留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of Tillage Management on Infiltration and Preferential Flow in a Black Soil, Northeast China

FAN Ruqin ZHANG Xiaoping YANG Xueming LIANG Aizhen JIA Shuxia CHEN Xuewen

FAN Ruqin, ZHANG Xiaoping, YANG Xueming, LIANG Aizhen, JIA Shuxia, CHEN Xuewen. Effects of Tillage Management on Infiltration and Preferential Flow in a Black Soil, Northeast China[J]. 中国地理科学, 2013, 23(3): 312-320. doi: 10.1007/s11769-013-0606-9
引用本文: FAN Ruqin, ZHANG Xiaoping, YANG Xueming, LIANG Aizhen, JIA Shuxia, CHEN Xuewen. Effects of Tillage Management on Infiltration and Preferential Flow in a Black Soil, Northeast China[J]. 中国地理科学, 2013, 23(3): 312-320. doi: 10.1007/s11769-013-0606-9
FAN Ruqin, ZHANG Xiaoping, YANG Xueming, LIANG Aizhen, JIA Shuxia, CHEN Xuewen. Effects of Tillage Management on Infiltration and Preferential Flow in a Black Soil, Northeast China[J]. Chinese Geographical Science, 2013, 23(3): 312-320. doi: 10.1007/s11769-013-0606-9
Citation: FAN Ruqin, ZHANG Xiaoping, YANG Xueming, LIANG Aizhen, JIA Shuxia, CHEN Xuewen. Effects of Tillage Management on Infiltration and Preferential Flow in a Black Soil, Northeast China[J]. Chinese Geographical Science, 2013, 23(3): 312-320. doi: 10.1007/s11769-013-0606-9

Effects of Tillage Management on Infiltration and Preferential Flow in a Black Soil, Northeast China

doi: 10.1007/s11769-013-0606-9
基金项目: Under the auspices of National Natural Science Foundation of China (No. 31170483), Key Direction in Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-EW-QN307), Foundation of Excellent Young Talents in Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences (No. C08Y13)
详细信息
    通讯作者:

    LIANG Aizhen. E-mail: liangaizhen@neigae.ac.cn

Effects of Tillage Management on Infiltration and Preferential Flow in a Black Soil, Northeast China

