留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Urban Metabolism Based on Emergy and Slack Based Model: A Case Study of Beijing, China

SONG Tao CAI Jianming XU Hui DENG Yu NIU Fangqu YANG Zhenshan DU Shanshan

SONG Tao, CAI Jianming, XU Hui, DENG Yu, NIU Fangqu, YANG Zhenshan, DU Shanshan. Urban Metabolism Based on Emergy and Slack Based Model: A Case Study of Beijing, China[J]. 中国地理科学, 2015, 25(1): 113-123. doi: 10.1007/s11769-014-0680-7
引用本文: SONG Tao, CAI Jianming, XU Hui, DENG Yu, NIU Fangqu, YANG Zhenshan, DU Shanshan. Urban Metabolism Based on Emergy and Slack Based Model: A Case Study of Beijing, China[J]. 中国地理科学, 2015, 25(1): 113-123. doi: 10.1007/s11769-014-0680-7
SONG Tao, CAI Jianming, XU Hui, DENG Yu, NIU Fangqu, YANG Zhenshan, DU Shanshan. Urban Metabolism Based on Emergy and Slack Based Model: A Case Study of Beijing, China[J]. Chinese Geographical Science, 2015, 25(1): 113-123. doi: 10.1007/s11769-014-0680-7
Citation: SONG Tao, CAI Jianming, XU Hui, DENG Yu, NIU Fangqu, YANG Zhenshan, DU Shanshan. Urban Metabolism Based on Emergy and Slack Based Model: A Case Study of Beijing, China[J]. Chinese Geographical Science, 2015, 25(1): 113-123. doi: 10.1007/s11769-014-0680-7

Urban Metabolism Based on Emergy and Slack Based Model: A Case Study of Beijing, China

doi: 10.1007/s11769-014-0680-7
基金项目: Under the auspices of National Natural Science Foundation of China (No. 41371008, 41101119), New Start Academic Research Projects of Beijing Union University (No. ZK201201)
详细信息
    通讯作者:

    DENG Yu. E-mail: dengy@igsnrr.ac.cn

Urban Metabolism Based on Emergy and Slack Based Model: A Case Study of Beijing, China

