留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phosphorus Speciation in Wetland Sediments of Zhujiang (Pearl) River Estuary, China

WANG Lili YE Mei LI Qusheng ZOU Hang ZHOU Yongsheng

WANG Lili, YE Mei, LI Qusheng, ZOU Hang, ZHOU Yongsheng. Phosphorus Speciation in Wetland Sediments of Zhujiang (Pearl) River Estuary, China[J]. 中国地理科学, 2013, 23(5): 574-583. doi: 10.1007/s11769-013-0627-4
引用本文: WANG Lili, YE Mei, LI Qusheng, ZOU Hang, ZHOU Yongsheng. Phosphorus Speciation in Wetland Sediments of Zhujiang (Pearl) River Estuary, China[J]. 中国地理科学, 2013, 23(5): 574-583. doi: 10.1007/s11769-013-0627-4
WANG Lili, YE Mei, LI Qusheng, ZOU Hang, ZHOU Yongsheng. Phosphorus Speciation in Wetland Sediments of Zhujiang (Pearl) River Estuary, China[J]. Chinese Geographical Science, 2013, 23(5): 574-583. doi: 10.1007/s11769-013-0627-4
Citation: WANG Lili, YE Mei, LI Qusheng, ZOU Hang, ZHOU Yongsheng. Phosphorus Speciation in Wetland Sediments of Zhujiang (Pearl) River Estuary, China[J]. Chinese Geographical Science, 2013, 23(5): 574-583. doi: 10.1007/s11769-013-0627-4

Phosphorus Speciation in Wetland Sediments of Zhujiang (Pearl) River Estuary, China

doi: 10.1007/s11769-013-0627-4
基金项目: Foundation item: Under the auspices of National Natural Science Foundation of China (No. U0833002), National Science and Technology Support Program of China (No. 2012BAC07B05)
详细信息
    通讯作者:

    LI Qusheng,E-mail: liqusheng@21cn.com

Phosphorus Speciation in Wetland Sediments of Zhujiang (Pearl) River Estuary, China