Funds: Under the auspices of National Natural Science Foundation of China (No. 31170483), Key Direction in Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-EW-QN307), Foundation of Excellent Young Talents in Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences (No. C08Y13)
More Information
    Corresponding author: LIANG Aizhen. E-mail: liangaizhen@neigae.ac.cn
  • 摘要: The impacts of no-tillage (NT) and moldboard plough (MP) managements on infiltration rate and preferential flow were characterized using a combined technique of double-ring device and dye tracer on a black soil (Mollisols) in Northeast China. The objective of this study is to evaluate how tillage practices enhance soil water infiltration and preferential flow in favor of soil erosion control in the study area. The steady infiltration rates under NT management are 1.6 and 2.1 times as high as those under MP management in the 6th and 8th years of the tillage management in place, while the infiltrated water amounts under NT management are 1.4 and 2.0 times as high as those under MP management, respectively. The depth of methylene blue penetrated into NT soil increases from 43 cm in the 6th year to 57 cm in the 8th year, which are 16 cm and 19 cm deeper than those in MP soil, respectively. The results of morphologic image show that more biological macro-pores occur in NT soil than in MP soil. These macro-pores play a key role in enhancing preferential flow in NT soil, which in turn promotes water infiltration through preferential pathways in NT soil. The results are helpful to policy-making in popularizing NT and have the implications for tillage management in regard to soil erosion control in black soil region of China.
  • [1] Allaire S E, Roulier S, Cessna A J, 2009. Quantifying preferential flow in soils: A review of different techniques. Journal of Hy-drology, 378(1-2): 179-204. doi: 10.1016/j.jhydrol.2009.08. 013
    [2] Alvarez R, Steinbach H S, 2009. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil and Tillage Research, 104(1): 1-15. doi: 10.1016/j.still.2009. 02.005
    [3] Armstrong A C, Leeds-Harrison P B, Harris G L et al., 1999. Measurement of solute fluxes in macroporous soils: Techniques, problems and precision. Soil Use and Management, 15(4): 240-246. doi:  10.1111/j.1475-2743.1999.tb00096.x
    [4] Arshad M A, Franzluebbers A J, Azooz R H, 1999. Components of surface soil structure under conventional and no-tillage in northwestern Canada. Soil and Tillage Research, 53(1): 41-47. doi:  10.1016/S0167-1987(99)00075-6
    [5] Bagarello V, Sferlazza S, Sgroi A, 2009. Comparing two methods of analysis of single-ring infiltrometer data for a sandy-loam soil. Geoderma, 149(3-4): 415-420. doi: 10.1016/j.geoderma. 2008.12.022
    [6] Braud I, De Condappa D, Soria J M et al., 2005. Use of scaled forms of the infiltration equation for the estimation of unsatu-rated soil hydraulic properties (the Beerkan method). European Journal of Soil Science, 56(3): 361-374. doi:  10.1111/j.1365-2389.2004.00660.x
    [7] Capowiez Y, Cadoux S, Bouchant P et al., 2009. The effect of tillage type and cropping system on earthworm communities, macroporosity and water infiltration. Soil and Tillage Research, 105(2): 209-216. doi:  10.1016/j.still.2009.09.002
    [8] Celik I, Ersahin S, 2011. Evaluation of tillage influence on infil-tration characteristics in a clay soil. Journal of Food, Agricul-ture and Environment, 9(1): 653-658.
    [9] Cey E E, Rudolph D L, Passmore J, 2009. Influence of macropo-rosity on preferential solute and colloid transport in unsaturated field soils. Journal of Contaminant Hydrology, 107(1-2): 45-57. doi:  10.1016/j.jconhyd.2009.03.004
    [10] Chan K Y, 2001. An overview of some tillage impacts on earth-worm population abundance and diversity—Implications for functioning in soils. Soil and Tillage Research, 57(4): 179-191. doi:  10.1016/S0167-1987(00)00173-2
    [11] Cullum R F, 2009. Macropore flow estimations under no-till and till systems. CATENA, 78(1): 87-91. doi: 10.1016/j.catena. 2009.03.004
    [12] Durán A, Morrás H, Studdert G et al., 2011. Distribution, proper-ties, land use and management of Mollisols in South America. Chinese Geographical Science, 21(5): 511-530. doi:  10.1007/s11769-011-0491-z
    [13] Gish T J, Gimenez D, Rawls W J, 1998. Impact of roots on ground water quality. Plant and Soil, 200(1): 47-54. doi:  10.1023/A:1004202013082
    [14] Govaerts B, Fuentes M, Mezzalama M et al., 2007. Infiltration, soil moisture, root rot and nematode populations after 12 years of different tillage, residue and crop rotation managements. Soil and Tillage Research, 94(1): 209-219. doi:  10.1016/j.still.2006.07.013
    [15] Hangen E, Buczko U, Bens O et al., 2002. Infiltration patterns into two soils under conventional and conservation tillage: Influence of the spatial distribution of plant root structures and soil animal activity. Soil and Tillage Research, 63(3-4): 181-186. doi:  10.1016/S0167-1987(01)00234-3
    [16] He J, Wang Q J, Li H W et al., 2009. Soil physical properties and infiltration after long-term no-tillage and ploughing on the Chinese Loess Plateau. New Zealand Journal of Crop and Horticultural Science, 37(3): 157-166.
    [17] Hendrix P F, Franklin D H, Radcliffe D E et al., 2007. Characte-ristics and genesis of preferential flow paths in a piedmont ul-tisol. Soil Science Society of America Journal, 71(3): 752-758. doi:  10.2136/sssaj2006.0166
    [18] Holden J, Gell K F, 2009. Morphological characterization of solute flow in a brown earth grassland soil with cranefly larvae burrows (leatherjackets). Geoderma, 152(1-2): 181-186. doi:  10.1016/j.geoderma.2009.06.006
