2012, 22(6): 718-729.
    [16] KUANG Wenhui.  Spatio-temporal Patterns of Intra-urban Land Use Change in Beijing, China Between 1984 and 2008 . Chinese Geographical Science, 2012, 22(2): 210-220.
    [17] XIAO Yu, AN Kai, XIE Gaodi, LU Chunxia, ZHANG Biao.  Carbon Sequestration in Forest Vegetation of Beijing at Sublot Level . Chinese Geographical Science, 2011, 21(3): 279-289.
    [18] LIU Dianwei, WANG Zongming, SONG Kaishan, ZHANG Bai, HU Liangjun, HUANG Ni, ZHANG Sumei, LUO Ling, ZHANG Chunhua, JIANG Guangjia.  Land Use/Cover Changes and Environmental Consequences in Songnen Plain, Northeast China . Chinese Geographical Science, 2009, 19(4): 299-305. doi: 10.1007/s11769-009-0299-2
    [19] YAN Jianzhong, ZHANG Yili, ZHANG Liping, WU Yingying.  Livelihood Strategy Change and Land Use Change——Case of Danzam Village in Upper Dadu River Watershed, Tibetan Plateau of China . Chinese Geographical Science, 2009, 19(3): 231-240. doi: 10.1007/s11769-009-0231-9
    [20] CHEN Fu, PENG Bu-zhuo.  THE EFFECT OF LAND USE CHANGES ON SOIL CONDITIONS IN ARID REGION . Chinese Geographical Science, 2000, 10(3): 226-230.
  • 加载中
计量
  • 文章访问数:  272
  • HTML全文浏览量:  0
  • PDF下载量:  1059
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-19
  • 修回日期:  2013-07-15
  • 刊出日期:  2014-07-27

Comparison on Soil Carbon Stocks Between Urban and Suburban Topsoil in Beijing, China

doi: 10.1007/s11769-014-0709-y
    基金项目:  Under the auspices of National Key Technology Research and Development Program (No. 2007BAC28B01), Innovation Project of State Key Laboratory of Urban and Regional Ecology of China
    通讯作者: MA Keming

摘要: The urban population and urbanized land in China have both increased markedly since the 1980s. Urban and suburban developments have grown at unprecedented rates with unknown consequences for ecosystem functions. In particular, the effect of rapid urbanization on the storage of soil carbon has not been studied extensively. In this study, we compared the soil carbon stocks of different land use types in Beijing Municipality. We collected 490 top-soil samples (top 20 cm) from urban and suburban sites within the Sixth Ring Road of Beijing, which cover approximately 2400 km2, and the densities of soil organic carbon (SOC), soil inorganic carbon (SIC), and total carbon (TC) were analyzed to determine the spatial distribution of urban and suburban soil carbon characteristics across seven land use types. The results revealed significant differences in soil carbon densities among land use types. Additionally, urban soil had significantly higher SOC and SIC densities than suburban soil did, and suburban shelterbelts and productive plantations had lower SIC densities than the other land use types. The comparison of coefficients of variance (CVs) showed that carbon content of urban topsoil had a lower variability than that of suburban topsoil. Further findings revealed that soil carbon storage increased with built-up age. Urban soil built up for more than 20 years had higher densities of SOC, SIC and TC than both urban soil with less than 10 years and suburban soil. Correlation analyses indicated the existence of a significantly negative correlation between the SOC, SIC, and TC densities of urban soil and the distance to the urban core, and the distance variable alone explained 23.3% of the variation of SIC density and 13.8% of the variation of TC density. These results indicate that SOC and SIC accumulate in the urban topsoil under green space as a result of the conversion of agricultural land to urban land due to the urbanization in Beijing.

English Abstract

LUO Shanghua, MAO Qizheng, MA Keming. Comparison on Soil Carbon Stocks Between Urban and Suburban Topsoil in Beijing, China[J]. 中国地理科学, 2014, (5): 551-561. doi: 10.1007/s11769-014-0709-y
引用本文: LUO Shanghua, MAO Qizheng, MA Keming. Comparison on Soil Carbon Stocks Between Urban and Suburban Topsoil in Beijing, China[J]. 中国地理科学, 2014, (5): 551-561. doi: 10.1007/s11769-014-0709-y
LUO Shanghua, MAO Qizheng, MA Keming. Comparison on Soil Carbon Stocks Between Urban and Suburban Topsoil in Beijing, China[J]. Chinese Geographical Science, 2014, (5): 551-561. doi: 10.1007/s11769-014-0709-y
Citation: LUO Shanghua, MAO Qizheng, MA Keming. Comparison on Soil Carbon Stocks Between Urban and Suburban Topsoil in Beijing, China[J]. Chinese Geographical Science, 2014, (5): 551-561. doi: 10.1007/s11769-014-0709-y
参考文献 (54)

目录

    /

    返回文章
    返回