留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mapping Detailed Soil Property Using Small Scale Soil Type Maps and Sparse Typical Samples

ZHANG Shujie ZHU Axing LIU Wenliang LIU Jing YANG Lin

ZHANG Shujie, ZHU Axing, LIU Wenliang, LIU Jing, YANG Lin. Mapping Detailed Soil Property Using Small Scale Soil Type Maps and Sparse Typical Samples[J]. 中国地理科学, 2013, 23(6): 680-691. doi: 10.1007/s11769-013-0632-7
引用本文: ZHANG Shujie, ZHU Axing, LIU Wenliang, LIU Jing, YANG Lin. Mapping Detailed Soil Property Using Small Scale Soil Type Maps and Sparse Typical Samples[J]. 中国地理科学, 2013, 23(6): 680-691. doi: 10.1007/s11769-013-0632-7
ZHANG Shujie, ZHU Axing, LIU Wenliang, LIU Jing, YANG Lin. Mapping Detailed Soil Property Using Small Scale Soil Type Maps and Sparse Typical Samples[J]. Chinese Geographical Science, 2013, 23(6): 680-691. doi: 10.1007/s11769-013-0632-7
Citation: ZHANG Shujie, ZHU Axing, LIU Wenliang, LIU Jing, YANG Lin. Mapping Detailed Soil Property Using Small Scale Soil Type Maps and Sparse Typical Samples[J]. Chinese Geographical Science, 2013, 23(6): 680-691. doi: 10.1007/s11769-013-0632-7

Mapping Detailed Soil Property Using Small Scale Soil Type Maps and Sparse Typical Samples

doi: 10.1007/s11769-013-0632-7
基金项目: Under the auspices of Program of International Science & Technology Cooperation, Ministry of Science and Technology of China (No. 2010DFB24140), National Natural Science Foundation of China (No. 41023010, 41001298), National High Technology Research and Development Program of China (No. 2011AA120305)
详细信息
    通讯作者:

    LIU Wenliang. E-mail: wlliu@irsa.ac.cn

Mapping Detailed Soil Property Using Small Scale Soil Type Maps and Sparse Typical Samples