Funds: Under the auspices of National Natural Science Foundation of China (No. 41371008, 41101119), New Start Academic Research Projects of Beijing Union University (No. ZK201201)
More Information
    Corresponding author: DENG Yu. E-mail: dengy@igsnrr.ac.cn
  • 摘要: The key to studying urban sustainable development depends on quantifying stores, efficiencies of urban metabolisms and capturing urban metabolisms' mechanisms. This paper builds up the metabolic emergy account and quantifies some important concepts of emergy stores. Emphasis is placed on the urban metabolic model based on the slack based model (SBM) method to measure urban metabolic efficiencies. Urban metabolic mechanisms are discussed by using the regression method. By integrating these models, this paper analyzes the urban metabolic development in Beijing from 2001 to 2010. We conclude that the metabolic emergy stores of Beijing increased significantly from 2001 to 2010, with the emergy imported accounting for most of the increase. The metabolic efficiencies in Beijing have improved since the 2008 Olympic Games. The population, economic growth, industrial structures, and environmental governance positively affect the overall urban metabolism, while the land expansion, urbanization and environmentally technical levels hinder the improving of urban metabolic efficiencies. The SBM metabolic method and the regression model based on the emergy analysis provide insights into the urban metabolic efficiencies and the mechanism. They can promote to integrate such concepts into their sustainability analyses and policy decisions.
  • [1] Ascione M, Campanella L, Cherubini F et al., 2009. Environmental driving forces of urban growth and development. Landscape and Urban Planning, 93(3): 238-249. doi: 10.1016/ j.landurbplan.2009.07.011
    [2] Braak C J F, Juggins S, 1993. Weighted averaging partial least squares regression (WA-PLS): An improved method for reconstructing environmental variables from species assemblages. Hydrobiologia, 269(1): 485-502. doi: 10.1007/BF000 28046
    [3] Brown M T, Ulgiati S, 2002. Emergy evaluations and environmental loading of electricity production systems. Journal of Cleaner Production, 10(4): 321-334. doi: 10.1016/S0959- 6526(01)00043-9
    [4] Browne D, O'Regan B, Moles R, 2009. Assessment of total urban metabolism and metabolic inefficiency in an Irish city-region. Waste Management, 29(10): 2765-2771. doi: 10.1016/j.wasman. 2009.05.008
    [5] Chang Qing, Li Shuangcheng, Wang Yanglin et al., 2013. Spatial process of green infrastructure changes associated with rapid urbanization in Shenzhen, China. Chinese Geographical Science, 23(1): 113-128. doi:  10.1007/s11769-012-0568-3
    [6] Charnes A, Cooper W W, Rhodes E, 1978. Measuring the efficiency of decision-making-units. European Journal of Operational Research, 2(6): 429-444. doi: 10.1016/0377-2217(78) 90138-8
    [7] Chartered Institute of Wastes Management, 2002. A Resource Flow and Ecological Footprint Analysis of Greater London. London: Best Foot Forward.
    [8] Cooper W W, Seiford L M, Tone K, 2000. Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software. Boston: Kluwer Academic Publishers.
    [9] Fare R, Grosskopf S, 2004. Modeling undesirable factors in efficiency evaluation. European Journal of Operational Research, 157(1): 242-251. doi:  10.1016/S0377-2217(03)00191-7
    [10] Fare R, Grosskopf S, Parurka C A, 2007. Environmental production functions and environmental directional distance functions: A joint production comparison. Energy, 32(7): 1055- 1066. doi:  10.1016/j.energy.2006.09.005
    [11] Fischer-Kowalski M, Haberl H, 1997. Tons, joules, and money: Modes of production and their sustainability problems. Society & Natural Resources, 10(1): 61-85. doi: 10.1080/0894192970 9381009
    [12] Forkes J, 2007. Nitrogen balance for the urban food metabolism of Toronto, Canada. Resources, Conservation and Recycling, 52(1): 74-94. doi:  10.1016/j.resconrec.2007.02.003
    [13] Hammer M, Giljum S, Hinterberger F, 2003. Material flow analysis of the city of Hamburg. Paper Presented at the Workshop Quo vadis MFA? Material Flow Analysis—Where Do We Go? Issues, Trends and Perspectives of Research for Sustainable Resource Use, Wuppertal.
    [14] Halla R S, Shauna D, Christopher A K, 2003. Estimating the urban metabolism of Canadian cities. Canadian Journal of Civil Engineering, 30(2): 468-483. doi:  10.1139/l02-105
    [15] Hendriks C, Obernosterer R, Müller D et al., 2000. Material flow analysis: A tool to support environmental policy decision making—Case studies on the city of Vienna and the Swiss lowlands. Local Environment, 5(3): 311-328. doi: 10.1080/ 13549830050134257
    [16] Huang S L, 1998. Urban ecosystems, energetic hierarchies and ecological economics of Taipei metropolis. Journal of Environmental Management, 52 (1): 39-51. doi:10.1006/jema. 1997.0157
    [17] Huang S L, Hsu W L, 2003. Materials flow analysis and emergy evaluation of Taipei's urban construction. Landscape and Urban Planning, 63(2): 61-75. doi: 10.1016/S0169-2046(02) 00152-4
    [18] Huang S L, Chen C W, 2005. Theory of urban energetics and mechanisms of urban development. Ecology Model, 189(1-2): 49-71. doi:  10.1016/j.ecolmodel.2005.03.004
    [19] Huang S L, Lee C L, Chen C W, 2006. Socioeconomic meta­bolism in Taiwan: Emergy synthesis versus material flow analysis. Resources, Conservation and Recycling, 48: 166-196. doi:  10.1016/j.resconrec.2006.01.005
    [20] Jiang M M, Chen B, Zhou J B et al., 2007. Emergy account for biomass resource exploitation by agriculture in China. Energy Policy, 35(9): 4704-4719. doi:  10.1016/j.enpol.2007.03.014