Funds: Foundation item: Under the auspices of National Natural Science Foundation of China (No. U0833002), National Science and Technology Support Program of China (No. 2012BAC07B05)
More Information
    Corresponding author: LI Qusheng,E-mail: liqusheng@21cn.com
  • 摘要: Phosphorus fractions and adsorption-release characteristics of sediments in the Zhujiang (Pearl) River estuary wetland were investigated. Results showed that the total phosphorus (TP) content in surface sediments ranged from 648.9 mg/kg to 1064.0 mg/kg; inorganic phosphorus (IP) was the major fraction of TP and ranged from 422.5 mg/kg to 643.9 mg/kg. Among the inorganic phosphorus, the main fractions were phosphorus bound to Al and Fe (Fe/Al-P), and calcium-bound phosphorus (Ca-P), accounting for 23%-42% and 21%-67% of IP, respectively. The vertical distribution of TP contents were significantly positive correlated with organic phosphorus (Org-P) and Fe/Al-P contents. The bio-available phosphorus contents in vertical sediments varied from 128.6 mg/kg to 442.9 mg/kg, mainly existed in Fe-Al/P fraction, and increased from the bottom to top sediments. The transport of phosphorus in sediment-water interface was controlled by the soil characteristics. The active Fe and Al content was considered as the main factor that determines adsorption capacity in vegetated marsh wetland. The P buffering capacity of the sediments in vegetated marsh wetland was greater than that in mudflat wetland. The potential risk of eutrophication in the study area is high. Reducing terrestrial phosphorus discharge and preventing the sediment Fe/Al-P release to the interstitial water are the possible solutions to reduce the risk of eutrophication in estuary wetlands, and planting vegetation in estuary wetland can also reduce the release of phosphorus in surface sediment.
  • [1] Adriana J, Marcos G N, 2005. Temporal and spatial patterns based on sediment and sediment-water interface characteristics along a cascade of reservoirs (Paranpanema River, South-east Brazil). Lake and Reservoir Management, 10(1): 1-12. doi:  10.1111/j.1440-1770.2005.00254.x
    [2] Bai J H, Deng W, Cui B S et al., 2007. Water diffusion coefficients of horizontal soil columns from natural saline-alkaline wetlands in a semiarid area. Eurasian Soil Science, 40(6):
    [3] 660-664. doi:  10.1134/S1064229307060075
    [4] Bao Shidan, 2000. Soil and Agricultural Chemistry Analysis. Beijing: China Agriculture Press, 25-31. (in Chinese)
    [5] Dai Jicui, Song Jinming, Li Xuegang et al., 2006. Phosphorus and its environmental marker function in Jiaozhou Bay sediments. Environmental Science, 27(10): 953-1962. (in Chinese)
    [6] Danen L H, Lijklema L, Coenraats M, 1993. Iron content of sediment and phosphate adsorption properties. Hydrobiologia, 253(1): 311-317. doi:  10.1007/BF00050751
    [7] Ellen L P, Joselito M A, 2001. Evaluation of iron-phosphate as a source of internal lake phosphorus loadings. Science Total Environment, 266(1): 87-93. doi: 10.1016/S0048-9697(00)00 756-7
    [8] Grac A B, Bolale K J, 1998. Forms of phosphorus in sediments from the Gulf of Gdansk. Applied Geochemistry, 13(3): 319-327. doi:  10.1016/S0883-2927(97)00101-7
    [9] Hakanson L, 1980. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Research, 14(8): 975-1001. doi:  10.1016/0043-1354(80)90143-8
    [10] Hou L J, Liu M, Yang Y et al., 2009. Phosphorus speciation and availability in intertidal sediments of the Yangtze Estuary, China. Applied Geochemistry, 24(1): 120-128. doi: 10.1016/j. apgeochem.2008.11.008
    [11] Hu Chuanyu, Pan Jianming, Liu Xiaoya, 2001. Species of phosphorus in sediments from Peal River Estuary. Marine Environmental Science, 20(4): 21-25. (in Chinese)
    [12] Huang Lidong, Chai Rushan, Zong Xiaobo et al., 2012. Characteristics of phosphorus sorption kinetics on sediments at different initial phosphorus concentrations. Journal of Zhejiang University, 38(1): 81-90. (in Chinese)
    [13] Huang Qinhui, Wang Zijian, Wang Donghong et al., 2004. Phosphorus sorption capacity of the surface sediment in the Taihu Lake and risk assessment of phosphorus release. Journal of Lake Sciences, 16(2): 97-103. (in Chinese)
    [14] Huang X P, Wang L M, Wang W Z et al., 2003. The characteristic of nutrients and eutrophication in the Pearl River estuary, South China. Marine Pollution Bulletin, 47(1): 30-36. doi:  10.1016/S0025-326X(02)00474-5
    [15] Huang Xiaoping, Tian Lei, Peng Bo et al., 2010. Environmental pollution in the Pearl River Estuary: A review. Journal of Tropical Oceanography, 29(1): 1-7. (in Chinese)
    [16] Kim L H, Choi E, Michael K S, 2003. Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments. Chemosphere, 50(1): 53-61. doi: 10.1016/ S0045-6535(02)00310-7
    [17] Lau S S S, Lane S N, 2002. Biological and chemical factors influencing shallow lake eutrophication: A long-term study. Science Total Environment, 288(3): 167-181. doi: 10.1016/ S0048-9697(01)00957-3
    [18] Liu P P, Bai J H, Ding Q Y et al., 2012. Effects of water level and salinity on TN and TP contents in marsh soils of the Yellow River Delta, China. Clean-Soil, Air, Water, 40(10): 1118-1124. doi:  10.1002/clen.201200029