Funds: Under the auspices of Program of International Science & Technology Cooperation, Ministry of Science and Technology of China (No. 2010DFB24140), National Natural Science Foundation of China (No. 41023010, 41001298), National High Technology Research and Development Program of China (No. 2011AA120305)
More Information
    Corresponding author: LIU Wenliang. E-mail: wlliu@irsa.ac.cn
  • 摘要: Soil type maps at the scale of 1︰1 000 000 are used extensively to provide soil spatial distribution information for soil erosion assessment and watershed management models in China. However, the soil property maps produced through conventional direct linking method usually suffer low accuracy as well as the lack of spatial details within a soil type polygon. This paper presents an effective method to produce detailed soil property map based on representative samples which were extracted from each polygon on the 1︰1 000 000 soil type map. The representative sample of each polygon is defined as the location that can represent the largest area within the polygon. The representativeness of a candidate sample is determined by calculating the soil-forming environment condition similarities between the sample and other locations. Once the representative sample of each polygon has been chosen, the property values of the existing typical samples are assigned to the corresponding representative samples with the same soil type. Finally, based on these representative samples, the detailed soil property map could be produced by using existing digital soil mapping methods. The case study in XuanCheng City, Anhui Province of China, demonstrated the proposed method could produce soil property map at a higher level of spatial details and accuracy: 1) The soil organic matter (SOM) map produced based on the representative samples can not only depict the detailed spatial distribution of SOM within a soil type polygon but also largely reduce the abrupt change of soil property at the boundaries of two adjacent polygons. 2) The Root Mean Squared Error (RMSE) of the SOM map based on the representative samples is 1.61, and it is 1.37 for the SOM map produced by using conventional direct linking method. Therefore, the proposed method is an effective approach to produce spatial detailed soil property map with higher accuracy for environment simulation models.
  • [1] Band L E, Moore I D, 1995. Scale: Landscape attributes and geo-graphical information systems. Hydrological Processes, 9(3-4): 401-422. doi:  10.1002/hyp.3360090312
    [2] Brus D J, Bogaert P, Heuvelink G B M, 2008. Bayesian maximum entropy prediction of soil categories using a traditional soil map as soft information. European Journal of Soil Science, 59(2): 166-177. doi:  10.1111/j.1365-2389.2007.00981.x
    [3] Chen L J, Zhu A X, Qin C Z et al., 2012. Effectiveness assessment of soil erosion critical source areas for soil and water conservation. Journal of Resources and Ecology, 3(2): 138-143. doi:  10.5814/j.issn.1674-764x.2012.02.005
    [4] Goovaerts P, 1999. Geostatistics in soil science: State-of-the-art and perspectives. Geoderma, 89(1-2): 1-45. doi:  10.1016/S0016-7061(98)00078-0
    [5] Hudson B D, 1992. The soil survey as paradigm-based science. Soil Science Society of America Journal, 56(3): 836-841. doi:  10.2136/sssaj1992.03615995005600030027x
    [6] Jenny H, 1941. Factors of Soil Formation—A System of Quantit-ative Pedology. New York: Dover Publications, 10-20.
    [7] Kempen B, Brus D J, Heuvelink G B M et al., 2009. Updating the 1:50,000 Dutch soil map using legacy data: A multinomial lo-gistic regression approach. Geoderma, 151(3-4): 311-326. doi:  10.1016/j.geoderma.2009.04.023
    [8] Li R K, Zhu A X, Song X F et al., 2012. Effects of spatial aggre-gation of soil spatial information on watershed hydrological modeling. Hydrological Processes, 26(9): 1390-1404. doi:  10.1002/hyp.8277
    [9] Liu Jing, Zhu Axing, Zhang Shujie et al., 2013. Mapping soil property over large area based on the individual representa-tiveness of samples. Acta Pedologica Sinica, 50(1): 12-20. (in Chinese)
    [10] Liu Y B, Batelaan O, de Smedt F et al., 2005. Test of a distributed modeling approach to predict flood flows in the Karst Suoimuoi catchment in Vietnam. Environmental Geology, 48(7): 931-940. doi:  10.1007/s00254-005-0031-1