    [21] Kennedy C, Cuddihy J, Engel-Yan J, 2007. The Changing Meta­bolism of Cities. Journal of Industrial Ecology, 11(2): 43-59. doi:  10.1162/jie.2007.1107
    [22] Lan S F, Odum H T, 1994. Emergy evaluation of the environment and economy of Hongkong. Journal of Environmental Science, 6(4): 432-449.
    [23] Lei K P, Wang Z S, 2008. Emergy synthesis of tourism-based urban ecosystem. Journal of Environmental Management, 88(4): 831-844. doi:  10.1016/j.jenvman.2007.04.009
    [24] Li L B, Hu J L, 2012. Ecological total-factor energy efficiency of regions in China. Energy Policy, 46: 216-224. doi: 10.1016/ j.enpol.2012.03.053
    [25] Lu H F, Ye Z, Zhao X F et al., 2003. A new emergy index for urban sustainable development. Acta ecologica sinica, 23(7): 1363-1368.
    [26] Mandal S K, Madheswaran S, 2010. Environmental efficiency of the Indian cement industry: An interstate analysis. Energy Policy, 38(2): 1108-1118. doi:  10.1016/j.enpol.2009.10.063
    [27] Newman P W G, Birrel R, Holmes D, 1996. Human Settlements in State of the Environment Australia. Australia: State of the Environment Advisory Council. Melbourne: CSIRO Publi­shing.
    [28] Newman P W G, 1999. Sustainability and cities: Extending the metabolism model. Land Use and Urban Planning, 44(4): 219-226. doi:  10.1016/S0169-2046(99)00009-2
    [29] National Bureau of Statistics of China, 2001-2011. China Statistical Yearbook 2001-2011. Beijing: China Statistics Press. (in Chinese)
    [30] National Bureau of Statistics of China, 2001-2011. China Urban Statistical Yearbook 2001-2011. Beijing: China Statistics Press. (in Chinese)
    [31] National Bureau of Statistics of China, 2001-2011. China Energy Statistical Yearbook 2001-2011. Beijing: China Statistics Press. (in Chinese)
    [32] National Bureau of Statistics of China, 2001-2011. China Environmental Statistical Yearbook 2001-2011. Beijing: China Statistics Press. (in Chinese)
    [33] Odum H T, 1988. Self-organization, transformity, and information. Science, 242(11): 1132-1139.
    [34] Odum H T, 1971. Environment, Power, and Society. New York: Wiley-Interscience.
    [35] Odum H T, 1996. Environmental Accounting—Emergy and Environmental Decision Making. New York: Wiley.
    [36] Odum H T, Brown M T, Brandt-Williams S, 2000. Introduction and Global Budget (Folio#1). In: Handbook of emergy evaluation Florida Center for Environmental Policy. Gainesville: University of Florida.
    [37] Oggioni G, Riccardi R, Toninelli R, 2011. Eco-efficiency of the world cement industry: A data envelopment analysis. Energy Policy, 39(5): 2842-2854. doi:  10.1016/j.enpol.2011.02.057
    [38] Peng Jian, Wang Yanglin, Wu Jiangsheng et al., 2011. Research progress on evaluation frameworks of regional ecological sustainability. Chinese Geographical Science, 21(4): 496-510. doi:  10.1007/s11769-011-0490-0
    [39] Rotmans J, Van-Asselt M B, Vellinga P, 2000. An integrated planning tool for sustainable cities. Environmental Impact Assessment Review, 20(3): 265-276. doi: 10.1016/S0195-9255 (00)00039-1
    [40] Sahely H R, Dudding S, Kennedy C A, 2003. Estimating the urban metabolism of Canadian cities: Greater Toronto Area case study. Canadian Journal of Civil Engineering, 30(2): 83-468. doi:  10.1139/l02-105
    [41] Selden T M, Song D, 1994. Environmental quality and development: Is there a Kuznets curve for air pollution emissions. Journal of Environmental Economics and Management, 27(2): 147-162. doi:  10.1006/jeem.1994.1031
    [42] Statistical Bureau of Beijing, 2001-2011. Beijing Statistical Yearbook 2001-2011. Beijing: China Statistics Press. (in Chinese)
    [43] Su M R, 2010. Emergy-based urban ecosystem health evaluation of the Yangtze River Delta urban cluster in China. Procedia Environmental Sciences, 2: 689-695. doi: 10.1016/j.proenv. 2010.10.078
    [44] Tone K, 2001. A slacks-based measure of efficiency in data envelopment analysis. European Journal of Operational Research, 130(3): 498-509. doi:  10.1016/S0377-2217(99)00407-5
    [45] Tone K, 2004. Dealing with undesirable outputs in DEA: A slacks- based measure (SBM) approach. Presentation at NAPWIII, Toronto.
    [46] Ulgiati S, Brown M T, 2009. Emergy and ecosystem complexity. Communications in Nonlinear Science and Numerical Simulation, 14(1): 310-321. doi:  10.1016/j.cnsns.2007.05.028
    [47] Wolman A, 1965. The metabolism of the city. Scientific American, 213(3): 179-190.
    [48] Zhang Y, Yang Z F, Li W, 2006a. Analyses of urban ecosystem based on information entropy. Ecological Modelling, 197(1-2): 1-12. doi:  10.1016/j.ecolmodel.2006.02.032
    [49] Zhang Y, Yang Z, Yu X, 2006b. Measurement and evaluation of interactions in complex urban ecosystem. Ecological Modeling, 196(1-2): 77-89. doi:  10.1016/j.ecolmodel.2006.02.001
    [50] Zhang Y, Yang Z F, 2007a. Emergy analysis of urban material metabolism and evaluation of eco-efficiency in Beijing. ACTA Scientiae Circumstantiae, 27 (11): 1892-1900. (in Chinese)
    [51] Zhang Y, Yang Z F, 2007b. Eco-efficiency of urban material metabolism: A case study in Shenzhen, China. Acta Ecologica Sinica, 27(8): 3124-3131. doi:  10.1016/S1872-2032(07)60067-5
    [52] Zhang Y, Yang Z F, Yu X Y, 2009. Evaluation of urban metabolism based on emergy synthesis: A case study for Beijing (China). Ecological Modelling, 220(13-14): 1690-1696. doi:  10.1016/j.ecolmodel.2009.04.002
    [53] Zhang Y, Yang Z, Liu G et al., 2011. Emergy analysis of the urban metabolism of Beijing. Ecological Modelling, 222(14): 2377-2384. doi:  10.1016/j.ecolmodel.2010.09.017