    [19] Lu Shaoyong, Wang Pei, Wang Dianwu et al., 2011. Phosphorus sorption capacity of the sediment in six lakes of Beijing and risk of potential phosphorus release. China Environmental Science, 31(11): 1836-1841. (in Chinese)
    [20] Ma Deyi, Wang Juying, 2003. Evaluation on potential ecological risk of sediment pollution in main estuaries of China. China Environmental Science, 23(5): 521-525. (in Chinese)
    [21] Malecki L M, White J R, Reddy K R, 2004. Nitrogen and phosphorus flux rates from sediment in the lower St. John River estuary. Journal of Environmental Auality, 33(4): 1545-1555. doi:  10.2134/jeq2004.1545
    [22] Malecki L M, White J R, Reddy K R, 2007. Soil biogeochemical characteristics influenced by alum application in a municipal wasterwater treatment wetland. Jorunal of Environmental Auality, 36(6): 1904-1913. doi:  10.2134/jeq2007.0159
    [23] Mudroch A, Azcue J M, 1995. Manual of Aquatic Sediments Samping. United States of America: Lewis Publishers, 194-200.
    [24] Pettersson K, 2001. Phosphorus characteristics of settling and suspended particles in Lake Erken. Science Total Environment, 266(1-3): 79-83. doi:  10.1016/S0048-9697(00)00737-3
    [25] Reddy K R, Fisher M M, Wang Y et al., 2007. Potential effects of sediment dredging on internal phosphorus loading in a shallow, subtropical lake. Lake and Reservoir Management, 23(1): 27-38. doi:  10.1080/07438140709353907
    [26] Ruban V, Briganult S, Demare D et al., 1999. Selection and eva­lua­tion of sequential extraction procedures for the determination of phosphorus forms in lake sediment. Journal of Environ­mental Monitoring, 1(1): 51-56. doi:  10.1039/A807778I
    [27] Ruttenberg K C, 1992. Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnology & Oceanography, 37(7): 1460-1482. doi: 10.4319/ lo.1992.37.7.1460
    [28] Sundareshwar P V, James T M, 1999. Phosphorus sorption characteristics of intertidal marsh sediments along an estuarine salinity gradient. Limnology & Oceanography, 44(7): 1693-1701. doi:  10.4319/lo.1999.44.7.1693
    [29] Wang P, He M C, Lin C Y et al., 2009. Phosphorus distribution in the estuarine sediments of Daliao River, China. Estuarine, Coastal and Shelf Science, 84(2): 246-252. doi: 10.1016/ j.ecss.2009.06.020
    [30] Wang S G, Jin X C, Pang Y et al., 2005. Phosphorus fractions and phosphate sorption characteristics in relation to the sediment compositions of shallow lakes in the middle and lower reaches of Yangtze River region, China. Journal of Colloid and Interface Science, 289(2): 339-346. doi: 10.1016/j.jcis. 2005.03.081
    [31] Wang S G, Jin X C, Zhao H C et al., 2009. Phosphorus release characteristics of different trophic lake sediments under simulative disturbing conditions. Journal of Hazardous Materials, 161(2): 1551-1559. doi:  10.1016/j.jhazmat.2008.05.004
    [32] Xiao R, Bai J H, Gao H F et al., 2012. Spatial distribution of phosphorus in marsh soils of a typical land/inland water ecotone along a hydrological gradient. Catena, 98: 96-103. doi:  10.1016/j.catena.2012.06.008
    [33] Xiao R, Bai J H, Zhang H G et al., 2011. Changes of P, Ca, Al and Fe contents in fringe marshes along a pedogenic chrono­sequence in the Pearl River estuary, South China. Continental Shelf Research, 31(6): 739-747. doi: 10.1016/j.csr.2011.01. 013
    [34] Yu Yu, Song Jinming, Li Xuegang et al., 2011. Distributions and environmental implications of the phosphorus forms in the surface sediments from the Changjiang Estuary. Aadvances in Earth Science, 26(8): 870-880. (in Chinese)
    [35] Yue Weizhong, Huang Xiaoping, 2005. Distribution characteristics of phosphorus in core sediments from Zhujiang River estuary and its environmental significance. Journal of Tropical Oceanography, 24(1): 21-27. (in Chinese)
    [36] Yue Weizhong, Huang Xiaoping, Sun Cuici, 2007. Distribution and pollution of nitrogen and phosphorus in surface sediments from the Pearl River Eestuary. Oceanologia Et Limnologia Sinica, 38(2): 111-116. (in Chinese)
    [37] Zhang J Z, Huang X L, 2007. Relative importance of soild-phase phosphorus and iron on the sorption behavior of sediments. Environmental Science & Technology, 41(8): 2789-2795. doi:  10.1021/es061836q
    [38] Zhang Jingping, Huang Xiaoping, Jiang Zhijian et al., 2009. Seasonal variations of eutrophication and the relationship with environmental factors in the Zhujiang Estuary in 2006-2007. Acta Oceanologica Sinica, 31(3): 113-120. (in Chinese)
    [39] Zhong J C, You B S, Fan C X, 2008. Influence of sediment dred­ging on chemical forms and release of phosphorus. Pedosphere, 18(1): 34-44. doi:  10.1016/S1002-0160(07)60100-3
    [40] Zhou A M, Tang H X, Wang D S, 2005. Phosphorus adsorption on natural sediments: Modeling and effects of pH and sediment composition. Water Research, 39(7): 1245-1254. doi: 10.1016/ j.watres.2005.01.026
    [41] Zhu G W, Qin B Q, Zhang L et al., 2006. Geochemical forms of phosphorus in sediments of three large shallow lakes of China. Pedosphere, 16(6): 726-734. doi: 10.1016/S1002-0160(06) 60108-2