    [11] McBratney A B, Mendonca S M L, Minasny B, 2003. On digital soil mapping. Geoderma, 117(1-2): 3-52. doi:  10.1016/S0016-7061(03)00223-4
    [12] McBratney A B, Odeh I O A, Bishop T F A et al., 2000. An over-view of pedometric techniques for use in soil survey. Geoderma, 97(3-4): 293-327. doi: 10.1016/S0016-7061(00) 00043-4
    [13] Moriasi D N, Starks P J, 2010. Effects of the resolution of soil dataset and precipitation dataset on SWAT2005 stream-flow calibration parameters and simulation accuracy. Journal of Soil and Water Conservation, 65(2): 163-178. doi:  10.2489/jswc.65.2.63
    [14] Mukundan R, Radcliffe D E, Risse L M, 2010. Spatial resolution of soil data and channel erosion effects on SWAT model pre-dictions of flow and sediment. Journal of Soil and Water Con-servation, 65(2): 92-104. doi:  10.2489/jswc.65.2.92
    [15] Qin C Z, Zhu A X, Pei T et al., 2007. An adaptive approach to selecting a flow-partition exponent for a multiple-flow-direction algorithm. International Journal of Geographical Information Science, 21(4): 443-458. doi: 10.1080/1365881060 1073240
    [16] Qin C Z, Zhu A X, Qiu W L et al., 2012. Mapping soil organic matter in small low-relief catchments using fuzzy slop position information. Geoderma, 171-172: 64-74. doi: 10.1016/j. geo-derma.2011.06.006
    [17] Shi X, Zhu A X, Burt J E et al., 2004. A case-based reasoning approach to fuzzy soil mapping. Soil Science Society of America Journal, 68(3): 885-894. doi:  10.2136/sssaj2004.8850
    [18] Shi Xuezheng, Yu Dongsheng, Gao Peng et al., 2007. Soil infor-mation system of China (SISChina) and its application. Soils, 39(3): 329-333. (in Chinese)
    [19] Sun Xiaolin, Zhao Yuguo, Qin Chengzhi et al., 2008. Effects of DEM resolution on multi-factor linear soil-landscape models and their application in predictive soil mapping. Acta Pedologica Sinica, 45(5): 971-977. (in Chinese)
    [20] Vitharana U W A, Saey T, Cockx L et al., 2008. Upgrading a 1/20,000 soil map with an apparent electrical conductivity survey. Geoderma, 148(1): 107-112. doi: 10.1016/j.geoderma. 2008.09.013
    [21] Yang L, Jiao Y, Fahmy S et al., 2012. Updating conventional soil maps using digital soil mapping. Soil Science Society of America Journal, 75(3): 1044-1053. doi: 10.2136/sssaj2010. 0002
    [22] Yang Lin, Fahmy Sherif, Jiao You et al., 2010. Updating conven-tional soil maps using knowledge on soil-environment rela-tionships extracted from the maps. Acta Pedologica Sinica, 47(6): 1039-1047. (in Chinese)
    [23] Yu D S, Shi X Z, Wang H J et al., 2007. Regional patterns of soil organic carbon stocks in China. Journal of Environmental Management, 85(3): 680-689. doi: 10.1016/j.jenvman.2006. 09.020
    [24] Yu Wanli, 2012. Soil Property Mapping on a National Scale Based on Sparse Grid Samples. Beijing: Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 34-39. (in Chinese)
    [25] Zhang Shujie, Zhu Axing, Liu Jing et al., 2012. Sample-based digital soil mapping methods and related sampling scheme. Soils, 44(6): 917-923. (in Chinese)
    [26] Zhang Yong, Shi Xuezheng, Yu Dongsheng et al., 2008. Effects of the linkage between spatial data and attribute data on estimates of soil organic carbon. Advances in Earth Science, 23(8): 840-847. (in Chinese)
    [27] Zhao Liang, Zhao Yuguo, Li Decheng et al., 2007. Digital soil mapping by extracting quantitative relationships between soil properties and terrain factors based on fuzzy set theory. Acta Pedologica Sinica, 44(6): 961-967. (in Chinese)
    [28] Zhao Y C, Shi X Z, Weindorf D C et al., 2006. Map scale effects on soil organic carbon stock estimation in North China. Soil Science Society of America Journal, 70(4): 1377-1386. doi: doi: 10.2136/sssaj2004.0165
    [29] Zhu A X, Band L E, Dutton B et al., 1996. Automated soil infe-rence under fuzzy logic. Ecological Modelling, 90(2): 123-145. doi:  10.1016/0304-3800(95)00161-1
    [30] Zhu A X, 1997. A similarity model for representing soil spatial information. Geoderma, 77(2-4): 217-242. doi:  10.1016/S0016-7061(97)00023-2
  • [1] DANG Xiaohu, SUI Boyang, GAO Siwen, LIU Guobin, WANG Tao, WANG Bing, NING Duihu, BI Wei.  Regions and Their Typical Paradigms for Soil and Water Conservation in China . Chinese Geographical Science, 2020, 30(4): 643-664. doi: 10.1007/s11769-020-1139-7