    [19] Homolak M, Capuliak J, Pichler V et al., 2009. Estimating hy-draulic conductivity of a sandy soil under different plant covers using minidisk infiltrometer and a dye tracer experiment. Biologia, 64(3): 600-604. doi:  10.2478/s11756-009-0088-5
    [20] Imhoff S, Ghiberto P J, Grioni A et al., 2010. Porosity characteri-zation of Argiudolls under different management systems in the Argentine Flat Pampa. Geoderma, 158(3-4): 268-274. doi:  10.1016/j.geoderma.2010.05.005
    [21] Jarvis N, Etana A, Stagnitti F, 2008. Water repellency, near-sa-turated infiltration and preferential solute transport in a macro-porous clay soil. Geoderma, 143(3-4): 223-230. doi:  10.1016/j.geoderma.2007.11.015
    [22] Kahlon M S, Lal R, Ann-Varughese M, 2013. Twenty two years of tillage and mulching impacts on soil physical characteristics and carbon sequestration in Central Ohio. Soil and Tillage Research, 126: 151-158. doi:  10.1016/j.still.2012.08.001
    [23] Kasteel R, Garnier P, Vachier P et al., 2007. Dye tracer infiltration in the plough layer after straw incorporation. Geoderma, 137(3-4): 360-369. doi:  10.1016/j.geoderma.2006.08.033
    [24] Kay B D, Vanden Bygaart A J, 2002. Conservation tillage and depth stratification of porosity and soil organic matter. Soil and Tillage Research, 66(2): 107-118. doi:  10.1016/S0167-1987(02)00019-3
    [25] Kemper W D, Bongert C E, Marohn D M, 2012. Corn response to tillage and water table depth. Journal of Soil and Water Con-servation, 67(2): 31A-36A. doi:  10.2489/jSWC.67.2.31A
    [26] Kramers G, Richards K G, Holden N M, 2009. Assessing the po-tential for the occurrence and character of preferential flow in three Irish grassland soils using image analysis. Geoderma, 153(3-4): 362-371. doi:  10.1016/j.geoderma.2009.08.021
    [27] Kravchenko Y S, Zhang X Y, Liu X B et al., 2011. Mollisols properties and changes in Ukraine and China. Chinese Geo-graphical Science, 21(3): 257-266. doi:  10.1007/s11769-011-0467-z
    [28] Larsbo M, Stenstrom J, Etana A et al., 2009. Herbicide sorption, degradation, and leaching in three Swedish soils under long-term conventional and reduced tillage. Soil and Tillage Research, 105(2): 200-208. doi:  10.1016/j.still.2009.08.003
    [29] Liang Aizhen, Yang Xueming, Zhang Xiaoping et al., 2009. Short-term impacts of no tillage on soil organic carbon asso-ciated with water-stable aggregates in black soil of Northeast China. Scientia Agricultura Sinica, 42(8): 2801-2808. (in Chinese)
    [30] Liang A Z, McLaughlin N B, Zhang X P et al., 2011. Short-term effects of tillage practices on soil aggregate fractions in a Chi-nese Mollisol. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 6(6): 535-542. doi: 10.1080/09064710. 2010.515601
    [31] Lipiec J, Kus J, Slowinska-Jurkiewicz A et al., 2006. Soil porosity and water infiltration as influenced by tillage methods. Soil and Tillage Research, 89(2): 210-220. doi: 10.1016/j.still.2005. 07.012
    [32] Liu X B, Zhang X Y, Wang Y X et al., 2010. Soil degradation: A problem threatening the sustainable development of agriculture in Northeast China. Plant, Soil and Environment, 56(2): 87-97.
    [33] Luo Jinming, Deng Wei, Zhang Xiaoping et al., 2006. Characte-ristics of channeling flow in cultivated horizon of saline rice soil. Chinese Geographical Science, 16(4): 342-346. doi:  10.1007/s11769-006-0342-5
    [34] McGarry D, Bridge B J, Radford B J, 2000. Contrasting soil physical properties after zero and traditional tillage of an alluvial soil in the semi-arid subtropics. Soil and Tillage Research, 53(2): 105-115. doi:  10.1016/S0167-1987(99)00091-4
    [35] Melero S, Panettieri M, Madejon E et al., 2011. Implementation of chiselling and mouldboard ploughing in soil after 8 years of no-till management in SW, Spain: Effect on soil quality. Soil and Tillage Research, 112(2): 107-113. doi: 10.1016/j.still. 2010.12.001
    [36] Moret D, Arrué J L, 2007. Characterizing soil water-conducting macro-and mesoporosity as influenced by tillage using tension infiltrometry. Soil Science Society of America Journal, 71(2): 500-506. doi:  10.2136/sssaj2006.0128
    [37] Moroke T S, Dikinya O, Patrick C, 2009. Comparative assessment of water infiltration of soils under different tillage systems in eastern Botswana. Physics and Chemistry of the Earth, Parts A/B/C, 34(4-5): 316-323. doi: 10.1016/j.pce.2008. 08.002
    [38] Perkins K S, Nimmo J R, Medeiros A C, 2012. Effects of native forest restoration on soil hydraulic properties, Auwahi, Maui, Hawaiian Islands. Geophysical Research Letters, 39(5): L05405. doi:  10.1029/2012GL051120
    [39] Presley D R, Sindelar A J, Buckley M E et al., 2012. Long-term nitrogen and tillage effects on soil physical properties under continuous grain sorghum. Agronomy Journal, 104(3): 749-755.
    [40] Raw F, 1959. Estimating earthworm populations by using formalin. Nature, 184(4699): 1661-1662. doi:  10.1038/1841661a0
    [41] Reynolds W D, Elrick D E, 1990. Ponded infiltration from a single ring: I. Analysis of steady flow. Soil Science Society of America Journal, 54(5): 1233-1241.
    [42] Roper M M, Ward P R, Keulen A F et al., 2013. Under no-tillage and stubble retention, soil water content and crop growth are poorly related to soil water repellency. Soil and Tillage Research, 126: 143-150. doi:  10.1016/j.still.2012.09.006
    [43] Sasal M C, Andriulo A E, Taboada M A, 2006. Soil porosity cha-racteristics and water movement under zero tillage in silty soils in Argentinian Pampas. Soil and Tillage Research, 87(1): 9-18. doi:  10.1016/j.still.2005.02.025