  • [1] YANG Yanli, MOU Xiaojie, WEN Bolong, LIU Xingtu.  Soil Carbon, Nitrogen and Phosphorus Concentrations and Stoichi-ometries Across a Chronosequence of Restored Inland Soda Saline-Alkali Wetlands, Western Songnen Plain, Northeast China . Chinese Geographical Science, 2020, 30(5): 934-946. doi: 10.1007/s11769-020-1155-7
    [2] CHENG Caifeng, LI Min, XUE Zhenshan, ZHANG Zongsheng, LYU Xianguo, JIANG Ming, ZHANG Hongri.  Impacts of Climate and Nutrients on Carbon Sequestration Rate by Wetlands: A Meta-analysis . Chinese Geographical Science, 2020, 30(3): 483-492. doi: 10.1007/s11769-020-1122-3
    [3] MOU Xiaojie, LIU Xingtu, SUN Zhigao, TONG Chuan, HUANG Jiafang, WAN Siang, WANG Chun, WEN Bolong.  Effects of Anthropogenic Disturbance on Sediment Organic Carbon Mineralization Under Different Water Conditions in Coastal Wetland of a Subtropical Estuary . Chinese Geographical Science, 2018, 28(3): 400-410. doi: 10.1007/s11769-018-0956-4
    [4] JIA Xueying, TIAN Zhijie, QIN Lei, ZHANG Linlin, ZOU Yuanchun, JIANG Ming, LYU Xianguo.  Iron Regulation of Wetland Vegetation Performance Through Synchronous Effects on Phosphorus Acquisition Efficiency . Chinese Geographical Science, 2018, 28(2): 337-352. doi: 10.1007/s11769-018-0949-3
    [5] WU Yalin, HUANG Tao, HUANG Changchun, SHEN Yinyin, LUO Yang, YANG Hao, YU Yanhong, LI Ruixiao, GAO Yan, ZHANG Mingli.  Internal Loads and Bioavailability of Phosphorus and Nitrogen in Dianchi Lake, China . Chinese Geographical Science, 2018, 28(5): 851-862. doi: 10.1007/s11769-018-0994-y
    [6] ZHANG Zhongsheng, XUE Zhenshan, LYU Xianguo, TONG Shouzheng, JIANG Ming.  Scaling of Soil Carbon, Nitrogen, Phosphorus and C:N:P Ratio Patterns in Peatlands of China . Chinese Geographical Science, 2017, 27(4): 507-515. doi: 10.1007/s11769-017-0884-8
    [7] YANG Xiaozhu, WEI Kai, CHEN Zhenhua, CHEN Lijun.  Soil Phosphorus Composition and Phosphatase Activities along Altitudes of Alpine Tundra in Changbai Mountains, China . Chinese Geographical Science, 2016, 26(1): 90-98. doi: 10.1007/s11769-015-0786-6
    [8] CHAI Hua, YU Guirui, HE Nianpeng, WEN Ding, LI Jie, FANG Jiangping.  Vertical Distribution of Soil Carbon, Nitrogen, and Phosphorus in Typical Chinese Terrestrial Ecosystems . Chinese Geographical Science, 2015, 25(5): 549-560. doi: 10.1007/s11769-015-0756-z
    [9] SUN Zhigao MOU Xiaojie SUN Jingkuan et al..  Nitrogen Biological Cycle Characteristics of Seepweed (Suaeda salsa) Wetland in Intertidal Zone of Huanghe (Yellow) River Estuary . Chinese Geographical Science, 2012, 22(1): 15-28.
    [10] YANG Fei Zhu Yunqiang Zhang Jiahua YAO Zuofang.  Estimating Fraction of Photosynthetically Active Radiation of Corn with Vegetation Indices and Neural Network from Hyperspectral Data . Chinese Geographical Science, 2012, 22(1): 63-74.
    [11] GUO Lei, MA Keming.  Seasonal Dynamics of Nitrogen and Phosphorus in Water and Sediment of A Multi-level Ditch System in Sanjiang Plain, Northeast China . Chinese Geographical Science, 2011, 21(4): 437-445.
    [12] YU Xiaofei, ZHANG Yuxia, ZHAO Hongmei, LU Xianguo, WANG Guoping.  Freeze-thaw Effects on Sorption/Desorption of Dissolved Organic Carbon in Wetland Soils . Chinese Geographical Science, 2010, 20(3): 209-217. doi: 10.1007/s11769-010-0209-7
    [13] WEN Yanmao, WEI Xiange, SHU Tingfei, ZHOU Jingfeng, YU Guanghui, LI Feng, HUANG Yanyun.  Forms and Balance of Nitrogen and Phosphorus in Cage Culture Waters in Guangdong Province, China . Chinese Geographical Science, 2007, 17(4): 370-375. doi: 10.1007/s11769-007-0370-9
    [14] XU Zhiguo, YAN Baixing, HE Yan, ZHAI Jinliang, SONG Changchun.  Effect of Nitrogen and Phosphorus on Tissue Nutrition and Biomass of Freshwater Wetland Plant in Sanjiang Plain, Northeast China . Chinese Geographical Science, 2006, 16(3): 270-275.
    [15] ZHANG Lei, SONG Feng-bin.  SORPTION AND DESORPTION CHARACTERISTICS OF CADMIUM BY FOUR DIFFERENT SOILS IN NORTHEAST CHINA . Chinese Geographical Science, 2005, 15(4): 343-347.
    [16] GAO Jian-hua, GAO Shu, CHENG Yan, DONG Li-xian, ZHANG Jing.  SEDIMENT TRANSPORT IN YALU RIVER ESTUARY . Chinese Geographical Science, 2003, 13(2): 157-163.
    [17] DONG De-ming, FANG Chun-sheng, ZHAO Wen-jin, XIE Zhong-lei.  EVALUATION OF GEOCHEMICAL QUALITY CONTROL IN DETERMINATION OF Mn IN SOILS USING A SEQUENTIAL CHEMICAL EXTRACTION . Chinese Geographical Science, 2002, 12(2): 166-170.
    [18] CHEN Bing-lu, ZHANG Yun-ni, CHEN Xin-geng, WANG Zhi-gang, YANG Guang-xing.  THE CHARACTERISTIC OF MARINE ENVIRONMENT IN LINGDINGYANG ESTUARY . Chinese Geographical Science, 2001, 11(2): 155-162.
    [19] WANG Shi-yan, YANG Yong-xing.  DYNAMICS OF LITTER DECOMPOSITION AND SEASONAL DYNAMICS OF PHOSPHORUS IN DECOMPOSED RESIDUA OF Calamagrotis augustifolia IN THE WETLAND OF THE SANJIANG PLAIN . Chinese Geographical Science, 2001, 11(3): 264-269.
    [20] 吕宪国, 王荣芬.  STUDY ON WETLAND BIODIVERSITY IN CHINA . Chinese Geographical Science, 1996, 6(1): 15-23.
  • 加载中
计量
  • 文章访问数:  434
  • HTML全文浏览量:  6
  • PDF下载量:  1449
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-26
  • 修回日期:  2013-02-04
  • 刊出日期:  2013-09-10