    [54] Zhou P, Ang B W, Poh K L, 2006. Slacks-based efficiency measures for modeling environmental performance. Ecological Eco­nomics, 60(1): 111-118. doi:  10.1016/j.ecolecon.2005.12.001
    [55] Zhou P, Ang B W, Poh K L, 2008. A survey of data envelopment analysis in energy and environmental studies. European Journal of Operational Research, 189(1): 1-18. doi: 10.1016/j. ejor.2007.04.042
    [56] Zhou Y, Xing X P, Fang K N et al., 2013. Environmental efficiency analysis of power industry in China based on an entropy SBM model. Energy Policy, 57(6): 68-75. doi: 10.1016/ j.enpol.2012.09.060
  • [1] WEI Zongcai, ZHEN Feng, MO Haitong, WEI Shuqing, PENG Danli, ZHANG Yuling.  Travel Behaviours of Sharing Bicycles in the Central Urban Area Based on Geographically Weighted Regression: The Case of Guangzhou, China . Chinese Geographical Science, 2021, 31(1): 54-69. doi: 10.1007/s11769-020-1159-3
    [2] FANG Chuanglin, YANG Junyan, FANG Jiawen, HUANG Xiejun, ZHOU Yi.  Optimization Transmission Theory and Technical Pathways that Describe Multiscale Urban Agglomeration Spaces . Chinese Geographical Science, 2018, 28(4): 543-554. doi: 10.1007/s11769-018-0974-2
    [3] YANG Jun, BAO Yajun, ZHANG Yuqing, LI Xueming, GE Quansheng.  Impact of Accessibility on Housing Prices in Dalian City of China Based on a Geographically Weighted Regression Model . Chinese Geographical Science, 2018, 28(3): 505-515. doi: 10.1007/s11769-018-0954-6
    [4] HU Deyong, CHEN Shanshan, QIAO Kun, CAO Shisong.  Integrating CART Algorithm and Multi-source Remote Sensing Data to Estimate Sub-pixel Impervious Surface Coverage: A Case Study from Beijing Municipality, China . Chinese Geographical Science, 2017, 27(4): 614-625. doi: 10.1007/s11769-017-0882-x
    [5] ZHU Jianhua, CHEN Xi, CHEN Tian.  Spheres of Urban Influence and Factors in Beijing-Tianjin-Hebei Metropolitan Region Based on Viewpoint of Administrative Division Adjustment . Chinese Geographical Science, 2017, 27(5): 709-721. doi: 10.1007/s11769-017-0881-y
    [6] SONG Tao, CAI Jianming, YANG Zhenshan, CHEN Mingxing, LIN Jing.  Urban Metabolic Efficiencies and Elasticities of Chinese Cities . Chinese Geographical Science, 2016, 26(6): 715-730. doi: 10.1007/s11769-016-0830-1
    [7] ZHANG Zuo, TAN Shukui, TANG Wenwu.  A GIS-based Spatial Analysis of Housing Price and Road Density in Proximity to Urban Lakes in Wuhan City, China . Chinese Geographical Science, 2015, 25(6): 775-790. doi: 10.1007/s11769-015-0788-4
    [8] ZHANG Haitao, GUO Long, CHEN Jiaying, FU Peihong, GU Jianli, LIAO Guangyu.  Modeling of Spatial Distributions of Farmland Density and Its Temporal Change Using Geographically Weighted Regression Model . Chinese Geographical Science, 2014, 0(2): 191-204. doi: 10.1007/s11769-013-0631-8
    [9] LIU Yong, WANG Cheng, YUE Wenze, HU Yanyan.  Storage and Density of Soil Organic Carbon in Urban Topsoil of Hilly Cities: A Case Study of Chongqing Municipality of China . Chinese Geographical Science, 2013, 23(1): 26-34.
    [10] WANG Xili, FU Li, MA Lei.  Semi-supervised support vector regression model for remote sensing water quality retrieving . Chinese Geographical Science, 2011, 21(1): 57-64.
    [11] CHEN Beibei, GONG Huili, LI Xiaojuan, et al..  Spatial-temporal Characteristics of Land Subsidence Corresponding to Dynamic Groundwater Funnel in Beijing Municipality, China . Chinese Geographical Science, 2011, 21(6): 753-764.
    [12] YIN Kai, ZHAO Qianjun, LI Xuanqi, CUI Shenghui, HUA Lizhong, LIN Tao.  A New Carbon and Oxygen Balance Model Based on Ecological Service of Urban Vegetation . Chinese Geographical Science, 2010, 20(2): 144-151. doi: 10.1007/s11769-010-0144-7
    [13] JIANG Yan, LIU Changming, ZHENG Hongxing, LI Xuyong, WU Xianing.  Responses of River Runoff to Climate Change Based on Nonlinear Mixed Regression Model in Chaohe River Basin of Hebei Province, China . Chinese Geographical Science, 2010, 20(2): 152-158. doi: 10.1007/s11769-010-0152-7
    [14] WU Wenjie, ZHANG Wenzhong, JIN Fengjun, DENG Yu.  Spatio-temporal Analysis of Urban Spatial Interaction in Globalizing China—A Case Study of Beijing-Shanghai Corridor . Chinese Geographical Science, 2009, 19(2): 126-134. doi: 10.1007/s11769-009-0126-9
    [15] GU Kangkang, LIU Jingshuang, WANG Yang.  Relationship Between Economic Growth and Water Environmental Quality of Anshan City in Northeast China . Chinese Geographical Science, 2009, 19(1): 17-24. doi: 10.1007/s11769-009-0017-0
    [16] FANG Chuanglin, SONG Jitao, SONG Dunjiang.  Stability of Spatial Structure of Urban Agglomeration in China Based on Central Place Theory . Chinese Geographical Science, 2007, 17(3): 193-202. doi: 10.1007/s11769-007-0193-8
    [17] HE Jinwei, GE Miao, SU Huimin, LIANG Wei, CHEN Hongfei.  Normal Reference Value of Red Blood Cell Count of Chinese Presenile Men and Geographical Factors . Chinese Geographical Science, 2007, 17(1): 92-98. doi: 10.1007/s11769-007-0092-z
    [18] LIU Xin-wei, CHEN Bai-ming, ZHANG Ding-xiang.  EMERGY ANALYSIS OF GRAIN PRODUCTION SYSTEM IN JIANGSU AND SHAANXI PROVINCES . Chinese Geographical Science, 2004, 14(3): 209-214.
    [19] ZHANG Xin-chang, PAN Qiong, ZHAO Ling-ling, YE Shen-tao.  GIS-BASED ANALYSIS OF URBAN LAND-USE CHANGES—A Case Study of Haizhu District of Guangzhou City,China . Chinese Geographical Science, 2002, 12(4): 339-345.
    [20] 刁承泰.  AN APPROACH TO THEORY AND METHODS OF URBAN GEOMORPHOLOGY . Chinese Geographical Science, 1996, 6(1): 89-96.
  • 加载中
计量
  • 文章访问数:  313
  • HTML全文浏览量:  2
  • PDF下载量:  1094
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-29
  • 修回日期:  2013-10-18
  • 刊出日期:  2014-11-27