    [44] Schwartz R C, Baumhardt R L, Evett S R, 2010. Tillage effects on soil water redistribution and bare soil evaporation throughout a season. Soil and Tillage Research, 110(2): 221-229. doi:  10.1016/j.still.2010.07.015
    [45] Sharma P, Abrol V, Shankar G R M, 2009. Effect of tillage and mulching management on the crop productivity and soil prop-erties in maize-wheat rotation. Research on Crops, 10(3): 536-541.
    [46] Soukos N, Chen P S, Morris J et al., 2006. Photodynamic therapy for endodontic disinfection. Journal of Endodontics, 32(10): 979-984. doi:  10.1016/j.joen.2006.04.007
    [47] Truman C C, Potter T L, Nuti R C et al., 2011. Antecedent water content effects on runoff and sediment yields from two Coastal Plain Ultisols. Agricultural Water Management, 98(8): 1189-1196. doi:  10.1016/j.agwat.2011.03.001
    [48] Wahl N A, Bens O, Buczko U et al., 2004. Effects of conventional and conservation tillage on soil hydraulic properties of a silty-loamy soil. Physics and Chemistry of the Earth, Parts A/B/C, 29(11-12): 821-829. doi:  10.1016/j.pce.2004.05.009
    [49] Xu D, Mermoud A, 2001. Topsoil properties as affected by tillage practices in North China. Soil and Tillage Research, 60(1-2): 11-19. doi:  10.1016/S0167-1987(01)00167-2
    [50] Zhou H, Li B G, Lu Y Z, 2009. Micromorphological analysis of soil structure under no tillage management in the black soil zone of Northeast China. Journal of Mountain Science, 6(2): 173-180. doi:  10.1007/s11629-009-1034-2
  • [1] REN Wanxia, XUE Bing, YANG Jun, LU Chengpeng.  Effects of the Northeast China Revitalization Strategy on Regional Economic Growth and Social Development . Chinese Geographical Science, 2020, 30(5): 791-809. doi: 10.1007/s11769-020-1149-5
    [2] LI Zhe, ZHANG Zhongsheng, XUE Zhenshan, SONG Xiaolin, ZHANG Hongri, WU Haitao, JIANG Ming, LYU Xianguo.  Molecular Fingerprints of Soil Organic Matter in a Typical Freshwater Wetland in Northeast China . Chinese Geographical Science, 2019, 20(4): 700-711. doi: 10.1007/s11769-019-1062-y
    [3] LYU Mingzhi, SHENG Lianxi, ZHANG Zhongsheng, ZHANG Li.  Distribution and Accumulation of Soil Carbon in Temperate Wetland, Northeast China . Chinese Geographical Science, 2016, 26(3): 295-303. doi: 10.1007/s11769-016-0809-y
    [4] ZHANG Yubin, CAO Ning, XU Xiaohong, ZHANG Feng, YAN Fei, ZHANG Xinsheng, TANG Xinlong.  Relationship Between Soil and Water Conservation Practices and Soil Conditions in Low Mountain and Hilly Region of Northeast China . Chinese Geographical Science, 2014, 0(2): 147-162. doi: 10.1007/s11769-013-0620-y
    [5] WANG Qiang, ZHANG Zhongsheng1, ZHOU Xuehong, LU Xianguo.  Mercury Distribution and Accumulation in Typical Wetland Ecosystems of Sanjiang Plain, Northeast China . Chinese Geographical Science, 2013, 23(1): 49-58.
    [6] DUAN Xingwu, XIE Yun, LIU Gang, GAO Xiaofei, LU Hongmei.  Field Capacity in Black Soil Region, Northeast China . Chinese Geographical Science, 2010, 20(5): 406-413. doi: 10.1007/s11769-010-0414-4
    [7] SHAO Jing'an, LI Yangbing, WEI Chaofu, XIE Deti.  Effects of Land Management Practices on Labile Organic Carbon Fractions in Rice Cultivation . Chinese Geographical Science, 2009, 19(3): 241-248. doi: 10.1007/s11769-009-0241-7
    [8] ZHANG Pingyu.  Revitalizing Old Industrial Base of Northeast China:Process, Policy and Challenge . Chinese Geographical Science, 2008, 18(2): 109-118. doi: 10.1007/s11769-008-0109-2
    [9] LI Bo, TONG Lianjun.  Vulnerability and Sustainable Development Mode of Coal Cities in Northeast China . Chinese Geographical Science, 2008, 18(2): 119-126. doi: 10.1007/s11769-008-0119-0
    [10] CHENG Qinjuan, CAI Qiangguo, MA Wenjun.  Comparative Study on Rain Splash Erosion of Representative Soils in China . Chinese Geographical Science, 2008, 18(2): 155-161. doi: 10.1007/s11769-008-0155-9
    [11] CAO Huicong, WANG Jinda, ZHANG Xuelin.  Ecotoxicity of Cadmium to Maize and Soybean Seedling in Black Soil . Chinese Geographical Science, 2007, 17(3): 270-274. doi: 10.1007/s11769-007-0270-z
    [12] MEI Lin, XU Xiaopo, CHEN Mingxiu.  Regional Evolution Features and Coordinated Development Strategies for Northeast China . Chinese Geographical Science, 2006, 16(4): 378-382.
    [13] ZHANG Lei, SONG Feng-bin.  SORPTION AND DESORPTION CHARACTERISTICS OF CADMIUM BY FOUR DIFFERENT SOILS IN NORTHEAST CHINA . Chinese Geographical Science, 2005, 15(4): 343-347.
    [14] WANG Ya-qin, WANG Ji-hong.  EFFECT OF ELECTRIC FERTILIZER ON SOIL PROPERTIES . Chinese Geographical Science, 2004, 14(1): 71-74.
    [15] WANG Xi-kui, QIU Shan-wen, SONG Chang-chun, KULAKOV Aleksey, TASHCHI Stepan, MYASNIKOV Evgeny.  CENOZOIC VOLCANISM AND GEOTHERMAL RESOURCES IN NORTHEAST CHINA . Chinese Geographical Science, 2001, 11(2): 150-154.
    [16] 黄铁青, 刘兆礼, 潘瑜春, 张养贞.  LAND COVER SURVEY IN NORTHEAST CHINA USING REMOTE SENSING AND GIS . Chinese Geographical Science, 1998, 8(3): 264-270.
    [17] 刘红玉.  CONSERVATION OF WETLANDS ESPECIALLY AS WATERFOWL HABITAT IN NORTHEAST CHINA . Chinese Geographical Science, 1998, 8(3): 281-288.
    [18] 邹春静, 徐文铎, 卜军.  INFLUENCE OF GLOBAL WARMING ON VEGETATION IN NORTHEAST CHINA . Chinese Geographical Science, 1997, 7(1): 68-78.
    [19] 王荣芬, 于国政.  THE OPEN PORT SYSTEM IN NORTHEAST CHINA . Chinese Geographical Science, 1997, 7(3): 270-277.
    [20] 刘继生.  A FRACTAL STUDY ON URBAN SYSTEM IN NORTHEAST CHINA . Chinese Geographical Science, 1996, 6(3): 272-281.
  • 加载中
计量
  • 文章访问数:  896
  • HTML全文浏览量:  1
  • PDF下载量:  1009
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-21
  • 修回日期:  2012-12-11
  • 刊出日期:  2013-05-29