Phosphorus Speciation in Wetland Sediments of Zhujiang (Pearl) River Estuary, China

doi: 10.1007/s11769-013-0627-4
    基金项目:  Foundation item: Under the auspices of National Natural Science Foundation of China (No. U0833002), National Science and Technology Support Program of China (No. 2012BAC07B05)
    通讯作者: LI Qusheng,E-mail: liqusheng@21cn.com

摘要: Phosphorus fractions and adsorption-release characteristics of sediments in the Zhujiang (Pearl) River estuary wetland were investigated. Results showed that the total phosphorus (TP) content in surface sediments ranged from 648.9 mg/kg to 1064.0 mg/kg; inorganic phosphorus (IP) was the major fraction of TP and ranged from 422.5 mg/kg to 643.9 mg/kg. Among the inorganic phosphorus, the main fractions were phosphorus bound to Al and Fe (Fe/Al-P), and calcium-bound phosphorus (Ca-P), accounting for 23%-42% and 21%-67% of IP, respectively. The vertical distribution of TP contents were significantly positive correlated with organic phosphorus (Org-P) and Fe/Al-P contents. The bio-available phosphorus contents in vertical sediments varied from 128.6 mg/kg to 442.9 mg/kg, mainly existed in Fe-Al/P fraction, and increased from the bottom to top sediments. The transport of phosphorus in sediment-water interface was controlled by the soil characteristics. The active Fe and Al content was considered as the main factor that determines adsorption capacity in vegetated marsh wetland. The P buffering capacity of the sediments in vegetated marsh wetland was greater than that in mudflat wetland. The potential risk of eutrophication in the study area is high. Reducing terrestrial phosphorus discharge and preventing the sediment Fe/Al-P release to the interstitial water are the possible solutions to reduce the risk of eutrophication in estuary wetlands, and planting vegetation in estuary wetland can also reduce the release of phosphorus in surface sediment.