    [2] HUANG Yajie, LI Zhen, YE Huichun, ZHANG Shiwen, ZHUO Zhiqing, XING An, HUANG Yuanfang.  Mapping Soil Electrical Conductivity Using Ordinary Kriging Combined with Back-propagation Network . Chinese Geographical Science, 2019, 20(2): 270-282. doi: 10.1007/s11769-019-1027-1
    [3] LI Zhe, ZHANG Zhongsheng, XUE Zhenshan, SONG Xiaolin, ZHANG Hongri, WU Haitao, JIANG Ming, LYU Xianguo.  Molecular Fingerprints of Soil Organic Matter in a Typical Freshwater Wetland in Northeast China . Chinese Geographical Science, 2019, 20(4): 700-711. doi: 10.1007/s11769-019-1062-y
    [4] WANG Peijiang, ZHENG Haifeng, REN Zhibin, ZHANG Dan, ZHAI Chang, MAO Zhixia, TANG Ze, HE Xingyuan.  Effects of Urbanization, Soil Property and Vegetation Configuration on Soil Infiltration of Urban Forest in Changchun, Northeast China . Chinese Geographical Science, 2018, 28(3): 482-494. doi: 10.1007/s11769-018-0953-7
    [5] SONG Xiaodong, LIU Feng, JU Bing, ZHI Junjun, LI Decheng, ZHAO Yuguo, ZHANG Ganlin.  Mapping Soil Organic Carbon Stocks of Northeastern China Using Expert Knowledge and GIS-based Methods . Chinese Geographical Science, 2017, 27(4): 516-528. doi: 10.1007/s11769-017-0869-7
    [6] CHAI Hua, YU Guirui, HE Nianpeng, WEN Ding, LI Jie, FANG Jiangping.  Vertical Distribution of Soil Carbon, Nitrogen, and Phosphorus in Typical Chinese Terrestrial Ecosystems . Chinese Geographical Science, 2015, 25(5): 549-560. doi: 10.1007/s11769-015-0756-z
    [7] WANG Fei, CHEN Xi, LUO Geping, HAN Qifei.  Mapping of Regional Soil Salinities in Xinjiang and Strategies for Ame-lioration and Management . Chinese Geographical Science, 2015, 25(3): 321-336. doi: 10.1007/s11769-014-0718-x
    [8] YANG Lin, HUANG Chong, LIU Gaohuan, LIU Jing, ZHU A-Xing.  Mapping Soil Salinity Using a Similarity-based Prediction Approach:A Case Study in Huanghe River Delta, China . Chinese Geographical Science, 2015, 25(3): 283-294. doi: 10.1007/s11769-015-0740-7
    [9] LIAO Shunbao, BAI Zhongqiang, BAI Yan.  Errors Prediction for Vector-to-Raster Conversion Based on Map Load and Cell Size . Chinese Geographical Science, 2012, 22(6): 695-704.
    [10] LI Shanghua, ZHOU Demin, LUAN Zhaoqing, et al..  Quantitative Simulation on Soil Moisture Contents of Two Typical Vegetation Communities in Sanjiang Plain, China . Chinese Geographical Science, 2011, 21(6): 723-733.
    [11] DUAN Xingwu, XIE Yun, LIU Gang, GAO Xiaofei, LU Hongmei.  Field Capacity in Black Soil Region, Northeast China . Chinese Geographical Science, 2010, 20(5): 406-413. doi: 10.1007/s11769-010-0414-4
    [12] YAN Haowen.  Fundamental Theories of Spatial Similarity Relations in Multi-scale Map Spaces . Chinese Geographical Science, 2010, 20(1): 18-22. doi: 10.1007/s11769-010-0018-z
    [13] CAO Huicong, WANG Jinda, ZHANG Xuelin.  Ecotoxicity of Cadmium to Maize and Soybean Seedling in Black Soil . Chinese Geographical Science, 2007, 17(3): 270-274. doi: 10.1007/s11769-007-0270-z
    [14] XIONG Dong-hong, ZHOU Hong-yi, YANG Zhong, ZHANG Xin-bao.  SLOPE LITHOLOGIC PROPERTY, SOIL MOISTURE CONDITION AND REVEGETATION IN DRY-HOT VALLEY OF JINSHA RIVER . Chinese Geographical Science, 2005, 15(2): 186-192.
    [15] WANG Ya-qin, WANG Ji-hong.  EFFECT OF ELECTRIC FERTILIZER ON SOIL PROPERTIES . Chinese Geographical Science, 2004, 14(1): 71-74.
    [16] HOU Wei-ling, FAN Hong.  ECOLOGICAL SERIES OF SOIL ANIMALS IN DARLIDAI MOUNTAIN . Chinese Geographical Science, 2002, 12(4): 378-382.
    [17] HU Bao-qing, JIANG Mei-xin, JUN Su-lan, ZENG Qiao-song.  APPLICATION OF MAP AND FILE INFORMATIONVISUALIZATION SYSTEM TO COMPREHENSIVEDIVISION OF NATURAL DISASTERS──Taking the Changjiang Valley as an Example . Chinese Geographical Science, 2001, 11(4): 326-335.
    [18] ZHANG Xue-ping, Zhang Si-cong, HUANG Chu-long.  EFFECTS OF SOIL FAUNA ON LITTER DECOMPOSITION . Chinese Geographical Science, 2001, 11(3): 283-288.
    [19] 龚子同, 陈鸿昭, 王鹤林.  THE DISTRIBUTION REGULARITY OF HIGHER CATEGORIES IN CHINESE SOIL TAXONOMY . Chinese Geographical Science, 1997, 7(1): 1-10.
    [20] 张晓平, 科扬川.  RESEARCHES ON SOIL ENVIRONMENTAL BACKGROUND VALUES IN TIBET . Chinese Geographical Science, 1995, 5(1): 56-65.
  • 加载中
计量
  • 文章访问数:  206
  • HTML全文浏览量:  1
  • PDF下载量:  1024
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-28
  • 修回日期:  2013-02-27
  • 刊出日期:  2013-11-10