Effects of Tillage Management on Infiltration and Preferential Flow in a Black Soil, Northeast China

doi: 10.1007/s11769-013-0606-9
    基金项目:  Under the auspices of National Natural Science Foundation of China (No. 31170483), Key Direction in Knowledge Innovation Programs of Chinese Academy of Sciences (No. KZCX2-EW-QN307), Foundation of Excellent Young Talents in Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences (No. C08Y13)
    通讯作者: LIANG Aizhen. E-mail: liangaizhen@neigae.ac.cn

摘要: The impacts of no-tillage (NT) and moldboard plough (MP) managements on infiltration rate and preferential flow were characterized using a combined technique of double-ring device and dye tracer on a black soil (Mollisols) in Northeast China. The objective of this study is to evaluate how tillage practices enhance soil water infiltration and preferential flow in favor of soil erosion control in the study area. The steady infiltration rates under NT management are 1.6 and 2.1 times as high as those under MP management in the 6th and 8th years of the tillage management in place, while the infiltrated water amounts under NT management are 1.4 and 2.0 times as high as those under MP management, respectively. The depth of methylene blue penetrated into NT soil increases from 43 cm in the 6th year to 57 cm in the 8th year, which are 16 cm and 19 cm deeper than those in MP soil, respectively. The results of morphologic image show that more biological macro-pores occur in NT soil than in MP soil. These macro-pores play a key role in enhancing preferential flow in NT soil, which in turn promotes water infiltration through preferential pathways in NT soil. The results are helpful to policy-making in popularizing NT and have the implications for tillage management in regard to soil erosion control in black soil region of China.