Urban Metabolism Based on Emergy and Slack Based Model: A Case Study of Beijing, China

doi: 10.1007/s11769-014-0680-7
    基金项目:  Under the auspices of National Natural Science Foundation of China (No. 41371008, 41101119), New Start Academic Research Projects of Beijing Union University (No. ZK201201)
    通讯作者: DENG Yu. E-mail: dengy@igsnrr.ac.cn

摘要: The key to studying urban sustainable development depends on quantifying stores, efficiencies of urban metabolisms and capturing urban metabolisms' mechanisms. This paper builds up the metabolic emergy account and quantifies some important concepts of emergy stores. Emphasis is placed on the urban metabolic model based on the slack based model (SBM) method to measure urban metabolic efficiencies. Urban metabolic mechanisms are discussed by using the regression method. By integrating these models, this paper analyzes the urban metabolic development in Beijing from 2001 to 2010. We conclude that the metabolic emergy stores of Beijing increased significantly from 2001 to 2010, with the emergy imported accounting for most of the increase. The metabolic efficiencies in Beijing have improved since the 2008 Olympic Games. The population, economic growth, industrial structures, and environmental governance positively affect the overall urban metabolism, while the land expansion, urbanization and environmentally technical levels hinder the improving of urban metabolic efficiencies. The SBM metabolic method and the regression model based on the emergy analysis provide insights into the urban metabolic efficiencies and the mechanism. They can promote to integrate such concepts into their sustainability analyses and policy decisions.