English Abstract

WANG Lili, YE Mei, LI Qusheng, ZOU Hang, ZHOU Yongsheng. Phosphorus Speciation in Wetland Sediments of Zhujiang (Pearl) River Estuary, China[J]. 中国地理科学, 2013, 23(5): 574-583. doi: 10.1007/s11769-013-0627-4
引用本文: WANG Lili, YE Mei, LI Qusheng, ZOU Hang, ZHOU Yongsheng. Phosphorus Speciation in Wetland Sediments of Zhujiang (Pearl) River Estuary, China[J]. 中国地理科学, 2013, 23(5): 574-583. doi: 10.1007/s11769-013-0627-4
WANG Lili, YE Mei, LI Qusheng, ZOU Hang, ZHOU Yongsheng. Phosphorus Speciation in Wetland Sediments of Zhujiang (Pearl) River Estuary, China[J]. Chinese Geographical Science, 2013, 23(5): 574-583. doi: 10.1007/s11769-013-0627-4
Citation: WANG Lili, YE Mei, LI Qusheng, ZOU Hang, ZHOU Yongsheng. Phosphorus Speciation in Wetland Sediments of Zhujiang (Pearl) River Estuary, China[J]. Chinese Geographical Science, 2013, 23(5): 574-583. doi: 10.1007/s11769-013-0627-4
参考文献 (41)

目录

    /

    返回文章
    返回