English Abstract

FAN Ruqin, ZHANG Xiaoping, YANG Xueming, LIANG Aizhen, JIA Shuxia, CHEN Xuewen. Effects of Tillage Management on Infiltration and Preferential Flow in a Black Soil, Northeast China[J]. 中国地理科学, 2013, 23(3): 312-320. doi: 10.1007/s11769-013-0606-9
引用本文: FAN Ruqin, ZHANG Xiaoping, YANG Xueming, LIANG Aizhen, JIA Shuxia, CHEN Xuewen. Effects of Tillage Management on Infiltration and Preferential Flow in a Black Soil, Northeast China[J]. 中国地理科学, 2013, 23(3): 312-320. doi: 10.1007/s11769-013-0606-9
FAN Ruqin, ZHANG Xiaoping, YANG Xueming, LIANG Aizhen, JIA Shuxia, CHEN Xuewen. Effects of Tillage Management on Infiltration and Preferential Flow in a Black Soil, Northeast China[J]. Chinese Geographical Science, 2013, 23(3): 312-320. doi: 10.1007/s11769-013-0606-9
Citation: FAN Ruqin, ZHANG Xiaoping, YANG Xueming, LIANG Aizhen, JIA Shuxia, CHEN Xuewen. Effects of Tillage Management on Infiltration and Preferential Flow in a Black Soil, Northeast China[J]. Chinese Geographical Science, 2013, 23(3): 312-320. doi: 10.1007/s11769-013-0606-9
参考文献 (50)

目录

    /

    返回文章
    返回