Mapping Detailed Soil Property Using Small Scale Soil Type Maps and Sparse Typical Samples

doi: 10.1007/s11769-013-0632-7
    基金项目:  Under the auspices of Program of International Science & Technology Cooperation, Ministry of Science and Technology of China (No. 2010DFB24140), National Natural Science Foundation of China (No. 41023010, 41001298), National High Technology Research and Development Program of China (No. 2011AA120305)
    通讯作者: LIU Wenliang. E-mail: wlliu@irsa.ac.cn

摘要: Soil type maps at the scale of 1︰1 000 000 are used extensively to provide soil spatial distribution information for soil erosion assessment and watershed management models in China. However, the soil property maps produced through conventional direct linking method usually suffer low accuracy as well as the lack of spatial details within a soil type polygon. This paper presents an effective method to produce detailed soil property map based on representative samples which were extracted from each polygon on the 1︰1 000 000 soil type map. The representative sample of each polygon is defined as the location that can represent the largest area within the polygon. The representativeness of a candidate sample is determined by calculating the soil-forming environment condition similarities between the sample and other locations. Once the representative sample of each polygon has been chosen, the property values of the existing typical samples are assigned to the corresponding representative samples with the same soil type. Finally, based on these representative samples, the detailed soil property map could be produced by using existing digital soil mapping methods. The case study in XuanCheng City, Anhui Province of China, demonstrated the proposed method could produce soil property map at a higher level of spatial details and accuracy: 1) The soil organic matter (SOM) map produced based on the representative samples can not only depict the detailed spatial distribution of SOM within a soil type polygon but also largely reduce the abrupt change of soil property at the boundaries of two adjacent polygons. 2) The Root Mean Squared Error (RMSE) of the SOM map based on the representative samples is 1.61, and it is 1.37 for the SOM map produced by using conventional direct linking method. Therefore, the proposed method is an effective approach to produce spatial detailed soil property map with higher accuracy for environment simulation models.

English Abstract

ZHANG Shujie, ZHU Axing, LIU Wenliang, LIU Jing, YANG Lin. Mapping Detailed Soil Property Using Small Scale Soil Type Maps and Sparse Typical Samples[J]. 中国地理科学, 2013, 23(6): 680-691. doi: 10.1007/s11769-013-0632-7
引用本文: ZHANG Shujie, ZHU Axing, LIU Wenliang, LIU Jing, YANG Lin. Mapping Detailed Soil Property Using Small Scale Soil Type Maps and Sparse Typical Samples[J]. 中国地理科学, 2013, 23(6): 680-691. doi: 10.1007/s11769-013-0632-7
ZHANG Shujie, ZHU Axing, LIU Wenliang, LIU Jing, YANG Lin. Mapping Detailed Soil Property Using Small Scale Soil Type Maps and Sparse Typical Samples[J]. Chinese Geographical Science, 2013, 23(6): 680-691. doi: 10.1007/s11769-013-0632-7
Citation: ZHANG Shujie, ZHU Axing, LIU Wenliang, LIU Jing, YANG Lin. Mapping Detailed Soil Property Using Small Scale Soil Type Maps and Sparse Typical Samples[J]. Chinese Geographical Science, 2013, 23(6): 680-691. doi: 10.1007/s11769-013-0632-7
参考文献 (30)

目录

    /

    返回文章
    返回