English Abstract

SONG Tao, CAI Jianming, XU Hui, DENG Yu, NIU Fangqu, YANG Zhenshan, DU Shanshan. Urban Metabolism Based on Emergy and Slack Based Model: A Case Study of Beijing, China[J]. 中国地理科学, 2015, 25(1): 113-123. doi: 10.1007/s11769-014-0680-7
引用本文: SONG Tao, CAI Jianming, XU Hui, DENG Yu, NIU Fangqu, YANG Zhenshan, DU Shanshan. Urban Metabolism Based on Emergy and Slack Based Model: A Case Study of Beijing, China[J]. 中国地理科学, 2015, 25(1): 113-123. doi: 10.1007/s11769-014-0680-7
SONG Tao, CAI Jianming, XU Hui, DENG Yu, NIU Fangqu, YANG Zhenshan, DU Shanshan. Urban Metabolism Based on Emergy and Slack Based Model: A Case Study of Beijing, China[J]. Chinese Geographical Science, 2015, 25(1): 113-123. doi: 10.1007/s11769-014-0680-7
Citation: SONG Tao, CAI Jianming, XU Hui, DENG Yu, NIU Fangqu, YANG Zhenshan, DU Shanshan. Urban Metabolism Based on Emergy and Slack Based Model: A Case Study of Beijing, China[J]. Chinese Geographical Science, 2015, 25(1): 113-123. doi: 10.1007/s11769-014-0680-7
参考文献 (56)

目录

    /

    返回文章
    返回